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Outline 2/35

� Random domino tilings of the one-periodic Aztec diamond and the Schur process

� The one-periodic Aztec diamond in random environment: the annealed CLT

� Global fluctuations of discrete N -particle systems

� The one-periodic Aztec diamond in random environment: the quenched CLT

� Other applications
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� The Aztec Diamond of size N is the set of all lattice squares which are (fully) contained in
f(x;y):jxj+jy j�N+1g.

� Domino tilings of the Aztec diamond were introduced by Elkies-Kuperberg-Larsen-Propp'92. They
proved that the number of tilings is equal to 2N(N+1)/2.



Let us consider a chessboard coloring of the Aztec diamond. It is useful to distinguish not two, but four
types of dominoes



A uniformly random domino tiling of the Aztec diamond has some structure.

Theorem (Jockusch-Propp-Shor'98). Asymptotically a uniformly random tiling becomes frozen outside
of a certain circle.
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Weight function on edges:

w:E¡R>0

Associated weight of a dimer covering:

w(D)=
Q
e2Dw(e)

Partition function:

Z=
P

D
w(D)

Probability measure on dimer coverings

P(D)=
w(D)

Z

w2;2w1;1

w2;1

w1;2

w2;3

w3;3
w3;2

w(D)=w1;2�w2;1�w3;3

Z=w1;2�w2;1�w3;3+w2;3�w3;2�w1;1
+w1;1�w2;2�w3;3



There are many methods how to study this object:

� Analysis of a sampling (shuffling) algorithm: Jockusch-Propp-Shor'98

� Kasteleyn matrix: Kenyon'00, Cohn-Kenyon-Propp'02, Kenyon-Okounkov-Sheffield'06,
Kenyon-Okounkov'07, . . .

Johansson'03, Chhita-Johansson-Young'12, Chhita-Johansson'14, Johansson-Mason'23, . . .

Duits-Kuijlaars'17, Berggren-Borodin'23, Boutillier-de Tilie�re'24, Bobenko-Bobenko'24,
Berggren-Nicoletti'25

� Schur generating functions: Bufetov-Gorin'13,'16: can be efficiently used at least for the global
behavior: limit shape and fluctuations.

Gorin-Panova'13, Panova'14, Bufetov-Knizel'16, Boutillier-Li'17, Gorin-Sun'18,

Huang'18, Benaych-Georges-Cuenca-Gorin'21, Keating-Li-Prause'23, Bufetov-Z'24,

Cuenca-Dolega'25, . . .



In this talk we will consider the Aztec diamond with random edge weights.

Physics literature: There are studies for the Aztec diamond with all edge weights being
chosen i.i.d. Perret-Ristivojevic-Le Doussal-Schehr-Wiese'12. This model is conjectured
to display a super-rough region.

Mathematics literature: Dimer models with layered disorder¡¡the weights are periodic
in one direction Bufetov-Petrov-Z.'25, Moulard-Toninelli'25, Z.'25. Despite the disorder
integrable structure is preserved.

In the context of random environment it is common to distinguish between two types of expectations:

� Quenched: We first fix the random environment and then compute expectations.

� Annealed: We average in both over the randomness in the tilings and the randomness
in the environment.



One-periodic model of weights-given by Schur measure/process introduced by Okounkov and
Okounkov-Reshetikhin.

Let us take the parameters w1;:::;wM random: independent and identically distributed.







Uniform distribution on [0; 2]. Sampling via code of S. Chhita.Uniform distribution on [0; 1].
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� A signature of length N is an N -tuple of integers �=(�1��2������N). We will use the notation
li:=�i+N¡i.

� SignN�the set of all signatures of length N .

� The Schur function is defined by

s�(x1;:::;xN):=
det(xi

lj)i;j=1;:::;NQ
1�i<j�N (xi¡xj)

;

where � is a signature of length N . The Schur function is a Laurent polynomial in x1;:::;xN.

� Signatures �2SignN and �2SignN¡1 interlace (���), if �i��i��i+1, for all i=1;:::;N¡1.

� Signatures �;�2SignN interlace vertically (��v�), if �i¡�i2f0;1g, for all i=1;:::;N .
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Definition 2.3. Given a sequence of parameters (β1, . . . , βM), 0 < βi < 1, define the
probability measure Pβ1,...,βM

on the sequence of signatures of the form

(λ(M), ϑ(M), λ(M−1), ϑ(M−1), . . . , λ(2), ϑ(2), λ(1), ϑ(1)) (2.6)

(we also set λ(0) = ∅) by the formula

Pβ1,...,βM
(λ(M), ϑ(M), λ(M−1), ϑ(M−1), . . . , λ(2), ϑ(2), λ(1), ϑ(1))

∶= 1λ(M)=(0M )
M

∏
i=1
κβi
(λ(i) → ϑ(i))pri→(i−1)(ϑ(i) → λ(i−1)). (2.7)

By induction, these weights sum to one over all sequences of signatures (2.6).

