Hector :

A fast multi-purpose simulator for particle propagation

- Introduction : the need for a new tool - The LHC beamline as an example
- Implementation
- Validation with MAD
- Some Physics
- Prospects

Introduction (I)

- Forward Physics : physics with very forward objects.
- Includes : diffractive physics, photon-related physics.
- Low σ-> need some help to tag!
- How ? By detecting forward objects -> new detectors («Roman Pots») far from IP.
- Such detectors could allow «full» event reconstruction.

Introduction (II)

Proton with energy loss / angle

Detector

Normal beam proton
-> Need for a realistic simulation of particle propagation in the beamline!

Introduction (III)

Existing tools :

- MAD : Beam simulator used by the LHC Machine group. Problem : beam-oriented*, while we need particle-by-particle propagation. Also very hard to adapt to one's needs.
- MARS : Used for very accurate description of interactions with fields and matter. Problem : Too heavy.
- Transport : Was used for UA1. Good, but not easy to adapt for LHC.
- There's room for a new Simulator !
 \title{
Introduction (IV)
}
 \title{
Introduction (IV)
}

This new program should be :

- Fast
- Lightweight
- LHC-capable
- Particle-oriented

This new program could be :

- Object-oriented
- General-purpose
- Easy to use for anyone interested

Hector The LHC beamline

Crossing angle !

Hector The LHC beamline : closer

Interaction point

Hector Triplet Q + separation D

Hector LHC dipoles \& quadrupoles
 (6)

Implementation (I)

B around its central value :

$$
\begin{gathered}
\frac{e}{p} B_{y}(x)=\frac{e}{p} B_{y}+\frac{e}{p} \frac{\partial B_{y}}{\partial x} x+\frac{1}{2} \frac{e}{p} \frac{\partial^{2} B_{y}}{\partial x^{2}} x^{2}+\ldots \\
\mathrm{k}_{\mathrm{o}}=1 / \mathrm{R} \underset{\mathrm{k}_{1}=\mathrm{k}}{ }
\end{gathered}
$$

Taking only dipolar (k_{0}) and quadrupolar (k_{1}) terms :

$$
\begin{aligned}
& x^{\prime \prime}(s)+\left(\frac{1}{R^{2}(s)}-k(s)\right) x(s)=\frac{1}{R(s)} \frac{\Delta p}{p} \\
& y^{\prime \prime}(s)+k(s) y(s)=0
\end{aligned}
$$

The solutions $x(s), x^{\prime}(s), y(s), y^{\prime}(s)$ can be expressed (if $\Delta p \ll p$) as a linear combination of the initial phase-space vector $x_{0^{\prime}} x_{0^{\prime}}^{\prime} y_{0^{\prime}} y^{\prime}{ }_{0}$

Implementation (II)

Linear behaviour -> matrix representation of the transport :

$$
X(s)=X(0) \underbrace{M_{1} M_{2} \ldots M_{n}}_{M_{\text {beamline }}}
$$

Where :
X is the phase-space vector of the particle M_{i} are the matrices associated to the magnets

Rem : As considered energy losses are not negligible, we introduce an energy dependence of M_{i} as a correction to linearity

Implementation (III)

Matrix structure : $\mathbf{M}_{\text {units }}=\left(\begin{array}{cccc|cc}\mathcal{A} & \mathcal{A} & 0 & 0 & 0 & 0 \\ \mathcal{A} & \mathcal{A} & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathcal{B} & \mathcal{B} & 0 & 0 \\ 0 & 0 & \mathcal{B} & \mathcal{B} & 0 & 0 \\ \mathcal{D} & \mathcal{D} & 0 & 0 & 1 & 0 \\ 0 & K & 0 & K & 0 & 1\end{array}\right) \rightarrow$ (de)focusing
Matrix example : Quadrupole
$\mathrm{M}_{\text {vertical-quadrupole }}=\left(\begin{array}{cccccc}\cosh (\omega) & \sqrt{k} \sinh (\omega) & 0 & 0 & 0 & 0 \\ (1 / \sqrt{k}) \sinh (\omega) & \cosh (\omega) & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos (\omega) & -\sqrt{k} \sin (\omega) & 0 & 0 \\ 0 & 0 & (1 / \sqrt{k}) * \sin (\omega) & \cos (\omega) & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Implementation (IV)

Input Needed :

- k_{i}
- effective field length
- magnet position
- magnet aperture

All directly provided by the LHC group tables !

