Speaker
Description
A major recent breakthrough in global fits of the quark and gluon structure of the proton has been the inclusion of a significant amount of precision LHC measurements. While these data provide important constraints, specially on the poorly-know gluon and antiquark PDFs, it is crucial to avoid any contamination from potential beyond the Standard Model (BSM) effects that could be present in the high E or pT tails of the fitted distributions. This problem is particularly acute for LHC data from Runs II and III, as well as for the future high-luminosity run, where many PDF-sensitive observables will reach into the few TeV region. In this talk, I present a first quantitative study aiming to study whether or not BSM effects can be reabsorbed into the fitted PDFs, as well as the possibility of using the global QCD fit to simultaneously constrain both the proton structure and BSM dynamics.