Let SM be the set of sequences (2.6) with nonzero probability measure Pβ1,...,βM
.

From explicit formulas (2.3) and (2.5) it follows that each configuration from SM has
probability

Pβ1,...,βM
(λ(M), ϑ(M), . . . , ϑ(2), λ(1)) =

M

∏
i=1
(1 − βi)i

M

∏
i=1
( βi
1 − βi

)
∣ϑ(i)∣−∣λ(i)∣

.

The measure from Definition 2.3 corresponds to domino tilings of the Aztec diamond
with one-periodic weights:

Proposition 2.4. There is a bijection between SM and the set of domino tilings of
the Aztec diamond of size M . Under this bijection, the measure Pβ1,...,βM

(2.7) turns
into the measure on domino tilings with (fixed, deterministic) edge weights Wi as in
Figure 2, left, where Wi = βi/(1 − βi), i = 1, . . . ,M.

Proof. This correspondence is classical; see, for example, [Joh02], [JN06]. A detailed
presentation in our notation is given in [BK18, Section 2], where the same construction
is applied to domino tilings of more general domains. Figure 6 illustrates the bijection
for the Aztec diamond. □

λ(0)
ϑ(1)
λ(1)
ϑ(2)
λ(2)
ϑ(3)
λ(3)
ϑ(4)
λ(4)

Figure 6. Correspondence between domino tilings of the Aztec dia-
mond and sequences of signatures (here, M = 4). We single out two
types of dominos (red and green in the coloring in Figure 2), and place
black and white particles into them. The black (resp., white) parti-
cle configurations on each horizontal slice correspond to the signatures
ϑ(i) (resp., λ(i)). To read a signature, one counts the number of un-
occupied positions to the left of each particle. In particular, we have
λ(4) = (0,0,0,0), ϑ(4) = (1,1,1,0), λ(3) = (1,1,0), ϑ(3) = (2,2,1), and
so on, until ϑ(1) = (1) and λ(0) = (0). Note that ∑M

i=1 ∣ϑ(i)∣ − ∣λ(i)∣ is
the number of NW-SE dominos in the corresponding row which contain
particles. We assign nontrivial Boltzmann weights to these dominos.

Domino tilings of the Aztec diamond of sizeM are in bijection with sequences of signatures f�(i);�(i)gi=1M ,
of the form

0��(1)�v�(1)��(2)�v�(2)������(M)�v�(M)=0;

where �(i);�(i)2Sing i.

The one-periodic probability measure with parameters w1;:::;wM make these signatures random. Our
main application is to describe the behavior of such random signatures.



0��(1)�v�(1)��(2)�v�(2)������(M)�v�(M)=0;

One-periodic probability measure:

P�1;:::;�M(f�(i);�(i)gi=1M )=
Y
i=1

M
1

(wi+1)i
wi
j�(i)j¡j�(i)j:

For N<M , the marginal distribution of �(N) is given by the Schur measure:

P�1;:::;�M(�
(N)=�)=

Y
i=N+1

M
1

(wi+1)N
�s�(1;:::;1)s�0(wM ;:::;wN+1):



We assume that wi=�i/(1¡�i), �i2(0;1), and �1;:::;�M are independent and identically distributed,
with distribution �.

We study two cases:

First, we assume that the variance of � decays like M¡1,

limM!1E[�]=b; limM!1MVar(�)=�2:

Second, we study the case of fixed distribution �.



0��(1)�v�(1)��(2)�v�(2)������(M)�v�(M)=0

For N<M , let

m[�(N)]=
1

N

X
i=1

N

�(�i
(N)+N¡i), pk

(N)=
1

N

X
i=1

N

(�i
(N)+N¡i)k:

� Every domino tiling is uniquely determined by the height function,

H(y;�):=jf1�i�b�N c:�i
(b�Nc)+�N¡i�Nygj; y2Z>0, �2(0;1):

Theorem Bufetov-Petrov-Z.'25

In the case of decreasing variance,
� 1

Mk(pk
(b�Mc)¡E[pk

(b�Mc)])
	
k2Z>0;�2(0;1) converge to jointly

Gaussian distribution, whose covariance can be computed explicitly.



Covariance structure: For limM!1E[�]=b and, limM!1MVar(�)=�2, we have:

limM!1
1

Mk1+k2
Cov(pk1

(b�1Mc);pk2
(b�2M c))

=
1

(2�i)2

I
jwj="

I
jzj=2"

�
�1
z
+�1+

(1+z)(1¡�1)b
1+bz

�
k1
�
�2
w
+�2+

(1+w)(1¡�2)b
1+bw

�
k2

�
�
minf1¡�1;1¡�2g�2
(1+bz)2(1+bw)2

+
1

(z¡w)2

�
dzdw:

� 1

(z¡w)2 is a Gaussian Free Field term.

