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Two problems of (integrable) Random Tilings

O(1) Dense Loop Model
on a semi-infinite cylinder (or strip)

= XXZ Quantum Spin Chain at ∆ = −1
2

= Edge-percolation (Potts Model at Q = 1)

Fully-Packed Loops (FPL) in a square
(or some other domain mostly locally like a
square lattice)
= Alternating Sign Matrices (ASM)
= Six-Vertex Model at ∆ = +1

2 (Ice Model)
= Non-Intersecting Lattice Paths

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Link patterns

A link pattern π ∈ LP (2n) is a pairing of {1, 2, . . . , 2n}
having no pairs (a, c), (b, d) such that a < b < c < d
(i.e., the drawing consists of n non-crossing arcs).

1 2

3

4

5

67

8

9

10

1 2 3 4 5 6 7 8 9 10

They are Cn = 1
n+1

(2n
n

)
(the n-th Catalan number),

are in easy bijection with Dyck Paths of length 2n,
and with integer partitions boxed in a triangle
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Link patterns in the Dense Loop Model

We can associate a link pattern π to any dense-loop configuration
on a semi-infinite cylinder, as the connectivity pattern among the
points on the boundary.
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Link patterns in Fully-Packed Loops

We can associate a link pattern π also to any Fully-Packed Loop
configuration, as the connectivity pattern among the black
terminations on the boundary.
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The dihedral Razumov–Stroganov correspondence
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Ψ̃n(π) : probability of π
in the O(1) Dense Loop Model
in the {1, ..., 2n} × N cylinder

Ψn(π) : probability of π
for FPL with uniform measure

in the n × n square

Dihedral Razumov–Stroganov correspondence
(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

Ψ̃n(π) = Ψn(π)
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Many Razumov–Stroganov-type conjectures

In fact, there exists a whole class of Razumov–Stroganov conjectures

z-w A.V. Razumov and Yu.G. Stroganov, Combinatorial nature of ground state
vector of O(1) loop model, Theor. Math. Phys. 138 (2004); —, O(1) loop model with

different boundary conditions and symmetry classes of alternating-sign matrices,
Theor. Math. Phys. 142 (2005); J. de Gier, Loops, matchings and alternating-sign

matrices, Discr. Math. 298 (2005); S. Mitra, B. Nienhuis, J. de Gier and
M.T. Batchelor, Exact expressions for correlations in the ground state of the dense

O(1) loop model, JSTAT(2004); J. de Gier and V. Rittenberg, Refined
Razumov–Stroganov conjectures for open boundaries, JSTAT(2004); Ph. Duchon,

On the link pattern distribution of quarter-turn symmetric FPL configurations, FPSAC 2008

These variants are naturally arranged into two main classes:

dihedral RS: FPL domains with Wieland dihedral symmetry,
⇔ O(1)DLM on the cylinder (the periodic quantum spin chain)

vertical RS: FPL domains with a “reflecting wall” of
U-turn/O-turn ⇔ versions of the O(1)DLM on the strip

(the open or closed boundary quantum spin chain)
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Some other dihedral Razumov–Stroganov (ex-)conjectures
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Dihedral symmetry of FPL

A corollary of the Razumov–Stroganov correspondence. . .
(. . . that was known before the Razumov–Stroganov conjecture)

call R the operator that rotates a link pattern by one position

Dihedral symmetry of FPL (proof: Wieland, 2000)

Ψn(π) = Ψn(Rπ)

π

Rπ
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The domains where dihedral Razumov–Stroganov holds

In the case of the dihedral Razumov–Stroganov correspondence,
Wieland gyration (and its generalisations) has been a crucial ingredient

and led us to classify the family of domains for which RS holds

1 1 1 2 2
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The domains where dihedral Razumov–Stroganov holds

So, in proving the various existing (dihedral) Razumov–Stroganov
conjectures, we have been led to generalise them to a much larger
family of domains (∼ n3 different domains for LP (2n)).

There are three subclasses, according to the type of link patterns
and Temperley–Lieb algebras: ordinary, punctured even and
punctured odd.
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The domains where dihedral Razumov–Stroganov holds

1 corner, 3 triangles:

1 3 5 7 9 11 13

151719

21

23

2 4 6 8 10 12

14

1618

20

22

24
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The domains where dihedral Razumov–Stroganov holds

2 corners, 2 triangles:

1 3 5 7 9 11 13 15

17

192123
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27

2 4 6 8 10 12 14
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2022
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The domains where dihedral Razumov–Stroganov holds

3 corners, 1 triangle:

1 3 5 7 9 11

13

15
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21232527
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The domains where dihedral Razumov–Stroganov holds

1 corner, 1 triangle, 1 face with ` = 2:

