. Radiative B Decays in the SM and the MSSM

Tobias Hurth

International Conference on the Structure and Interactions of the Photon and 19th International Workshop on Photon-Photon Collisions.

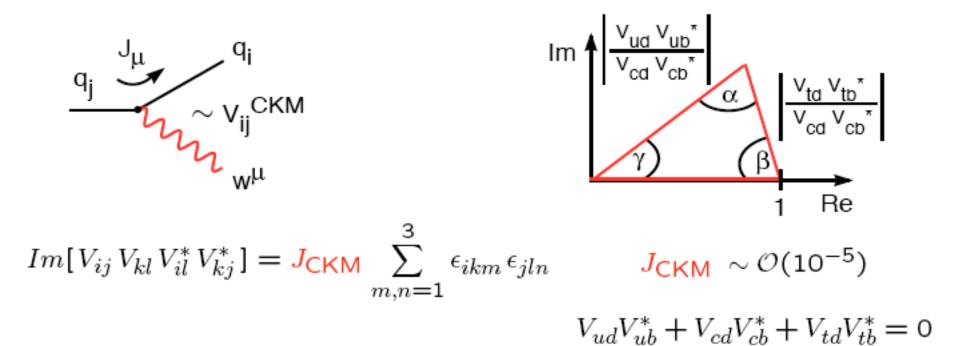
22-27 MAY 2011 SPA-BELGIUM

http://www.photon11.be contact@photon11.be

INTERNATIONAL ADVISORY COMMITTEE 5. Bandaky (SLAC. Pontond) J. Drugenen (NEXET: Anathenckare) V. Fader (NEXET: Anathenckare) Prologue

Flavour in the SM

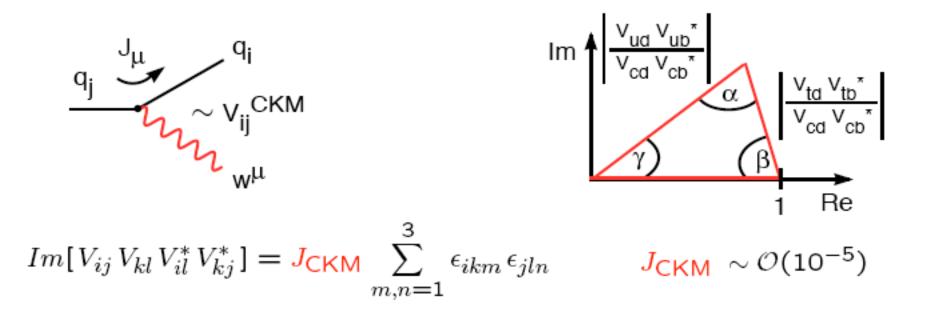
CKM mechanism of flavour mixing and CP violation: V_{CKM} , J_{CKM}



Prologue

Flavour in the SM

CKM mechanism of flavour mixing and CP violation: V_{CKM} , J_{CKM}



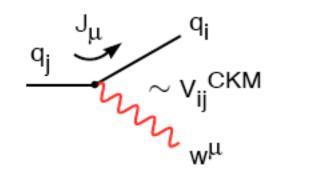
All present measurements (BaBar, Belle, CLEO, CDF, D0,....) of rare decays ($\Delta F = 1$), of mixing phenomena ($\Delta F = 2$) and of all CP violating observables at tree and loop level are consistent with the CKM theory.

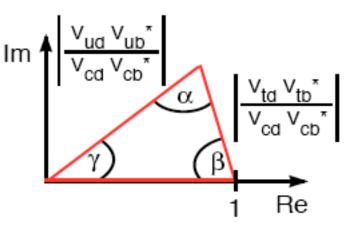
Impressing success of SM and CKM theory !!

Prologue

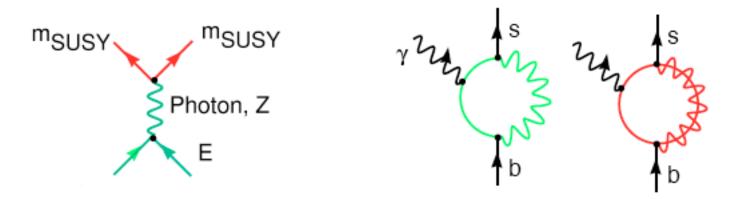
Flavour in the SM

CKM mechanism of flavour mixing and CP violation: V_{CKM} , J_{CKM}





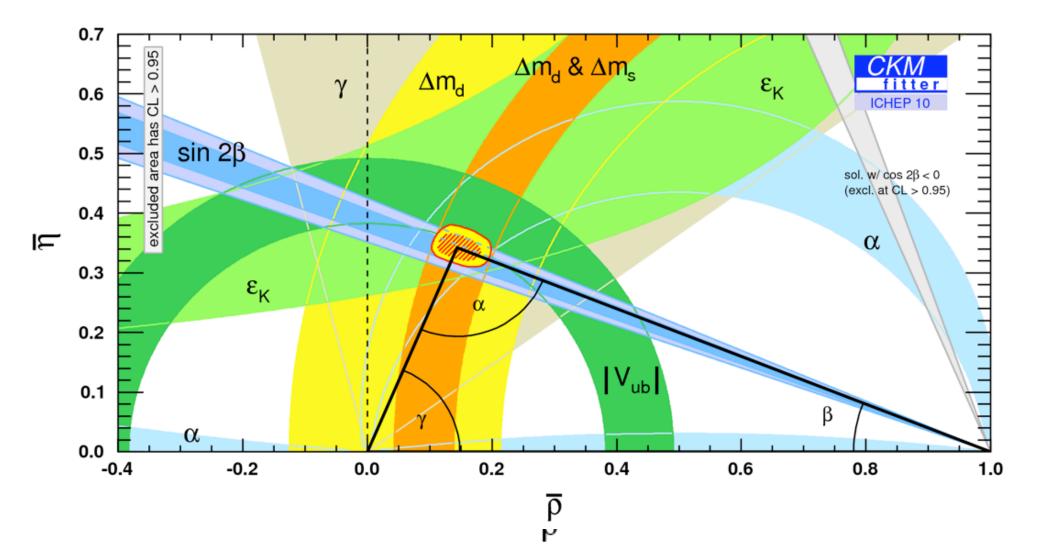
This success is somehow unexpected !!



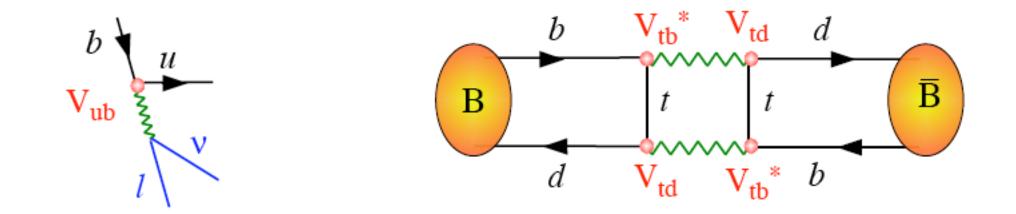
Flavour-changing-neutral-currents as loop-induced processes are highly-sensitive probes for possible new degrees of freedom

Impressing success of SM and CKM theory !!

Global fit, consistency check of the CKM theory.



