

Hector :

A fast multi-purpose simulator for particle propagation

Contents

- D Er
- Introduction : the need for a new tool
- The LHC beamline as an example
- Implementation
- Validation with MAD
- Some Physics
- Prospects

Introduction (I)

- Forward Physics : physics with very forward objects.
- Includes : diffractive physics, photon-related physics.
- Low σ -> need some help to tag !
- How ? By detecting forward objects -> new detectors («Roman Pots») far from IP.
- Such detectors could allow «full» event reconstruction.

-> Need for a realistic simulation of particle propagation in the beamline !

Introduction (III)

- MAD : Beam simulator used by the LHC Machine group. Problem : beam-oriented*, while we need particle-by-particle propagation. Also very hard to adapt to one's needs.

- MARS : Used for very accurate description of interactions with fields and matter. Problem : Too heavy.

- Transport : Was used for UA1. Good, but not easy to adapt for LHC.

→ There's room for a new Simulator !

Introduction (IV)

- Fast
- Lightweight
- LHC-capable
- Particle-oriented

This new program could be :

- Object-oriented
- General-purpose
- Easy to use for anyone interested

B around its central value :

$$\frac{e}{p}B_y(x) = \frac{e}{p}B_y + \frac{e}{p}\frac{\partial B_y}{\partial x}x + \frac{1}{2}\frac{e}{p}\frac{\partial^2 B_y}{\partial x^2}x^2 + \dots$$
$$k_0 = 1/R \quad k_1 = k$$

Taking only dipolar (k_0) and quadrupolar (k_1) terms :

$$\begin{aligned} x''(s) + \left(\frac{1}{R^2(s)} - k(s)\right) x(s) &= \frac{1}{R(s)} \frac{\Delta p}{p} \\ y''(s) + k(s)y(s) &= 0. \end{aligned}$$

The solutions x(s), x'(s), y(s), y'(s) can be expressed (if $\Delta p << p$) as a linear combination of the initial phase-space vector $x_{o'}$, $x'_{o'}$, $y_{o'}$, y'_{o}

Linear behaviour -> matrix representation of the transport :

$$X(s) = X(0) \underbrace{M_1 M_2 \dots M_n}_{M_h \text{ compliance}}$$

Where :

X is the phase-space vector of the particle M_i are the matrices associated to the magnets

Rem : As considered energy losses are not negligible, we introduce an energy dependence of M_i as a correction to linearity

$${
m M}_{{f vertical-quadrupole}} =$$

Input Needed :

- k_i
- effective field length
- magnet position
- magnet aperture

All directly provided by the LHC group tables !

The 4-vector can be specified :

- completely (from generator)
- by choosing energy loss and Q² of emitted object

The LHC beams (right of CMS) :

Same for ATLAS :

Implementation (VIII)

Performances :

Computing time for 10000 particles

- Just take some protons, from LHC beam 1
- Propagate them to your favourite Roman pot detector
- Plot the x,y,x',y' in the transverse plane

RP acceptances (220m) :

Direct physics output (III)

Turning MAD ?

Cto Direct physics output (VI)

Chromaticity grid :

where is your proton given its energy/angle ?

•Choose a proton, with a given energy loss and initial angle

•Propagate it to your 2 roman pots.

•Measure x,x'

By linearity :

$$x_s = a_s x_0 + b_s x'_0 + d_s E$$
$$x'_s = \alpha_s x_0 + \beta_s x'_0 + \gamma_s E$$

We should solve for x_0, x_0' , E (with only 2 equations)

As physics won't change $x_{_0}$, we choose to neglect $a_{_s}$ and $\alpha_{_s}.$ This method leads to :

$$E=rac{b_2 x_1-b_1 x_2}{b_2 d_1-b_1 d_2}$$
 Angle compensation method

where b_1 and b_2 are the b parameters for the two detectors.

Reconstructed variables : energy loss ($\sigma_{F}vs Q^{2}$ and E)

Reconstruction (III)

Reconstructed variables : Q^2

Recent achievements :

- Non-proton particles propagation (mass, charge)
- Misalignment of magnets effect

In progress :

- Integration into FAMOS
- Integration into CMSSW

by some friends from Protvino.

Official website :

http://www.fynu.ucl.ac.be/hector.html

You will find there :

- Hector sources (stable or CVS)
- User Manual (kindly tested by TH-oriented CP3 members)
- Code documentation (Doxygen)
- Link to official forum
- Useful links
- Soon : note draft