1 3 5 7

9

11

13

15

17

19

2 4 6 8

10

12

14

16

18

20

(this works with

punctured link patterns

of even size!)
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The domains where dihedral Razumov–Stroganov holds

1 corner, 1 triangle, 1 vertex of degree 2:

1 3 5 7 9

11

13

15

17

19

21

2 4 6 8

10

12

1416

18

20

22

(this works with

punctured link patterns

of odd size!)
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The domains where dihedral Razumov–Stroganov holds

2 corners, 1 face with ` = 2:

(these are HTASM of even side,

half-turn symmetric ASM’s,

and it works with punctured

link patterns, of even or odd size)
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The domains where dihedral Razumov–Stroganov holds

2 corners, 1 vertex of degree 2:

(these are HTASM of odd side,

half-turn symmetric ASM’s,

and it works with punctured

link patterns, of even or odd size)
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The domains where dihedral Razumov–Stroganov holds

1 corner, 1 face with ` = 1:

L = 4n
1 3

5

7

2 4

6

8

1 3 5 7
1

3

5

7

1357

1

3

5

7

2 4 6 8

2

4

6

8

2468

2

4

6

8

(these are QTASM,

quarter-turn symmetric ASM’s)

and it works with punctured

link patterns of even size)
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The domains where dihedral Razumov–Stroganov holds

1 corner, 1 v. deg. 2 next to a triangle:

L = 4n + 2

1 3 5
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(these are qQTASM,

quasi–quarter-turn symmetric ASM’s)

and it works with punctured

link patterns of odd size)
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A Vertical Razumov–Stroganov Conjecture

1
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Ψ̃V
n (π) : probability of π

in the O(1) Dense Loop Model
in the {1, ..., 2n} × N strip

ΨV
n (π) : probability of π

for vertically-symmetric FPL
with uniform measure in the
(2n + 1)× (2n + 1) square

Vertical Razumov–Stroganov conjecture
(Razumov and Stroganov, 2001, for the square of side 2n + 1)

Ψ̃V
n (π) = ΨV

n (π)
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The domains where vertical Razumov–Stroganov holds

The Vertical Razumov–Stroganov conjectures are a whole second family
They involve FPL with some version of reflecting wall

and the O(1) Dense Loop Model on a strip with a boundary

Our proof methods do not seem to work for any of the Vertical
Razumov–Stroganov conjectures, which are all open at present

But at least we think we know the precise list of domains with Vertical RS

x#{ }y#{ }

3 + x + 7y + 2xy + 4y2 + xy2 6 + 2x + 14y + 4xy + 8y2 + 2xy2
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The RS obsession: why no black+white RS?

In June 2024 there was the “At the crossroads of physics and
mathematics: the joy of integrable combinatorics — A conference
in the honor of Philippe Di Francesco’s 60th birthday” in IPTh
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The RS obsession: why no black+white RS?

In June 2024 there was the “At the crossroads of physics and
mathematics: the joy of integrable combinatorics — A conference
in the honor of Philippe Di Francesco’s 60th birthday” in IPTh
I was presenting my other recent results, on the structure
constants of the canonical Grothendieck polynomials arising in the
(π•, π◦,#{©}) statistics of FPL’s in the VSASM’s.

A point of my talk was the disappointment for the fact that we
only have a (dihedral) RS correspondence for the π• statistics,
despite the fact that Wieland gyration is a statement on the triple
(π•, π◦,#{©}).

Since then, I have been thinking back to the question. And I found
a sensible recipe, and a further generalisation. . .

. . . at this aim, we need to introduce a gauge theory for FPL’s

. . . but before doing this, we shall give
a short summary of the old 2012 proof. . .
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The Temperley-Lieb monoid TLN(τ = 1)

Consider the graphical action over link patterns π ∈ LP (N)

R :
1 2 3 ··· N

ej :
1 2 3 ··· j j+1 ···N

··· ···

In the TLN(τ) Algebra, e2j = τej . When τ = 1, the ej ’s and R±1

act stochastically on link patterns

e1(π) :
1 2 3 4 5 6 7 8 9 10

=
1 2 3 4 5 6 7 8 9 10

e2(π) :
1 2 3 4 5 6 7 8 9 10

=
1 2 3 4 5 6 7 8 9 10

Consider the linear space CLP(N), linear span of basis vectors |π〉.
Operators ej and R±1 are stochastic linear operators over CLP(N)
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O(1) Dense Loop Model: the Markov Chain over LP (N)

The “integrable weigths” of the O(τ) Dense Loop Model
(with τ = 2 cos γ) on isoradial graphs∗ are

θ = π
2 ξ

ξ ∈ [0, 1] sin γξ sin γ(1− ξ)

∗ The relation between the angle θ and the integrable weights is natural

in two respects: the density of free energy is uniform, and the YBE

condition corresponds to “flipping a cube”
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O(1) Dense Loop Model: the Markov Chain over LP (N)

A config with t − 1 layers, and link
pattern π

Add a new layer, of i.i.d. tiles, with
probability p( )/p( )
= p/(1− p) = sin(π3 ξ)/ sin(π3 (1− ξ))
(say, p = 1/2, i.e. ξ = 1/2)...