Most surprising is the consistency between the tree-level and loop-induced observables

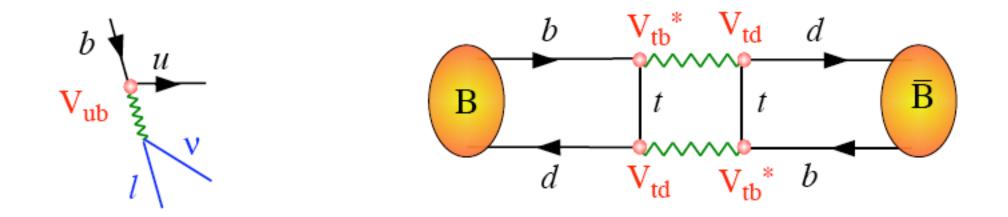


Semileptonic tree-decays versus Neutral-meson mixing $\Delta F = 2$

SM-dominated

Potentially more sensitive to New Physics

Most surprising is the consistency between the tree-level and loop-induced observables



Semileptonic tree-decays versus Neutral-meson mixing $\Delta F = 2$

SM-dominated

Potentially more sensitive to New Physics

There is much more data not shown in the unitarity fits which confirms the SM pedictions of flavour mixing like rare decays ($\Delta F = 1$) However,...

 CKM mechanism is the dominating effect for CP violation and flavour mixing in the quark sector;

but there is still room for sizable new effects and new flavour structures (the flavour sector has only be tested at the 10% level in many cases).

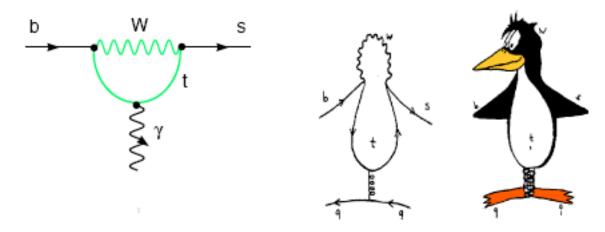
• The SM does not describe the flavour phenomena in the lepton sector.

• No guiding principle in the flavour sector:

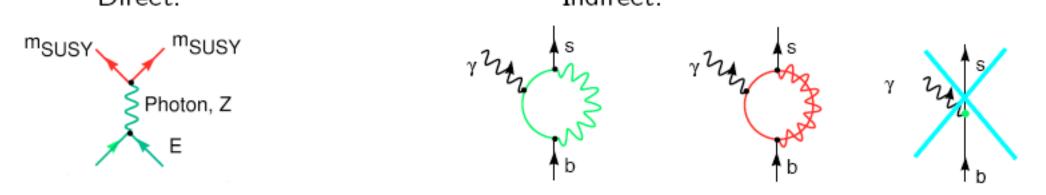
CKM mechanism (3 Yukawa SM couplings) provides a phenomenological descripton of quark flavour processes, but leaves significant hierarchy of quark masses and mixing parameters unexplained.

Independent approach to new physics

• Flavour changing neutral current processes like $b \to s \gamma$ or $b \to s \ell^+ \ell^$ directly probe the SM at the one-loop level.



 Indirect search strategy for new degrees of freedom beyond the SM Direct:
 Indirect:



- High sensitivity for 'New Physics' (\leftrightarrow electroweak precision data, 10% \leftrightarrow 0.1%)
- Large potential for synergy and complementarity between collider (high- p_T) and flavour physics within the search for new physics

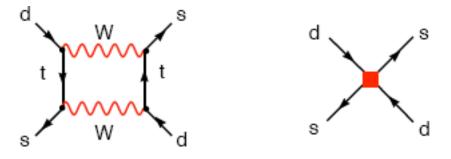
Flavour problem of New Physics or how do FCNCs hide

$$\mathcal{L} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \sum_{i} \frac{c_i^{New}}{\Lambda_{NP}} \mathcal{O}_i^{(5)} + \dots$$

• SM as effective theory valid up to cut-off scale $\Lambda_{\rm NP}$

$$\mathcal{L} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \sum_{i} \frac{c_i^{New}}{\Lambda_{NP}} \mathcal{O}_i^{(5)} + \dots$$

- \bullet SM as effective theory valid up to cut-off scale Λ_{NP}
- Typical example: $K^0 \overline{K}^0$ -mixing $\mathcal{O}^6 = (\overline{s} d)^2$:



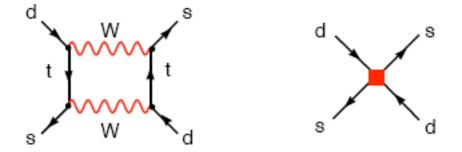
 $c^{SM}/M_W^2 \times (\bar{s}d)^2 + c^{New}/\Lambda_{NP}^2 \times (\bar{s}d)^2$

(tree-level, generic new physics)

 $\Rightarrow \Lambda_{NP} > 10^4 \text{ TeV}$

$$\mathcal{L} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \sum_{i} \frac{c_i^{New}}{\Lambda_{NP}} \mathcal{O}_i^{(5)} + \dots$$

• Typical example: $K^0 - \overline{K}^0$ -mixing $\mathcal{O}^6 = (\overline{s} d)^2$:



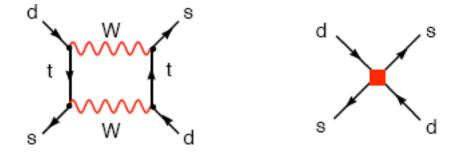
 $c^{SM}/M_W^2 \times (\bar{s}d)^2 + c^{New}/\Lambda_{NP}^2 \times (\bar{s}d)^2 \qquad \Rightarrow \quad \Lambda_{NP} > 10^4 \,\text{TeV}$ (tree-level, generic new physics)

- Natural stabilisation of Higgs boson mass (hierarchy problem) (i.e. supersymmetry, little Higgs, extra dimensions) $\Rightarrow \Lambda_{NP} \leq 1 \text{TeV}$
- EW precision data \leftrightarrow little hierarchy problem $\Rightarrow \Lambda_{NP} \sim 3 10 \text{TeV}$

Possible New Physics at the TeV scale has to have a very non-generic flavour structure

$$\mathcal{L} = \mathcal{L}_{Gauge} + \mathcal{L}_{Higgs} + \sum_{i} \frac{c_i^{New}}{\Lambda_{NP}} \mathcal{O}_i^{(5)} + \dots$$

• Typical example: $K^0 - \overline{K}^0$ -mixing $\mathcal{O}^6 = (\overline{s} d)^2$:

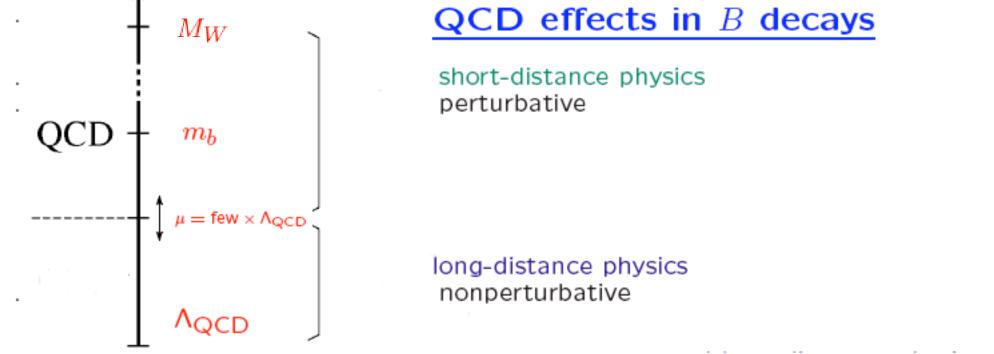


 $c^{SM}/M_W^2 \times (\bar{s} d)^2 + c^{New}/\Lambda_{NP}^2 \times (\bar{s} d)^2 \implies \Lambda_{NP} > 10^4 \,\text{TeV}$ (tree-level, generic new physics)

• Natural stabilisation of Higgs boson mass (hierarchy problem) (i.e. supersymmetry, little Higgs, extra dimensions) $\Rightarrow \Lambda_{NP} \leq 1 \text{TeV}$

Ambiguity of new physics scale from flavour data

$$(C_{\mathsf{SM}}^i/M_W + C_{\mathsf{NP}}^i/\Lambda_{\mathsf{NP}}) \times \mathcal{O}_i$$