� minf1¡�1;1¡�2g�2

(1+bz)2(1+bw)2
is a new term, it is generated by a one-dimensional Brownian motion.

This case actually fits the setup of general theorems from Bufetov-Gorin'16.

Gaussian Free Field convergence for uniform tilings of Aztec diamond: Chhita-Johansson-Young'12,
Bufetov-Gorin'16.



Theorem Bufetov-Petrov-Z.'25

In the case of fixed distribution �, the vector(
pk
(N)

Nk+1

)
k2Z>0

, where pk
(N)=

X
i=1

N

(�i
(N)+N¡i)k;

converges in probability to

limN;M!1
N/M!�

E[pk
(N)

]

Nk+1
=

1

2�i(k+1)

I
jzj=1

1

z+1

�
1

z
+1+

1¡�
�

F (z)

�
k+1

dz;

where

F (z)=E�

�
�+�z
1+�z

�
:



Theorem Bufetov-Petrov-Z.'25

In the case of fixed distribution �, the vector(
pk
(b�Mc)¡E[pk

(b�M c)
]

Mk+
1
2

)
k2Z>0;�2(0;1)

; where pk
(b�M c)=

X
i=1

b�Mc

(�i
(b�M c)+b�M c¡i)k;

converges to a jointly Gaussian distribution with covariance given by

limM!1
1

Mk1+k2+1
Cov(pk1

(b�1Mc);pk2
(b�2M c))=

1¡�2
(2�i)2

I
jzj=2"

I
jwj="

�
(1¡�1)F (z)+�1+

�1
z

�
k1

�
�
(1¡�2)F (w)+�2+

�2
w

�
k2
G(z;w)dzdw;

for �1<�2, where

F (z)=E�

�
�+�z

1+�z

�
, G(z;w)=Cov�

�
�

1+�z
;

�

1+�w

�
:
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� Discrete particle system: l1>���>lN, li2Z

� We consider a probability measure on R:

m[l]:=
1
N

X
i=1

N

�

�
li
N

�

� If li are random, the m[l] is a random probability measure on R.

� We are interested in asymptotic behavior of m[l], as N!1. Concentration?
Gaussian fluctuations?

� Characteristic functions??? N -tuples of integers are a dual object to the unitary group of dimension
N .

� Goal: Describe the convergence in terms of such characteristic functions.
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SignN¡¡the set of all signatures of length N . Let SignN3� 7!�(�) be a probability measure on SignN.

Definition (Bufetov-Gorin) The Schur generating function of � is defined by

S�(x1;:::;xN):=
X

�2SignN

�(�)
s�(x1;:::;xN)

s�(1;:::;1)
:

Claim: A Schur generating function is a good analog of a characteristic function for asymptotic questions.

0��(1)�v�(1)��(2)�v�(2)������(M)�v�(M)=0

� For N<M , the (quenched) Schur generating function of the distribution of �(N), is

SLaw(�(N))(x1;:::;xN)=
Y
i=1

N Y
j=N+1

M

(1¡�j+�jxi):



m[�N]:=
1

N

X
i=1

N

�

�
�i+N¡i

N

�
, where (�1������N) is �N-distributed.

Theorem Bufetov-Petrov-Z.'25

Assume that �N is a sequence of probability measure on SignN, such that for any fixed k�1;

limN!1
1

N
logS�N(u1;:::;uk;1;:::;1)=Fk(u1;:::;uk):

Then, m[�N] converges in probability to a deterministic probability measure on R, with moments given
by

�k=
X
m=0

k �
k
m

�
1

(m+1)!

X
n=1

m+1 �
m+1
n

�
(¡1)n+1

X
l1+���+ln=m

�
�

m
l1;:::;ln

�
@un
ln :::@u1

l1 [u1
k(@u1Fk(u1;:::;uk))

k¡m]
������
ui=1

:



limN!1
1

N
logS�N(u1;:::;uk;1;:::;1)=Fk(u1;:::;uk)

� The case where Fk(u1;:::;uk)=	(u1)+���+	(uk), was considered by Bufetov-Gorin'13.

0��(1)�v�(1)��(2)�v�(2)������(M)�v�(M)=0, SLaw(�(N))(x1;:::;xN)=
Y
i=1

N Y
j=N+1

M

(1¡�j+�jxi):

� For the uniform probability measure on domino tilings of the Aztec diamond, we have for N<M ,

1

N
logSLaw(�(N))(x1;:::;xk;1;:::;1)=

M¡N
N

X
i=1

k

log
�
1+xi
2

�
:

� For i.i.d. edge weights, for the annealed Schur generating function we have

1

N
logSLaw(�(N))(x1;:::;xk;1;:::;1)=

M¡N
N

log

 
E�

"Y
i=1

k

(1¡�+xi�)
#!
:



m[�N]:=
1

N

X
i=1

N

�

�
�i+N¡i

N

�
, where (�1������N) is �N-distributed.