Some loops get detached from the
boundary. You have a config with t
layers, and a new link pattern π′.

The rates Wp(π, π′) are encoded by a
big polynomial Tp in R±1 and the ej ’s:
Tp|π〉 =

∑
π′Wp(π, π′)|π′〉
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O(1) Dense Loop Model: the Markov Chain over LP (N)

Now repeat the game,

but add i.i.d. tiles, with prob. p → 0

For most of the layers you just rotate
From time to time, you have a single
non-trivial tile. In the limit, the prob-
ability of having two non-trivial tiles
in the same row vanishes.

The rates are
Wp→0(π, π′) = δ(π′,Rπ) +O(p).
More precisely, the operator Tp has
the form

Tp = R
(
I + p

∑
j(ej − 1)

∑
j(ej − 1)

+O(p2)
)

Hamiltonian H
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Integrability: commutation of Transfer Matrices

The 1-parameter family of matrices for the transition rates,
Wp(π, π′), acting on CLP(N) by filling one layer of lozenges with
angle θ, form a commuting family. I.e. the family of polynomials
Tp in the Temperley–Lieb Algebra form a commuting family.

Trivial: Ψ̃p(π), the steady state, is the unique eigenstate of
Tp(π, π′) with all positive entries

The Yang–Baxter relation implies:∑
π′Wp1(π, π′)Wp2(π′, π′′) =

∑
π′Wp2(π, π′)Wp1(π′, π′′),

or also, in TL alg., [Tp,Tp′ ] = 0

Consequence: Ψ̃p(π) ≡ Ψ̃p′(π) and we can get Ψ̃(π) := Ψ̃1/2(π)

from the study of Tp→0. Namely, calling |Ψ̃n〉 =
∑

π Ψ̃(π)|π〉 and
Hn = ∂

∂p (R−1Tp)|p=0 =
∑2n

i=1(ei − 1), we have

Hn|Ψ̃n〉 = 0
linear-algebra characterization of Ψ̃(π)

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Integrability: commutation of Transfer Matrices

...said with a picture...
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|Ψ̃n〉 :=
∑

π∈LP(2n)

Ψ̃n(π)|π〉

(Tn − 1)|Ψ̃n〉 = 0

|Ψ̃n〉 :=
∑

π∈LP(2n)

Ψ̃n(π)|π〉

Hn|Ψ̃n〉 = 0

the two linear equations for |Ψ̃n〉 are equivalent!
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Refinement position in Fully-Packed Loops

Fully-Packed Loops have a unique straight tile on any external line
(and Alternating Sign Matrices have a unique +1 on any external line)

Concentrate on the bottom row, and call refinement position the
corresponding column index.

The Izergin–Korepin determinant gives us the total number of FPL
configurations, possibly refined according to these 4 statistics,
but not the numbers refined according also to the link patterns. . .
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Refinement position in Fully-Packed Loops

Fully-Packed Loops have a unique straight tile on any external line
(and Alternating Sign Matrices have a unique +1 on any external line)

1 3 52 4 6 1 3 52 4 6

Concentrate on the bottom row, and call refinement position the
corresponding column index.

The Izergin–Korepin determinant gives us the total number of FPL
configurations, possibly refined according to these 4 statistics,
but not the numbers refined according also to the link patterns. . .
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O(1)DLM: the Scattering Matrix and Di Francesco’s 2004 conjecture

Repeat the game once more...

...but this time keep all tiles frozen, except
for the one in column i + 1

RXi (t) = R(t + (1− t)ei )

These simple operators seem to have
nothing to do with the original problem.

Nonetheless, calling Si (t) = (RXi (t))N

the Scattering Matrix on column i ,
we have Si (1− t) = 1 + t H +O(t2)

So, if we understand the Frobenius
vector Ψ(t) of Si (1− t),
(i.e. the Frobenius vector of RXi (1− t)),
we also understand the RS vector Ψ.
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Dihedral covariance of the eigenvectors |Ψ̃(i)
n (t)〉

In the original formulation of the Razumov–Stroganov conjecture
we have |Ψ̃n〉 =

∑
π Ψ̃(π)|π〉, satisfying Hn|Ψ̃n〉 = 0

The operators RXi (t), and the scattering matrices Si (t),
induce the deformation

|Ψ̃(i)
n (t)〉 =

∑
π Ψ̃(i)(t;π)|π〉, satisfying (RXi (t)− 1)|Ψ̃(i)

n (t)〉 = 0.