Factorization theorems: separating long- and short-distance physics

• Electroweak effective Hamiltonian: $H_{eff} = -\frac{4G_F}{\sqrt{2}} \sum C_i(\mu, M_{heavy}) \mathcal{O}_i(\mu)$

• $\mu^2 \approx M_{New}^2 >> M_W^2$: 'new physics' effects: $C_i^{SM}(M_W) + C_i^{New}(M_W)$

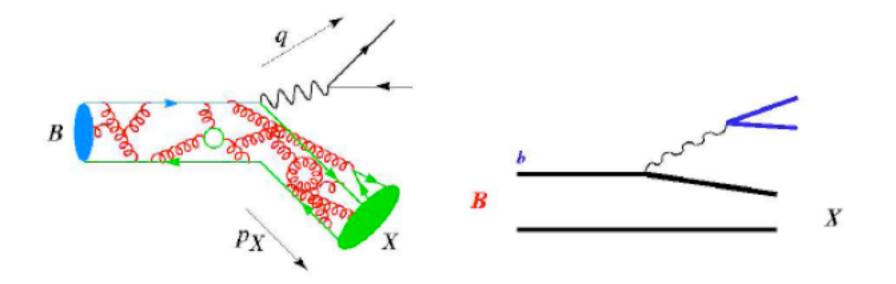
How to compute the hadronic matrix elements $\mathcal{O}_i(\mu = m_b)$?

Inclusive modes $B \to X_s \gamma$ or $B \to X_s \ell^+ \ell^-$

Heavy mass expansion for inclusive modes:

 $\Gamma(\bar{B} \to X_s \gamma) \xrightarrow{m_b \to \infty} \Gamma(b \to X_s^{parton} \gamma) \,, \quad \Delta^{nonpert.} \sim \Lambda_{QCD}^2 / m_b^2$

No linear term Λ_{QCD}/m_b (perturbative contributions dominant)



How to compute the hadronic matrix elements $\mathcal{O}_i(\mu = m_b)$?

Inclusive modes $B \to X_s \gamma$ or $B \to X_s \ell^+ \ell^-$

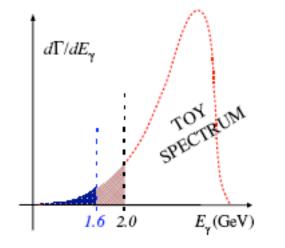
Heavy mass expansion for inclusive modes:

$$\Gamma(\bar{B} \to X_s \gamma) \xrightarrow{m_b \to \infty} \Gamma(b \to X_s^{parton} \gamma), \quad \Delta^{nonpert.} \sim \Lambda_{QCD}^2 / m_b^2$$

No linear term Λ_{QCD}/m_b (perturbative contributions dominant)

- More sensitivities to nonperturbative physics due to kinematical cuts: shape functions; multiscale OPE (SCET) with $\Delta = m_b - 2E_\gamma^0$

Becher, Neubert, hep-ph/0610067



Inclusive modes $B \to X_s \gamma$ or $B \to X_s \ell^+ \ell^-$

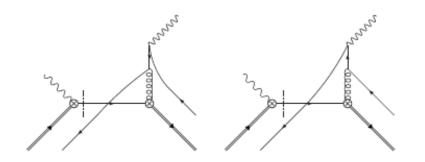
Heavy mass expansion for inclusive modes:

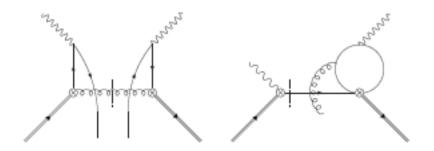
$$\Gamma(\bar{B} \to X_s \gamma) \xrightarrow{m_b \to \infty} \Gamma(b \to X_s^{parton} \gamma), \quad \Delta^{nonpert.} \sim \Lambda_{QCD}^2 / m_b^2$$

No linear term Λ_{QCD}/m_b (perturbative contributions dominant)

- If one goes beyond the leading operator $(\mathcal{O}_7, \mathcal{O}_9)$: breakdown of local expansion

naive estimate of non-local matrix elements leads to 5% uncertainty. Benzke,Lee,Neubert,Paz,arXiv:1003.5012





see talk of Michael Benzke

Exclusive modes $B \to K^* \gamma$ or $B \to K^* \ell^+ \ell^-$

Naive approach:

Parametrize the hadronic matrix elements in terms of form factors

How to compute the hadronic matrix elements $O(m_b)$?

Exclusive modes $B \to K^* \gamma$ or $B \to K^* \ell^+ \ell^-$

QCD-improved factorization: BBNS 1999

$$\mathcal{T}_a^{(i)} = C_a^{(i)} \xi_a + \phi_B \otimes T_a^{(i)} \otimes \phi_{a,K^*} + O(\Lambda/m_b)$$

Existence of 'non-factorizable' strong interaction effects which do *not* correspond to form factors

Exclusive modes $B \to K^* \gamma$ or $B \to K^* \ell^+ \ell^-$

QCD-improved factorization: BBNS 1999

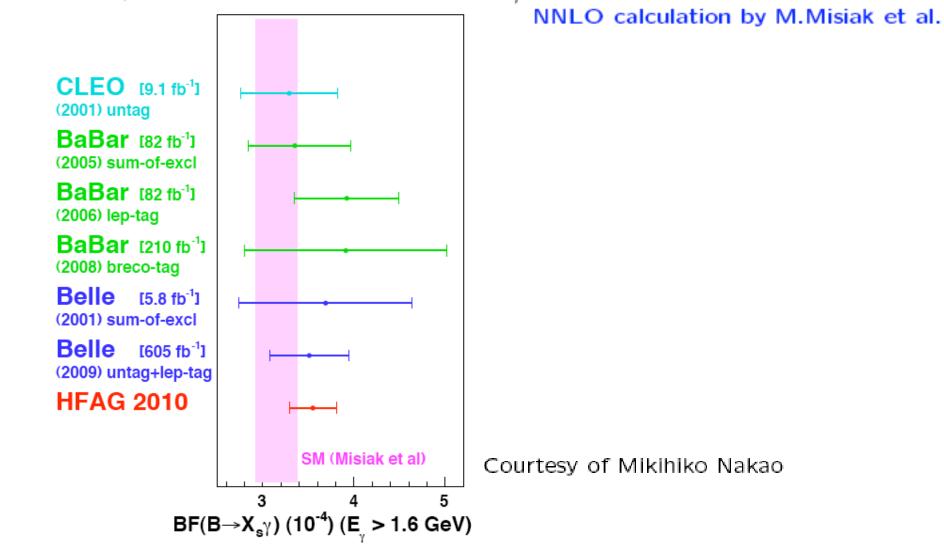
$$\mathcal{T}_a^{(i)} = C_a^{(i)} \xi_a + \phi_B \otimes T_a^{(i)} \otimes \phi_{a,K^*} + O(\Lambda/m_b)$$

- Separation of perturbative hard kernels from process-independent nonperturbative functions like form factors
- Relations between formfactors in large-energy limit
- Limitation: insufficient information on power-suppressed Λ/m_b terms (breakdown of factorization: 'endpoint divergences')