Implementation (V)

The algorithm :

The 4-vector can be specified :

- completely (from generator)
- by choosing energy loss and Q^{2} of emitted object

Implementation (VI)

The LHC beams (right of CMS) :

Same for ATLAS :

Implementation (VIII)

Performances :

Computing time for 10000 particles

$\sim 3.5 \mu$ s particle $^{-1}$ magnet $^{-1}$
-> $\sim 10^{-3} \mathrm{~s} / \mathrm{CMS}$ event

Hetor Implementation (IX)

Aperture effect of "MB.B9R5.B1" on 110 GeV energy loss protons

Aperture :
geometrical aperture

Validation (I)

β functions - beam 1, forward

Relative position to ideal path - beam 1, forward

Direct physics output (I)

- Just take some protons, from LHC beam 1
- Propagate them to your favourite Roman pot detector
- Plot the $x, y, x^{\prime}, y^{\prime}$ in the transverse plane

Direct physics output (II)

RP acceptances (220m) :

Acceptance of roman pots at $220 \mathrm{~m}(2000 \mu \mathrm{~m})$ for beam 1

Forbidden by kinematics

Which protons are detected ?

Acceptance of roman pots at $220 \mathrm{~m}(2000 \mu \mathrm{~m})$ for beam 1

Hector Direct physics output (III)

RP acceptances (420m)

Acceptance of roman pots at $420 \mathrm{~m}(4000 \mu \mathrm{~m})$ for beam 1

Acceptance of roman pots at $420 \mathrm{~m}(4000 \mu \mathrm{~m})$ for beam 1

Turning MAD ?

Acceptance of roman pots at $420 \mathrm{~m}(4000 \mu \mathrm{~m})$ for beam 1

MAD-X (from TOTEM Note 05-2)

Hector (from my hard disk)

Hector Direct physics output (V)

Hits in the roman pots at $220 \mathrm{~m}\left(\mathrm{~L}=2 \times 10^{6} \mathrm{mb}^{-1} \mathrm{~s}^{-1}\right)$

Hector Direct physics output (VI)

Chromaticity grid :

where is your proton given its energy/angle ?
-Choose a proton, with a given energy loss and initial angle
-Propagate it to your 2 roman pots.
-Measure x, x'

Chromaticity grid (RP1 at 220m, RP2 at 224m)

$[100 ; 1000] \mathrm{GeV} \hookrightarrow \quad$ Remember the acceptances !

Chromaticity grid (RP1 at 420m, RP2 at 428m)

Reconstruction (I)

By linearity :

$$
\begin{aligned}
& x_{s}=a_{s} x_{0}+b_{s} x_{0}^{\prime}+d_{s} E \\
& x_{s}^{\prime}=\alpha_{s} x_{0}+\beta_{s} x_{0}^{\prime}+\gamma_{s} E
\end{aligned}
$$

We should solve for $\mathrm{x}_{0}, \mathrm{x}_{0}{ }^{\prime}, \mathrm{E}$ (with only 2 equations)
As physics won't change x_{0}, we choose to neglect a_{s} and α_{s}. This method leads to :

$$
E=\frac{b_{2} x_{1}-b_{1} x_{2}}{b_{2} d_{1}-b_{1} d_{2}} \quad \text { Angle compensation method }
$$

where b_{1} and b_{2} are the b parameters for the two detectors.

Reconstruction (II)

Reconstructed variables : energy loss ($\sigma_{\mathrm{E}} \mathrm{vs} \mathrm{Q}^{2}$ and E)

Hector
 1

 Reconstruction (III)

 Reconstruction (III)}

Reconstructed variables: Q^{2}

Tritualtp resolulisen

Work-in-progress

Recent achievements :

- Non-proton particles propagation (mass, charge)
- Misalignment of magnets effect

In progress :

- Integration into FAMOS
- Integration into CMSSW
by some friends from Protvino.

Material :

Official website :
http://www.fynu.ucl.ac.be/hector.html
You will find there :

- Hector sources (stable or CVS)
- User Manual (kindly tested by TH-oriented CP3 members)
- Code documentation (Doxygen)
- Link to official forum
- Useful links
- Soon : note draft