Because of a dihedral covariance of these equations,
(and unicity of the Frobenius vector)

it suffices to study RX1(t) and |Ψ̃(1)
n (t)〉

i.e., 0 = (Xi (t)− R−1)|Ψ̃(i)
n (t)〉 = R(Xi+1(t)− R−1)R−1|Ψ̃(i)

n (t)〉
implies |Ψ̃(i+1)

n (t)〉 ∝ R−1|Ψ̃(i)
n (t)〉

Call Sym = N−1
∑N−1

i=0 R i , the operator that projects on the
rotationally-invariant subspace of CLP(N).
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The refined Razumov–Stroganov correspondence
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Ψ̃n(t;π) : probability of π
in the O(1) Dense Loop Model
with dynamics given by RX1(t)

Ψn(t;π) : count FPL’s φ
having link pattern π
give th(φ)−1 weight

Refined Razumov–Stroganov correspondence
(conjecture: Di Francesco, 2004; proof: AS Cantini, 2012)
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Ψ̃n(t;π) : probability of π
in the O(1) Dense Loop Model
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having link pattern π
give th(φ)−1 weight

Refined Razumov–Stroganov correspondence
(conjecture: Di Francesco, 2004; proof: AS Cantini, 2012)

Ψ̃n(t;π) 6= Ψn(t;π)
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Ψ̃n(t;π) : probability of π
in the O(1) Dense Loop Model
with dynamics given by RX1(t)

Ψn(t;π) : count FPL’s φ
having link pattern π
give th(φ)−1 weight

Refined Razumov–Stroganov correspondence
(conjecture: Di Francesco, 2004; proof: AS Cantini, 2012)

Sym |Ψ̃n(t)〉 = Sym |Ψn(t)〉
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A quest for a new strategy

In 2010, Cantini and myself gave a first proof of the (unrefined)
Razumov–Stroganov conjecture. Later on, in 2012 we gave a proof

for the refined Di Francesco conjecture, which also provides a
(more illuminating?) proof of the original RS

2010: • Realize that H|Ψ̃〉 = 0 fixes |Ψ̃〉 univocally;
• Prove combinatorially that also |Ψ〉 satisfies H|Ψ〉 = 0...

...But the |Ψ̃(i)〉’s differ (they are only dihedrally covariant),
and satisfy different linear equations (with RXi (t))...

...and Sym |Ψ̃(i)〉 does not satisfy any simple
linear equation that fixes it univocally!

2012: • Find a new way π′(φ) of associating link patterns to FPL;

• Prove |Ψ̃(t)〉 = |Ψ′(t)〉 with no need of symmetrization;
• Prove combinatorially that Sym |Ψ′(t)〉 = Sym |Ψ(t)〉

Bonus: The new enumeration is interesting by itself
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The heretical enumeration

π(φ) π′(φ)

1
2

3

4

5

6

7

8
9

1011
12

13

14

15

16

17

18
19

20 1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

19 20 1 2 3
4

5

6

7

8

910111213
14

15

16

17

18

1
2

3

4

5

6

7

8
9

1011
12

13

14

15

16

17

18
19

20

1
2

3

4

5

6

7

8
9

1011
12

13

14

15

16

17

18
19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1 2 3 4 5

6

7

8

9

10
1112131415

16

17

18

19

20
1 2 3 4 5

6

7

8

9

10

1112131415
16

17

18

19

20

20 1 2 3 4

5

6

7

8

9
1011121314

15

16

17

18

19
1

2
3

4

5

6

7

8
9

1011
12

13

14

15

16

17

18
19

20

The role of black and white is symmetrical...
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...who’s who is a matter of convention.

Swapping coloration in all FPL’s leads to an equivalent conjecture
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Here’s the new rule: if the refinement position is odd...
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Here’s the new rule: if the refinement position is odd...

...you just rotate the starting point to the refinement position
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if the refinement position is even...
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if the refinement position is even...

...you swap black and white, and rotate the starting point
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Use projectors to get 2 simple equations (instead of 1 difficult eq.)