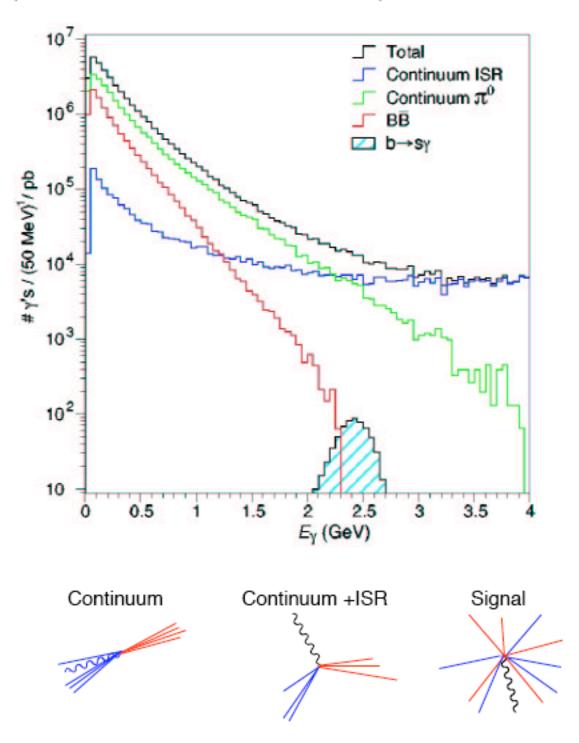
Phenomenologically highly relevant issue general strategy of LHCb to look at ratios of exclusive modes Egede,Hurth,Matias,Ramon,Reece arXiv:0807.2589 There is much more data not shown in the unitarity fits which confirms the SM pedictions of flavour mixing like rare decays Status of the inclusive mode $\bar{B} \rightarrow X_s \gamma$

HFAG:
$$\mathcal{B}(B \to X_s \gamma) = (3.55 \pm 0.24) \times 10^{-4}$$
 (for $E_{\gamma} > 1.6$ GeV)

SM: $\mathcal{B}(B \to X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ (for $E_{\gamma} > 1.6 \text{ GeV}_{PRL98,022003(2007)}$



CLEO (similiar for BABAR and BELLE)



Status of the inclusive mode $\bar{B} \rightarrow X_s \gamma$ before NNLL

Perturbative QCD corrections are dominant and lead to large logarithms

 $\alpha_s(M_W)Log(m_b^2/M_W^2) \rightarrow$ resummation of Logs necessary:

- LL Leading logs $G_F (\alpha_s Log)^N$ N = 0, 1, 2, ...
- NLL Next-to-leading logs $G_F \alpha_s (\alpha_s Log)^N$
- NNLL Next-to-next-to-leading logs $G_F \alpha_s^2 (\alpha_s Log)^N$
- Previous NLL Prediction $\overline{B} \rightarrow X_s \gamma$: Hurth, Lunghi, Porod, hep-ph/0312260

$$BR(\bar{B} \to X_s \gamma) \times 10^4 |_{E_{\gamma} > 1.6 GeV} = \left. \begin{array}{c} (3.61 & ^{+0.24}_{-0.40} \right|_{m_e/m_b} \pm 0.02_{\mathsf{CKM}} \pm 0.25_{\mathsf{param}} \pm 0.15_{\mathsf{scale}} \end{array} \right)$$

Largest uncertainty due to the charm mass scheme ambiguity ! \Rightarrow NNLL QCD calculation needed for uncertainty \ll 10% !

Estimate of the reduction of the scheme dependence at NNLL: $12.4\% \rightarrow 5.1\%$ Asatrian,Hovhannisyan,Poghosyan,Greub,Hurth, hep-ph/0505068

NNLL QCD calculation - 'global effort'

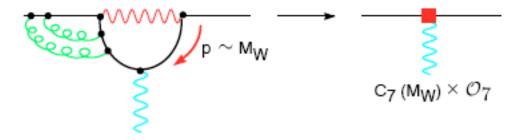
- Consistent calculation of perturbative QCD corrections:
 - I) Initial conditions: $C_i(\mu \simeq M_W)$ II) RGE: $\mu \frac{d}{d\mu} C_i(\mu) = \gamma_{ij} C_j(\mu) \Rightarrow C_i(\mu \simeq m_b)$ III) matrix elements : $(Q_i(\mu \simeq m_b))$
 - III) matrix elements : $\prec O_i(\mu \simeq m_b) \succ$

```
I) Initial conditions C_i(\mu \simeq M_W)
NLL calculation: (Adel, Yao, 1993) (Greub, Hurth, 1997)
```

* sensitivity for 'new physics'

* no large logs (fixed-point perturbation theory is sufficient)

Steinhauser, Misiak, hep-ph/0401041: Three-loop matching conditions

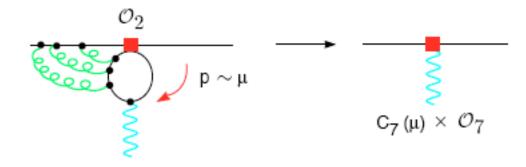


II) Coefficients γ_{ij} in $\mu \frac{d}{d\mu} C_i(\mu) = \gamma_{ij} C_j(\mu) \Rightarrow C_i(\mu \simeq m_b)$

NLL: (Chetyrkin, Misiak, Münz, 1996) (Gambino, Gorbahn, Haisch, 2003)

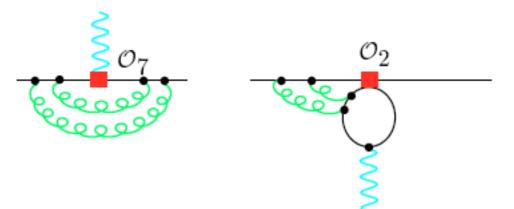
QCD-mixing of operators: 'new physics' information in $C_7(M_W)$ gets covered up

Gorbahn, Haisch, hep-ph/0411071: Three-loop mixing among the four-quark operators O_i , i = 1..6Gorbahn, Haisch, Misiak, hep-ph/0504194: Three-loop mixing among the dipole operators O_7 and O_8 Czakon, Haisch, Misiak, hep/ph0612329 Four-loop mixing of the four-quark into the dipole operators



III) Matrix elements: $\prec O_{7,8}(\mu \simeq m_b) \succ \prec O_2(\mu \simeq m_b) \succ$ NLL: (Greub, Hurth, Wyler, 1996) (Buras et al., 2001)

* perturbative contributions are dominant * $\Gamma(B \to X) \sim Im \prec B | H_{eff} H_{eff} | B \succ$