We wanted to prove Di Francesco 2004 conjecture:
Sym |Ψ̃(t)〉 = Sym |Ψ(t)〉

with |Ψ̃(t)〉 solving (X1(t)− R−1)|Ψ̃(t)〉 = 0
and |Ψ(t)〉 =

∑
φ t

h(φ)−1|π(φ)〉

We have been led to split this in two parts:
|Ψ̃(t)〉 = |Ψ′(t)〉 and Sym |Ψ′(t)〉 = Sym |Ψ(t)〉

Sym |Ψ′(t)〉 = Sym |Ψ(t)〉

with |Ψ′(t)〉 =
∑

φ t
h(φ)−1|π′(φ)〉

The first relation is proven if you show that
(X1(t)− R−1)|Ψ′(t)〉 ≡ (t − R−1 − (t − 1)e1)|Ψ′(t)〉 = 0

recalling that e21 = e1, and (1− e1)2 = (1− e1):
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Wieland gyration: how it works

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

FPL config

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Wieland gyration: how it works

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

Mark faces and ,
of given parity

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Wieland gyration: how it works

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

Mark faces and ,
of given parity

Exchange ⇔

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Wieland gyration: how it works

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

Mark faces and ,
of other parity

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Wieland gyration: how it works

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

Mark faces and ,
of other parity

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Wieland gyration: how it works

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

Mark faces and ,
of other parity

Exchange ⇔

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Wieland gyration: how it works

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Wieland gyration: how it works

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

Link pattern π... ...and R π...

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Wieland gyration: how it works

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1 2 3 4 5

6

7

8

9

10
1112131415

16

17

18

19

20

Link pattern π... ...and R π...
...and, on the conjugate
of the intermediate step...

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Wieland gyration: how it works

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

1 2 3 4 5

6

7

8

9

10
1112131415

16

17

18

19

20

Link pattern π... ...and R π......R
1
2 π...

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Wieland gyration: why it works

Easier to visualize the ⇔ exchange on the few , faces...
...but better use the conjugate config at intermediate step,

and think that , are the only faces fixed in the transformation

This rule inverts degblack(v)↔ degwhite(v),
and preserves connectivity of open-path endpoints
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...
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A configuration on (Λ, τ+)
(i.e., first leg is black)
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

The construction of G+,
pairing (2j − 1, 2j) legs
(plaquettes are in yellow)

mark in red and
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

The construction of G−,
pairing (2j , 2j + 1) legs

mark in blue and
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...

The result of map H−
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... if we pair them, to produce triangles,
we solve this annoyance...
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to recover the (Λ, τ+)
original geometry
(with a rotated
link pattern). . .
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Wieland gyration: where it works

So, the trick is:
• invert degblack(v)↔ degwhite(v)
• preserve connectivity of open paths

• Works with the Wieland recipe, on faces ` = 4

• Works even more easily on faces ` = 1, 2, 3

• Can’t work on faces ` ≥ 5

• Stay tuned for the forgotten plaquette! (will come out later on. . . )

• At boundaries, pair external legs to produce triangles

A single move exists on plenty of graphs...
then, rotation comes from two moves

...many more domains than just n × n squares have this property!
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Wieland gyration: where it works

We can trade corners for points of curvature (i.e., faces with less
than 4 sides). But we need at least one corner, because closed
spectral lines have a trivial behaviour (1 + R)

1 2 3 4 5 6 7

8

9

10

1112131415

16

17

18

19

20

(bottom line: an elementary generalization of Wieland strategy
gives rotational symmetry for FPL enumerations above)
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Yet one word on gyration... the boundary conditions

We constructed a whole family of domains where Wieland gyration
works, and thus the enumerations must be rotationally symmetric.
But, so far, we only used alternating boundary conditions

What does it happen if we generalise on boundary conditions,
adding defects?

Pairing consecutive legs of the same colour produces arcs,
and “loses link-pattern information”: gyration implies a relation
on linear combinations of Ψ(π)’s

These linear combinations, induced by arcs, are well-described by
Temperley-Lieb operators.

We will not need this in full generality. . .
the study of a single defect is sufficient at our purposes.
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Yet one word on gyration... the boundary conditions

I now like to think of this as a “Ward Identity”: if G is a group of
invariance for both the measure and the Hamiltonian, that is
dµ(φ) = dµ(g ◦ φ) and H(φ) = H(g ◦ φ) for all g ∈ G , then

Z =
∑
φ

e−βH(φ) =
∑
φ

e−βH(g◦φ) ∀g ∈ G

and also, more importantly,

Z 〈A(φ)〉 =
∑
φ

A(φ)e−βH(φ) =
∑
φ

A(g◦φ)e−βH(g◦φ) = Z 〈A(g ◦ φ)〉 ∀g ∈ G

that is 〈A(φ)− A(g ◦ φ)〉 = 0. It is the fact that Ae−βH is “almost
invariant but not exactly” that produces interesting relations. . .