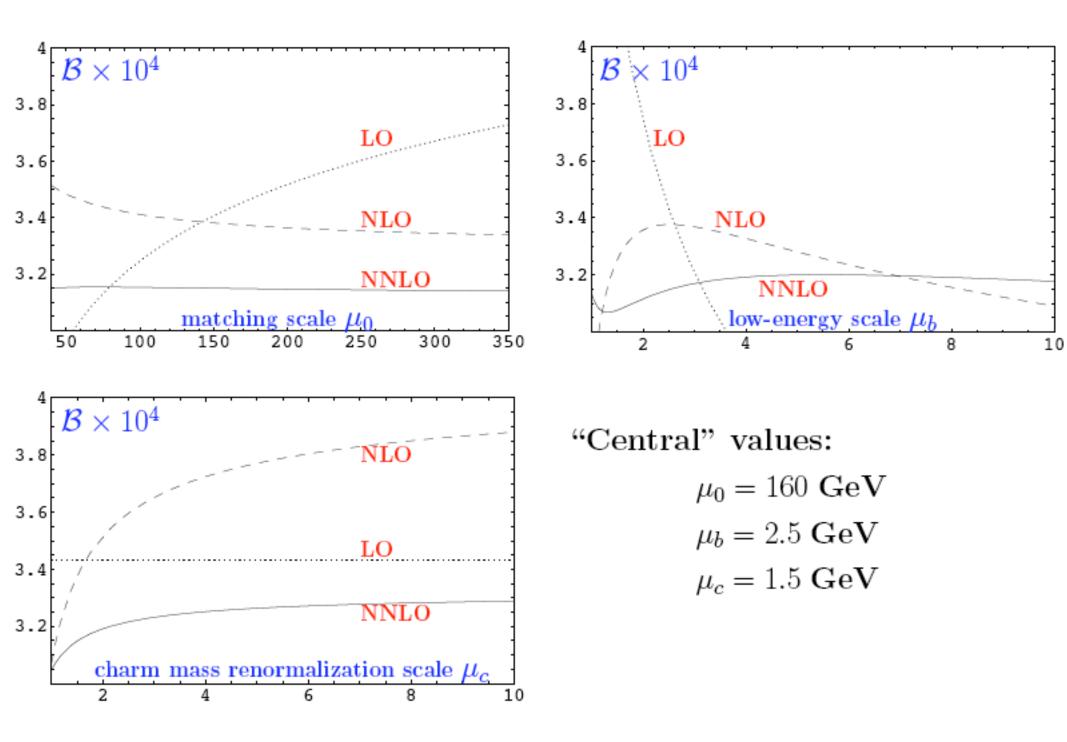
Blokland,Czarnecki,Misiak,Slusarczyk,Tkachov, hep-ph/0506055; Asatrian,Ewerth,Greub,Hurth, hep-ph/0605009: Two-loop matrix elements of the dipole operator Melnikov, Mitov, hep-ph/0505097; Asatrian,Ewerth,Ferroglia,Gambino,Greub, hep-ph/0607316: Perturbative corrections to the photon spectrum due to \mathcal{O}_7 Bieri,Greub,Steinhauser, hep-ph/0302051: Three-loop matrix elements of \mathcal{O}_2 , fermionic contributions of order $\alpha_s^2 n_f$ Steinhauser,Misiak, hep-ph/0609241: Three-loop matrix elements of \mathcal{O}_2 Interpolation between the formal $m_c >> m_b/2$ limit and the $\alpha_s^2 n_f$ approximation, this part is the main origin of charm dependence \Rightarrow space for improvements First NNLL prediction of $\bar{B} \rightarrow X_s \gamma$ hep-ph/0609232

 $BR(\overline{B} \to X_s \gamma) \times 10^4|_{E_{\gamma} > 1.6GeV} = (3.17 \pm 0.23)$ Misiak et al.

- Nonperturbative corrections $\Lambda^2/m_{b,c}^2$ to $\Gamma(\bar{B} \to X_s \gamma)$ are well below 10%. Falk et al., Ali et al., Buchalla et al., ...
- However: Estimation of power corrections Benzke, Lee, Neubert, Paz, arXiv:1003.5012 Largest uncertainty (5%) in new NNLL prediction
- Further uncertainties: parametric (3%), higher-order (3%), mc-interpolation (3%)

Experimental world average HFAG

$$BR(\bar{B} \to X_s \gamma) \times 10^4|_{E_{\gamma} > 1.6GeV} = (3.55 + 0.09 |_{sust} \pm 0.24_{stat} \pm 0.03_{shape,dgamma})$$



Open issues

• The semileptonic phase factor:

$$\mathrm{BR}_{\gamma}(E_0) \equiv \mathrm{BR}[B \to X_s \gamma]_{E_{\gamma} > E_0} = \frac{\mathrm{BR}_{c\ell\nu}}{C} \left(\frac{\Gamma[B \to X_s \gamma]_{E_{\gamma} > E_0}}{|V_{cb}/V_{ub}|^2 \Gamma[B \to X_u e\bar{\nu}]} \right)$$

$$C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma[\bar{B} \to X_c e\bar{\nu}]}{\Gamma[\bar{B} \to X_u e\bar{\nu}]} = \begin{cases} 0.582 \pm 0.016, \\ 0.546^{+0.023}_{-0.033}, \end{cases}$$

5, 1S scheme has to be updated! Trott et al.,hep-ph/0408002 kinetic scheme Gambino,Giordano,arXiv:0805.0271

Enhancement of BR_{γ} in kinematic scheme

+4.8%!?
$$\frac{\delta}{\delta m_c} Pert(E_0) \prec 0, \ \bar{m}_c(\bar{m}_c)_{1S} \prec \bar{m}_c(\bar{m}_c)_{kinetic}$$

• Multiscale OPE: Becher, Neubert, hep-ph/0610067

Misiak et al.	$BR_\gamma(1GeV)$	$BR_{\gamma}(1.6GeV)$	_
hep-ph/0609232 'fixed order'	3.27 10 ⁻⁴	$(3.15\pm0.23)10^{-4}$	without
hep-ph/0610067 multisc. OPE	3.27 10 ⁻⁴ (adapted from above)	$(2.98\pm0.26)10^{-4}$	-1.5% of $O(\alpha_s \Lambda/m_b)$ 3.05 10^{-4}

Ongoing discussion on cut-effects Misiak arXiv:0808.3134 [hep-ph]

- General folklore: With $E_{\gamma}^0 \leq 1.9 GeV$ local OPE of the rate is valid again.
- But: Becher, Neubert, hep-ph/06100067 A low cut around 1.8GeV might not guarantee that a theoretical description in terms of a local OPE is sufficient because of the sensitivity to the scale $\Delta = m_b - 2E_{\gamma}^0$.
 - Multiscale OPE with three short-distance scales $m_b, \sqrt{m_b\Delta}$ and Δ needed to connect the shape function and the local OPE region.
 - Using SCET, effects at the 3%-level found not by power corrections Λ_{QCD}/Δ , but by perturbative ones
 - $-BR(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}} = 2.98 \pm 0.26$
- Nevertheless: Misiak, 2.workshop on Flavour Dynamics, Albufeira, 3.-10.11.2007

For $E_{\gamma}^{0} = 1.6 GeV$ or lower, the cutoff-enhanced perturbative corrections undergo a dramatic cancellation with the so-called power-suppressed terms. Consequently, both types of terms must be treated with the same precision. Until this is done, the fixed-order results should be considered more reliable.

> const. +log(Δ/m_b) + log²(Δ/m_b) + ... versus (Δ/m_b) + (Δ/mb)² + (Δ/m_b) log(Δ/m_b) + ...

 $\mathcal{O}(\alpha_s)\sqrt{;} \mathcal{O}(\alpha_s^2)\sqrt{;}$ but not terms of $\mathcal{O}(\alpha_s^3)$

CP asymmetries in $b \rightarrow s\gamma$

- Mixing-induced CP asymmetries in $b \rightarrow s\gamma$ transitions
 - General folklore: within the SM are small, $O(m_s/m_b)$

$$\mathcal{O}_{7L} \equiv \frac{e}{16\pi^2} m_b \,\overline{s} \sigma_{\mu\nu} P_R b F^{\mu\nu} \quad \mathcal{O}_{7R} \equiv \frac{e}{16\pi^2} m_{s/d} \,\overline{s} \sigma_{\mu\nu} P_L \, b F^{\mu\nu} \,.$$

Mainly: $\overline{B} \to X_s \gamma_L$ and $\overline{B} \to X_s \gamma_R \Rightarrow$ almost no interference in the SM

- But: within the inclusive case the assumption of a two-body decay is made, the argument does not apply to b → sγgluon
 Corrections of order O(α_s), mainly due operator O₂ ⇒ Γ^{brems}/Γ₀ ~ 0.025
 ⇒ 11% right-handed contamination
 Grinstein, Grossman, Ligeti, Pirjol, hep-ph/0412019
- − QCD sum rule estimate of the time-dependent CP asymmetry in $B^0 \rightarrow K^{*0}\gamma$ including long-distance contributions due to soft-gluon emission from quark loops versus dimensional estimate of the nonlocal SCET operator series: Ball,Zwicky,hep-ph/0609037 ↔ Grinstein,Pirjol,hep-ph/0510104

$$S = -0.022 \pm 0.015^{+0}_{-0.01}, \ S^{sgluon} = -0.005 \pm 0.01 \leftrightarrow |S^{sgluon}| \approx 0.06$$