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Alternating boundary conditions, with one defect

Example: the state |Ψ[j]〉 =
∑

φ : h(φ)=j |π′(φ)〉 satisfies

(R ej−1 − ej)|Ψ[j]〉 = 0
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Alternating boundary conditions, with one defect

Example: the state |Ψ[j]〉 =
∑

φ : h(φ)=j |π′(φ)〉 satisfies

(ejR − ej)|Ψ[j]〉 = 0
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A first consequence

Recall our checklist of identities:

(1) : e1 (1− R−1)|Ψ′(t)〉 = 0

4 We have just proven this!

(2) : (1− e1) (t − R−1)|Ψ′(t)〉 = 0

4 Done!

(3) : Sym |Ψ′(t)〉 = Sym |Ψ(t)〉

ý Look at gyration even better!

(2) is equivalent to ask that tΨ(t;π) = Ψ(t;R−1π),
for all π such that 1 � 2...

but this is easily seen: 1 � 2 forces a small region,
that in turns implies a simple behaviour of the refinement position
under Wieland gyration
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The final orbit lemma

Consider the orbits under Wieland half-gyration
As FPL in the same orbit have the same link pattern up to rotation,
Sym |Ψ′(t)〉 = Sym |Ψ(t)〉 follows if, for every j , and every orbit,
there are as many contributions t j−1 to |Ψ′(t)〉 as to |Ψ(t)〉.

Study the behavior of the trajectory h(x) of the refinement
position:

I h(x + 1)− h(x) ∈ {0,±1}
I In a periodic function, any height value is attained alternately

on ascending and descending portions (or maxima/minima)

I All maxima/minima plateaux have length 2, the slope is ±1
elsewhere

I Ascending/descending parts of the trajectory have respectively
black and white refinement position
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The final orbit lemma

As a consequence, in any orbit O, and for any value j , the numbers
of φ ∈ O such that h(φ) = j , and

I are in even (resp. odd) position in the orbit;

I or have a black (resp. white) refinement position;

are all equal.
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This completes the proof . . . and we can finally pass to new things. . .
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Colour-changing cuts in FPL’s

Let G be a 4-valent planar graph, and consider FPL on G

Let C be a subset of edges of the dual G ∗ (the cuts)

Our FPL paths change colour when they cross C
The set of FPL’s is defined up
to a gauge transformation of C,
that is, the lattice version of lo-
cal deformation of cuts, while
keeping the endpoints fixed.
In particular, the enumeration
according to the link pattern
is invariant under cut deforma-
tions.
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The forgotten dihedral domains

Above, we classified the domains allowing for the (dihedral, π•)
Razumov–Stroganov correspondence. None of them involved cuts
(as on such graphs we find paths that “start black and finish
white”, and we wouldn’t know what to do with them. . . )

If we had an idea on how to construct a bicoloured (π•, π◦)
Razumov–Stroganov correspondence, nothing would prevent in
principle to consider also domains with cuts.

but, again, where exactly does Wieland gyration work?
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The forgotten plaquettes

We said that: Ê squares barely work (must not swap if B/W/B/W)
Ë triangles and lower work easily Ì 2-gons and 1-gons work so
well that you can even put a puncture in them.

Now, with cut endpoints: Ê triangles barely work (must not swap
if B/W/B/W) Ë 2-gons and lower work easily Ì no room for a
puncture anymore.
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The forgotten plaquettes

Old domains: up to three triangles (or one triangle and one 2-gon,
or one 1-gon, or one triangle and one vertex of degree 2, these
cases allow for a puncture)

New domains: as each cut needs two triangles (or 2-gons, or
1-gons), we can have only up to one cut, connecting two triangles
(and possibly a third triangle is left normal), or a triangle and a
2-gon

no room for a puncture anymore, and no room for two cuts!
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Reverse-engineering RS from FPL towards a loop model

We want to “invent” a black+white Razumov–Stroganov correspondence

But are disappointed to find no known good candidate on the
DLM side (the “rotor model” would have been promising, if it

weren’t for certain incompatibility issues on known enumerations)

So, we try to build on what we already know, from the FPL side,
and hope to interpret a posteriori what we find as a loop model.

Our best starting point is the Di Francesco 2004 (ex-)conjecture, i.e.
our proof that the heretical-enumeration-vector for FPL |Ψ′(t)〉 satisfies

e•1 (1− R−1• )|Ψ′(t)〉 = 0

(1− e•1) (t − R−1• )|Ψ′(t)〉 = 0

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



The black+white equations

So, we consider the black+white heretical enumeration |Ψbw(t)〉,
e.g. with the convention that:

I the refinement is always on a black leg

I the refinement leg has black index Ê

I the black indices grow CCW

I the white leg left of Ê has white index À

I the white indices grow CCW
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The black+white equations

We can work out lemmas as in our previous proof, but now keeping
track of both black and white legs. It is more complicated but
similar in spirit. We find equations depending only on e•1 , e◦1 , R•
and R◦, namely: (note: these equations do not have a unique solution!)

(we conjecture that there are Cd N2 e−1
lin. indep. solutions)(1− e◦1)|Ψbw(t)〉 = 0

(1− e•1) (t − R−1• )|Ψbw(t)〉 = 0

e•1e
◦
1

(
1− 1

1− tR◦(1− e◦1)
R◦R

−1
•

)
|Ψbw(t)〉 = 0

These are consistent with our previous equations. Indeed, the first
one states that the refinement leg is black, and the other two,
under the identification R◦ → 1, e◦1 → 1, become

e•1 (1− R−1• )|Ψ′(t)〉 = 0

(1− e•1) (t − R−1• )|Ψ′(t)〉 = 0
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One big problem ahead: the solution is not unique!

In the ordinary dihedral Razumov–Stroganov correspondence the
RS vector is the same for all the dihedral domains, up to a
multiplicative constant. On the DLM side, it is the Frobenius
vector of the corresponding Markov chain.

But this cannot work here, because the black+white enumerations
for different domains are not proportional
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First nice surprise: a hidden symmetry

The heretical enumeration breaks the symmetry between black and
white.

Define the combination

|Φ(t)〉 =
R−1•

1− t(1− e◦1)R◦
|Ψbw(t)〉

Our equations above read

(1− e◦1) (1− tR◦)|Φ(t)〉 = 0

(1− e•1) (1− tR•)|Φ(t)〉 = 0

e•1e
◦
1 (R◦ − R•) |Φ(t)〉 = 0

which are both very compact, and symmetric in black and white.
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Second nice surprise: separation of TL• and TL◦

In terms of the vector |Ψ′bw(t)〉 = R−1• |Ψbw(t)〉,
we can write our equations as

(1− e◦1)|Ψ′bw(t)〉 = 0

(1− e•1) (1− tR•)|Ψ′bw(t)〉 = 0(
e◦1

1

1− tR◦
− 1

1− tR•
e•1

)
|Ψ′bw(t)〉 = 0

These equations can be interpreted as if TL• and TL◦ act on the
bottom and top sides of a cylinder, with the stochastic operator:

I apply e1
I apply R`, with probability p(`) = (1− t)t`

and its adjoint (that is, the two steps are performed in reverse
order)
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Second nice surprise: separation of TL• and TL◦

(1− e◦1)|Ψ′bw(t)〉 = 0

(1− e•1) (1− tR•)|Ψ′bw(t)〉 = 0(
e◦1

1
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Ψ′bw(t) Ψ′bw(t)
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Second nice surprise: separation of TL• and TL◦

Corollary 1: A one-parameter family of solutions is given by

Ψ(t;λ) = (1−λ)
e1

1−t
1−tR

1− λe1 1−t
1−tR

= e1

(1−λ)(1−t)
1−λ(1−t)

1− t
1−λ(1−t)R X1(1− λ(1− t))

(for λ ∈ [0, 1] this is a prob. measure), where elements in the
Temperley–Lieb Algebra are interpreted as “cylindric link
patterns”, with white at the top and black at the bottom.

1

2
3

...

N
N-1

...

2

1
N

N-1
...

3
...

=
(
1− λ(1− t)

)
+λ(1− t)

#
{ }

= geom
(

t
1−λ(1−t)

)

but we do not know how to combine these to get the black+white
enumeration for given domains D ∈ D?N (and we know that this is
impossible in general)
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Second nice surprise: separation of TL• and TL◦

Corollary 2: the solutions to our equations form a C[t]–non-unital
ring within TLN . Indeed, Ψ is a solution if

(1− e1)Ψ = 0 Ψ(1− tR)(1− e1) = 0
[
Ψ, e1

1

1− tR

]
= 0

so, if Ψ and Φ are both solutions, we have

(1− e1)ΨΦ = 0
ΨΦ(1− tR)(1− e1) = 0[
ΨΦ, e1

1
1−tR

]
= Ψ

[
Φ, e1

1
1−tR

]
+
[
Ψ, e1

1
1−tR

]
Φ = 0

The two nice cases at n = 3 tell us that it must be
a non-commutative algebra, but at least Ψ = e1

1
1−tR is in the

center
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Can we construct a black+white Razumov–Stroganov?

So, we still do not have a DLM counterpart as in a proper
Razumov–Stroganov correspondence!