Should be resolved! $\Delta S = 0.02 - 0.03$ (Super B sensitivity) see JHEP 0802 (2008) 110, arXiv:0710.3799 • Direct CP asymmetries in $b \rightarrow s/d\gamma$

$$\alpha_{CP}(b \to s/d\gamma) = \frac{\Gamma(\bar{B} \to X_{s/d}\gamma) - \Gamma(\bar{B} \to X_{\bar{s}/\bar{d}}\gamma)}{\Gamma(\bar{B} \to X_{s/d}\gamma) + \Gamma(\bar{B} \to X_{\bar{s}/\bar{d}}\gamma)} \simeq$$

$$lpha_{CP}(b
ightarrow s \gamma) pprox 0.5\%, \qquad lpha_{CP}(b
ightarrow d \gamma) pprox -12\%$$

Smallness of $\alpha_{CP}(b \rightarrow s\gamma)$ results from three factors: α_s (strong phase), λ^2 (CKM), m_c^2/m_b^2 (GIM)

NLL prediction Hurth, Lunghi, Porod, hep-ph/0312260

$$\alpha_{CP}(b \to s\gamma) = \begin{array}{c|c} (0.44 & ^{+0.15}_{-0.10} \\ \\ & _{m_e/m_b} \end{array} \pm 0.03_{\text{CKM}} \begin{array}{c} +0.19 \\ & _{-0.09} \end{array} > \times 10^{-2} \end{array}$$

However: Long-distance dominance Benzke, Lee, Neubert, Paz arXiv:1012.31.67

$$10^{-2} < \alpha_{CP}(b \to s\gamma) < +2.8 \times 10^{-2}$$

contribution:
$$\underbrace{b \qquad \underbrace{u,c}_{Q^{u,c}} s \qquad \underbrace{b \qquad \underbrace{u,c}_{Q^{u,c}} s \ \underbrace{b \qquad \underbrace{u,c} s \$$

Resolved photon contribution

 $-0.6 \times$

no α_s -suppression

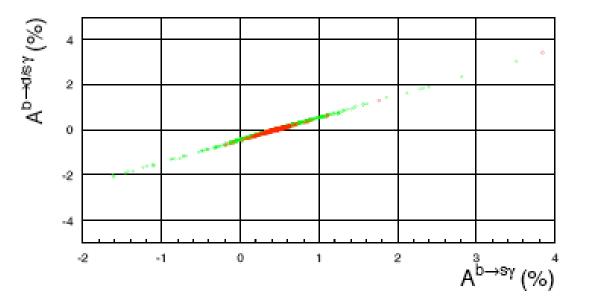
see talk of Michael Benzke

Untagged direct CP asymmetries in b → s/d transitions
 KM mechanism CKM unitarity + U spin symmetry of matrix elements d ↔ s:

 $|\Delta BR_{CP}(B \to X_s \gamma) + \Delta BR_{CP}(B \to X_d \gamma)| \sim 1 \cdot 10^{-9} \approx 0$

Clean test, whether new CP phases are active or not Hurth, Mannel, hep-ph/0109041; Hurth, Lunghi, Porod, hep-ph/0312260 Experiment: (Super-) B-factories $\pm 3\%$ ($\pm 0.3\%$) precision possible

Resolved contributions cancel at order Λ/m_b



MFV with (flavourblind) phases

More details

$$\Delta \Gamma_{CP}(B \to X_{s+d}\gamma) = \Gamma(\bar{B} \to X_{s+d}\gamma) - \Gamma(B \to X_{\bar{s}+d}\gamma)$$

KM mechanism CKM unitarity

$$\Rightarrow J = \operatorname{Im}(\lambda_u^{(s)}\lambda_c^{(s)*}) = (-1) \operatorname{Im}(\lambda_u^{(d)}\lambda_c^{(d)*})$$

+ U spin symmetry of matrix elements $d \leftrightarrow s$:

$$\Delta \Gamma_{CP}(B \to X_{s+d}\gamma) = b_{inc} \Delta_{inc}$$

 b_{exc} : 'relative U-spin-breaking'; Δ_{exc} : 'typical size' of CP violating rate difference

 $|b_{inc}| \sim m_s^2/m_b^2 \sim 5 \cdot 10^{-4}$ (also in $1/m_b^2$ and in $1/m_c^2$ corrections) (Resolved contributions cancel at order Λ/m_b) $|\Delta \mathcal{B}_{CP}(B \to X_{s+d}\gamma)| \sim 1 \cdot 10^{-9} \approx 0$

Very clean test, whether new CP phases are active or not

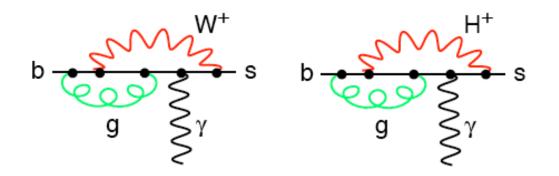
Flavour problem in supersymmetric models

- In the general MSSM too many contributions to flavour violation
 - CKM-induced contributions from H^+ , χ^+ exchanges (quark mixing)
 - flavour mixing in the sfermion mass matrix

- In the general MSSM too many contributions to flavour violation
 - CKM-induced contributions from H^+ , χ^+ exchanges (quark mixing)
 - flavour mixing in the sfermion mass matrix
- Possible solutions:
 - Decoupling: Sfermion mass scale high (i.e. split supersymmetry)
 - Super-GIM: Sfermion masses almost degenerate (i.e. gauge-mediated supersymmetry breaking)
 - Alignment: Sfermion mixing suppressed

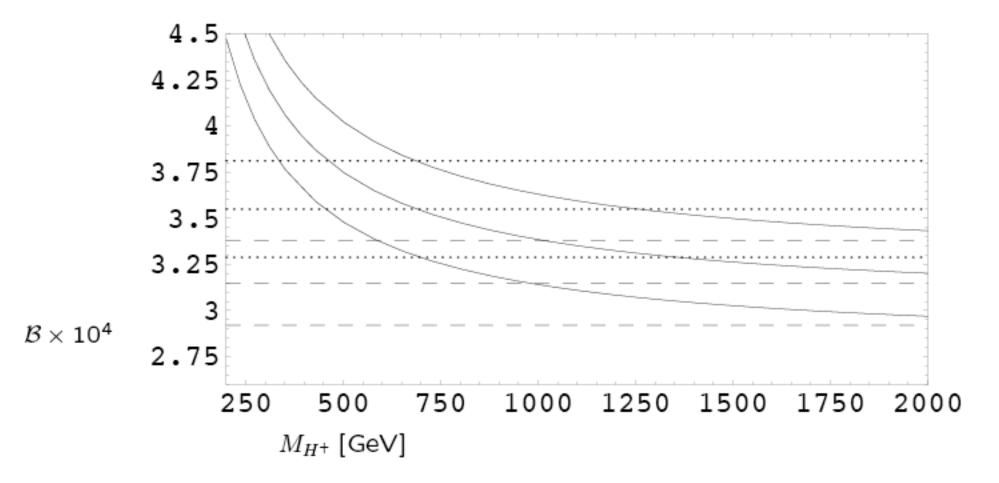
- In the general MSSM too many contributions to flavour violation
 - CKM-induced contributions from H^+ , χ^+ exchanges (quark mixing)
 - flavour mixing in the sfermion mass matrix
- Possible solutions:
 - Decoupling: Sfermion mass scale high (i.e. split supersymmetry)
 - Super-GIM: Sfermion masses almost degenerate (i.e. gauge-mediated supersymmetry breaking)
 - Alignment: Sfermion mixing suppressed
- Dynamics of flavour \leftrightarrow mechanism of SUSY breaking $(BR(b \rightarrow s\gamma) = 0 \text{ in exact supersymmetry})$

<u>Parameter bounds</u> $\overline{B} \to X_s \gamma$



 $C_{NLL}(M_W) = C_{NLL}^{SM}(M_W) + C_{NLL}^{NEW}(M_W)$

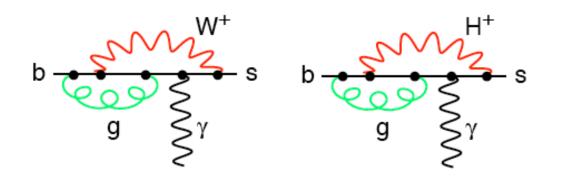
Charged Higgs contribution always adds to the SM one !

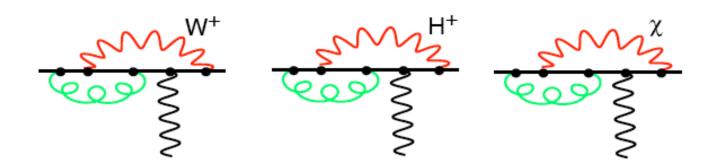


 $\mathcal{B}(\bar{B} \to X_s \gamma)$ as a function of the charged Higgs boson mass (solid line) Experiment/SM Theory, central values with 1σ bounds (dotted/dashed)

Misiak et al.

 $\bar{B} \to X_s \gamma$





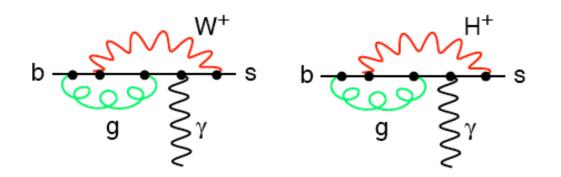
 $C_{NLL}(M_W) = C_{NLL}^{SM}(M_W) + C_{NLL}^{H^+}(M_W) + C_{NLL}^{\chi}(M_W)$

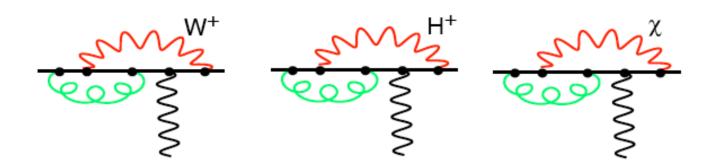
Within supersymmery possible cancellation with chargino contribution.

Note: There are generically new contributions via squark mixing !

Parameter bounds model-dependent

 $\bar{B} \to X_s \gamma$





 $C_{NLL}(M_W) = C_{NLL}^{SM}(M_W) + C_{NLL}^{H^+}(M_W) + C_{NLL}^{\chi}(M_W)$

Also in beyond-the-SM scenarios NLL calculations existing: NLL analysis in MFV-Supersymmetry

Degrassi, Gambino, Slavich, hep-ph/0602198

NLL in general supersymmetry (uMSSM)

New sources of flavour violation via squark mixing

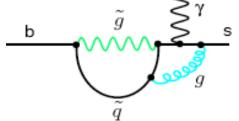
Complete NLL

 $W g \quad H^+ g \quad \chi^+ g \quad \chi^0 g \quad \tilde{g} g$

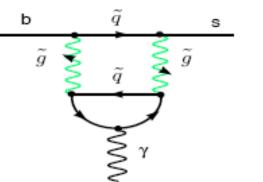
Bobeth, Misiak, Urban hep-ph/9904413

 $W \, \tilde{g} \quad H^+ \, \tilde{g} \quad \chi^+ \, \tilde{g} \quad \chi^0 \, \tilde{g} \quad \tilde{g} \, \tilde{g}$

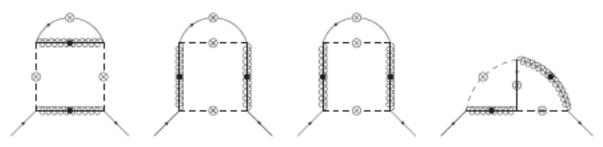
Gluonic Parts $(\tilde{g}g)$



Two-Gluino Parts $(\tilde{g} \tilde{g})$

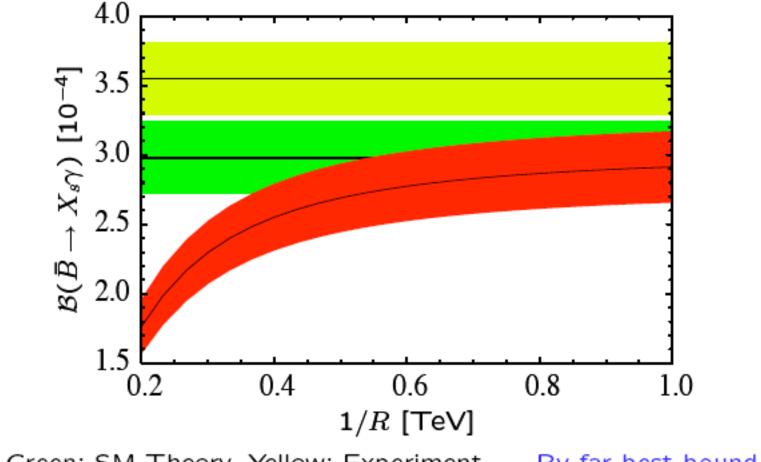


Greub, Hurth, Pilipp, Schupbach, Steinhauser arXiv:1105.1330 [hep-ph]



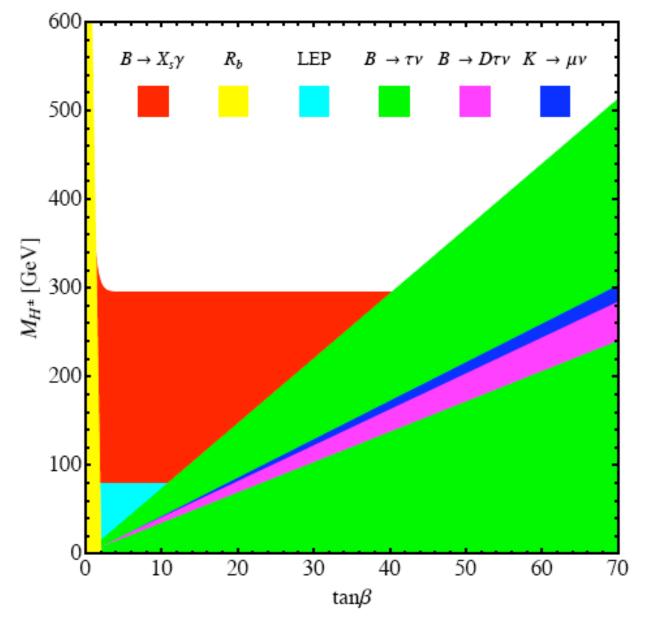
Gluino contribution dominant due to strong coupling

Example: Bound on minimal universal extra dimensions $\Rightarrow 1/R \succ 600 \text{GeV}$ at 95%CL



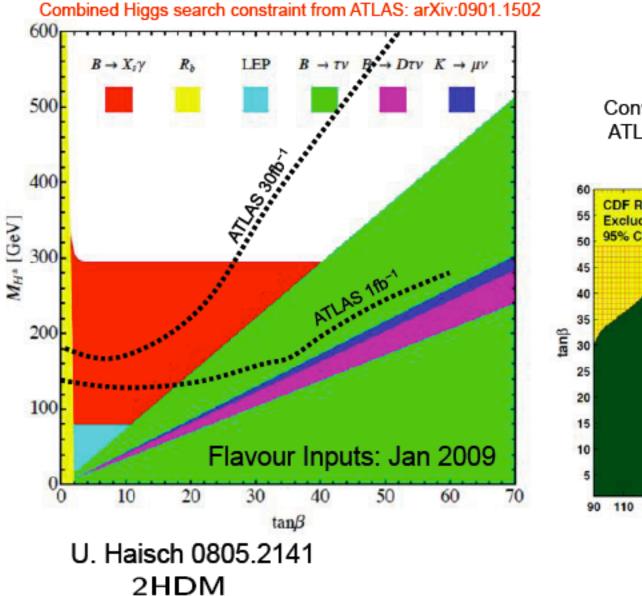
Red: LO-UED, Green: SM Theory, Yellow: Experiment By far best bound ! Haisch et al