Let us try to invent a loop model whose TM is e1
1

1−tR
It must contain loop diagrams, for the Temperley–Lieb action
It must also contain a “mark” from where to start counting
But, as 1/(1− tR) = 1 + tR + t2R2 + t3R3 + · · · has arbitrarily
many terms, the mark may move arbitrarily far in a single row

We may interpret the mark as a particle like in a 6VM in NILP
representation, in the sector in which there is a single particle

A set of tiles with these properties is a 5VM mixed to a O(1)DLM

t 11 1 1

α β αβ

However, we are not able to “Baxterise” these weights. . .
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Third nice surprise: FPL domains with a cut as T (t)

. . . but we get a nice surprise: the Transfer Matrix of this model is
the partition function for FPL in the simplest cut domain (two rows)

1

t

t2

t3

...

tN−1
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Third nice surprise: FPL domains with a cut as T (t)

Why is it conceivable that FPL domains with a cut act as transfer
matrices? Because, in disguise, they correspond to domains with a
cylindic topology (symmetric under reflection plus complementation)

1 2 3 4 5 6 7 8 9 10 11 12 13

12345678910111213

13 1 2 3 4 5

6

7

89

10

11

12

1 2 3 4 5 6

7

8910

11

12

13

The symmetry is important:
if we did not have it,

we would have two hexagonal faces,
and Wieland gyration wouldn’t work.

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Third nice surprise: FPL domains with a cut as T (t)

Why is it conceivable that FPL domains with a cut act as transfer
matrices? Because, in disguise, they correspond to domains with a
cylindic topology (symmetric under reflection plus complementation)

1 2 3 4 5 6 7 8 9 10 11 12 13

12345678910111213

13 1 2 3 4 5

6

7

89

10

11

12

1 2 3 4 5 6

7

8910

11

12

13

13 1 2 3 4 5

6

7

89

10

11

12

1 2 3 4 5 6

7

8910

11

12

13

The symmetry is important:
if we did not have it,

we would have two hexagonal faces,
and Wieland gyration wouldn’t work.

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Third nice surprise: FPL domains with a cut as T (t)

Why is it conceivable that FPL domains with a cut act as transfer
matrices? Because, in disguise, they correspond to domains with a
cylindic topology (symmetric under reflection plus complementation)

1 2 3 4 5 6 7 8 9 10 11 12 13

12345678910111213

13 1 2 3 4 5

6

7

89

10

11

12

1 2 3 4 5 6

7

8910

11

12

13

13 1 2 3 4 5

6

7

89

10

11

12

1 2 3 4 5 6

7

8910

11

12

13

The symmetry is important:
if we did not have it,

we would have two hexagonal faces,
and Wieland gyration wouldn’t work.

Andrea Sportiello Towards a black+white Razumov-Stroganov correspondence



Third nice surprise: FPL domains with a cut as T (t)

Why is it conceivable that FPL domains with a cut act as transfer
matrices? Because, in disguise, they correspond to domains with a
cylindic topology (symmetric under reflection plus complementation)

1 2 3 4 5 6 7 8 9 10 11 12 13

12345678910111213

13 1 2 3 4 5

6

7

89
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12

1 2 3 4 5 6

7

8910

11

12

13

13 1 2 3 4 5

6

7

89

10

11

12

1 2 3 4 5 6

7

8910

11

12

13

The symmetry is important:
if we did not have it,

we would have two hexagonal faces,
and Wieland gyration wouldn’t work.

Bonus fact:
a proof that

the link patterns
are non-crossing
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More transfer matrices

More general cut domains can also be interpreted as Transfer
Matrices, but with more complicated (horizontal) auxiliary space,
and more complicated tiles (as for a “higher spin” line in the 6VM)

t t t 11 1 1 1 1 t

8 9 1 2

3

4567

8

9 1 2 3

4567

1 2 3 4 5 6 7 89

1234 56789

t tttt

t5

This family of elements of the ring is interesting. It has “low
degree” in the ei ’s (degree k − 1 if there are k horizontal lines),
and degree N − 1 in t (so that they are not trivially related).
Their limit for t → 1, once symmetrised, gives the Hamiltonians of
ordinary TL, Hk = ∂k

∂λk
T (λ)|λ=0.
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Conclusions and open questions

What is done:

I We have identified a system of equations in TL•(N)× TL◦(N)
for the black+white heretical enumeration AD(π) of FPL on
dihedral domains D ∈ D?N (with a cut or a puncture or none)

I The eqns do not fix the vector univocally. This is compulsory,
as different domains have non-proportional enumerations.

What is not done:

I We did not study the algebra of solutions. We believe that it
has dim. CdN

2
e−1 but do not have a proof. We don’t know its

center, and its structure constants. We don’t know if it is
generated by the {AD(π)}D∈D?

N
.

I We do not have a Razumov–Stroganov correspondence,
i.e. an integrable DLM that, for any given FPL domain D,
produces the enumerations AD when realised in some
geometry dependent on D.
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