Parameter bounds in THDMs

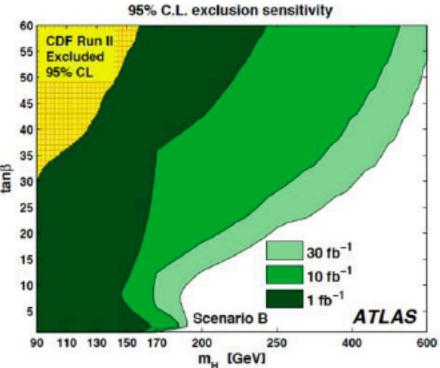


See also Deschamps et al.(CKMfitter), arXiv:0907.5135. Mahmoudi, Stal, arXiv:0907.1791. Erikson, Mahmoudi, Stal, arXiv:0808.3551.

LHC versus Flavour constraints

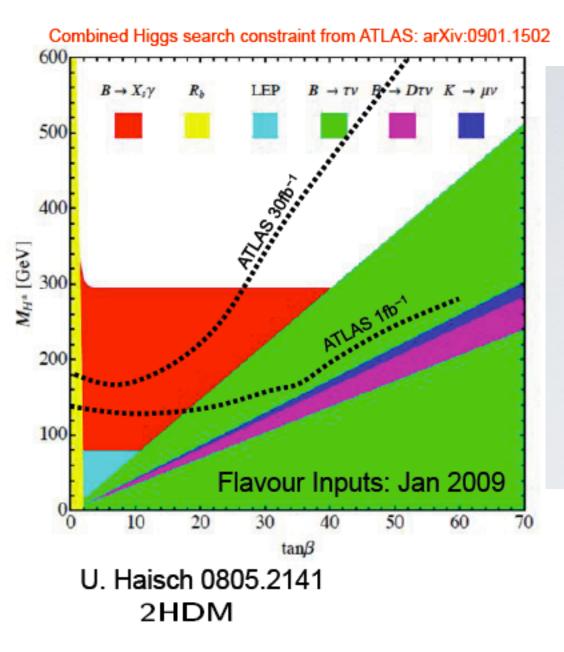


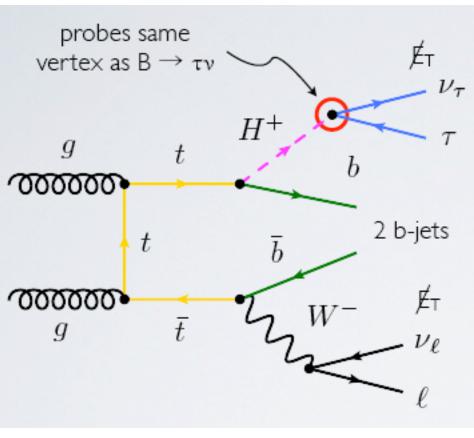
Converted constraints expected from ATLAS onto the plot by hand.



Courtesy of Adrian Bevan

LHC versus Flavour constraints





Courtesy of Uli Haisch

Epilogue Future Opportunities

- LHCb (5 years) 10fb⁻¹: allows for wide range of analyses, highlights: B_s mixing phase, angle γ, B → K^{*}μμ, B_s → μμ,B_s → φφ then possibility for upgrade to 100fb⁻¹
- Dedicated kaon experiments J-PARC E14 and CERN P-326/NA62: rare kaon decays $K_L^0 \to \pi^0 \nu \bar{\nu}$ and $K^+ \to \pi^+ \nu \bar{\nu}$

• Two proposals for a Super-B factory:

BELLE II at KEK and SuperB in Frascati $(75ab^{-1})$

Super-B is a Super Flavour factory: besides precise B measurements, CP violation in charm, lepton flavour violating modes $\tau \rightarrow \mu \gamma$,...

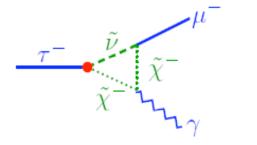
Both projects have multi-year funding !

Opportunities at a Super Flavour Factory

Measurement of lepton flavour violation

 $au
ightarrow \mu \gamma$ and $ightarrow {
m 3} \mu$

$$\mathsf{BR}(l_j^- \to l_i^- \gamma)|_{\mathsf{SM}_R} \approx (m_\nu/M_W)^2 \sim \mathcal{O}(10^{-54})$$



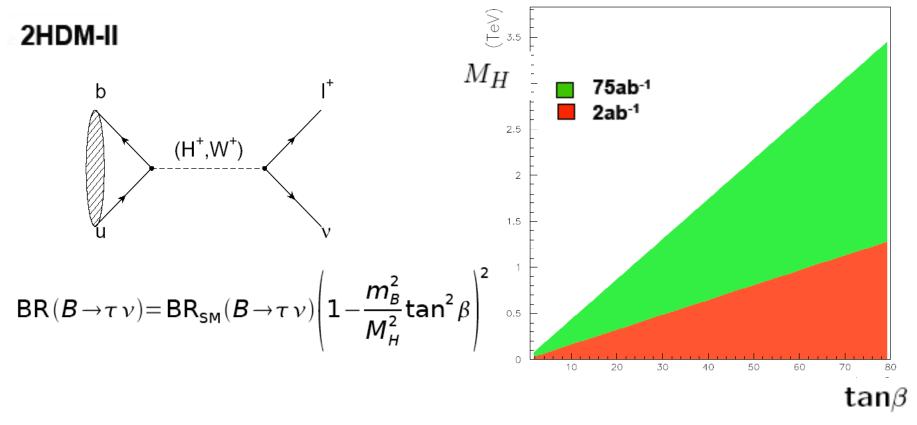
Process	Expected 90%CL	4σ Discovery
	upper limited	Reach
$\mathcal{B}(\tau \to \mu \gamma)$	2×10^{-9}	5×10^{-9}
$\mathcal{B}(au o \mu \mu \mu)$	2×10^{-10}	8.8×10^{-10}

Use modes to distinguish SUSY vs LHT Blanke et al.

ratio	LHT	MSSM (dipole)	MSSM (Higgs)
$\frac{\mathcal{B}(\tau^- \to e^- e^+ e^-)}{\mathcal{B}(\tau \to e\gamma)}$	0.42.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathcal{B}(\tau \to \mu \gamma)}$	0.42.3	$\sim 2\cdot 10^{-3}$	0.060.1
$\frac{\mathcal{B}(\tau^- \to e^- \mu^+ \mu^-)}{\mathcal{B}(\tau \to e\gamma)}$	0.31.6	$\sim 2\cdot 10^{-3}$	$0.02 \dots 0.04$
$\frac{\mathcal{B}(\tau^- \to \mu^- e^+ e^-)}{\mathcal{B}(\tau \to \mu \gamma)}$	0.31.6	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{\mathcal{B}(\tau^- \to e^- e^+ e^-)}{\mathcal{B}(\tau^- \to e^- \mu^+ \mu^-)}$	1.31.7	~ 5	0.30.5
$\frac{\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathcal{B}(\tau^- \to \mu^- e^+ e^-)}$	1.21.6	~ 0.2	510

Superflavour factory: measurement of clean modes

 $B \rightarrow \tau \nu$: **B** factories 20% **Super B** factories 4%



(Assuming SM branching fraction is measured)

M_L (TeV)

Superflavour factory: CKM theory gets tested at 1%