Theorem Bufetov-Petrov-Z.'25

Assume that �N is a sequence of probability measure on SignN, such that for any fixed k�1;

limN!1
1
N
logS�N(u1;:::;uk;1;:::;1)=Fk(u1;:::;uk):

Then, the moments of m[�N] have Gaussian fluctuations of order N
p

.

The formula for the covariance in the general case is explicit, but quite complicated.

These complicated formulas in the abstract setting vastly simplify in the case of Aztec diamond with
i.i.d. edge weights.



� In the annealed case the GFF fluctuations become invisible, washed away by the much larger ones
of the random environment.

Question. Does the global behavior of the one-periodic Aztec diamond change, when we condition on
the environment?

0��(1)�v�(1)��(2)�v�(2)������(M)�v�(M)=0; pk
(N)=

X
i=1

N

(�i
(N)+N¡i)k:

Theorem Z.'25 Assume that the distribution of � is fixed. For almost every realization of the environ-
ment, the vector

� 1

Mk(pk
(b�M c)¡E�[pk

(b�Mc)])
	
k2Z>0;�2(0;1) converges to a jointly Gaussian distribution,

and

limM!1
1

Mk1+k2
Cov�(pk1

(b�1Mc);pk2
(b�2Mc))=

1

(2�i)2

I
jzj=2"

I
jwj="

�
(1¡�1)E

�
�+�z

1+�z

�
+�1+

�1
z

�
k1

�
�
(1¡�2)E

�
�+�w

1+�w

�
+�2+

�2
w

�
k2 1

(z¡w)2dzdw:
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0��(1)�v�(1)��(2)�v�(2)������(M)�v�(M)=0; pk
(N)=

X
i=1

N

(�i
(N)+N¡i)k:

pk
(N)¡E�;�[pk

(N)]=pk
(N)¡E�[pk

(N)]+E�[pk
(N)]¡E�;�[pk

(N)]:

� The one-dimensional Brownian motions of the annealed CLTs arise due to the fluctuations of the
quenched mean E�[pk

(N)].

Question. Where is the randomness of the environment in the quenched CLT?

� Analogously, the higher-order cumulants of fN¡kpk
(N)gk�1 (with respect to E�) concentrate to

those of the Gaussian Free Field, and they have Gaussian fluctuations.



It is also possible to consider non i.i.d. edge weights.

0��(1)�v�(1)��(2)�v�(2)������(M)�v�(M)=0; m[�(N)]=
1

N

X
i=1

N

�

 
�i
(N)

+N¡i
N

!
:

Global conditions asymptotic for the random measure

mN[�]=
1
N

X
i=1

N

�(�i); where wi=
�i

1¡�i
:

are sufficient to extract analogous global asymptotic results for m[�(N)].

� If mN[�] has a limit shape, then m[�(N)] also has a limit shape.

� If mN[�] has Gaussian fluctuations, then m[�(N)] also has Gaussian fluctuations.
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In the remaining time, we consider a different setup, where the edge weights are deterministic.

Let us take w1=W , and all other parameters to be equal to 1.



0��(1)�v�(1)��(2)�v�(2)������(M)�v�(M)=0;

logSLaw(�(N))(x1;:::;xk;1;:::;1)=(M¡N¡1)
X
i=1

k

log
�
1+xi
2

�
+
X
i=1

r

log
�
1+Wxi
1+W

�
:

Theorem Bufetov-Z.'24

Assume that �N is a sequence of probability measure on SignN, such that for any fixed k�1;

limN!1

 
logS�N(x1;:::;xk;1;:::;1)¡N

X
i=1

k

	(xi)

!
=
X
i=1

k

�(xi);

where 	;� are analytic functions in a complex neighborhood of 1, and the above convergence is uniform
in a complex neighborhood of 1k. Then

limN!1

 X
�2SignN

�N(�)�
X
i=1

N �
�i+N¡i

N

�
k

¡N�k

!
=�k

0 ;

where �k;�k
0 can be computed explicitly.



limN!1

 
logS�N(x1;:::;xk;1;:::;1)¡N

X
i=1

k

	(xi)

!
=
X
i=1

k

�(xi)

The moments �k;�k
0 are given by

�k=
X
m=0

k �
k
m

�
1

(m+1)!
dm

dxm
(xk	0(x))k¡m

��������
x=1

;

�k
0=
X
m=0

k¡1 �
k

m+1

�
1

m!

dm

dxm

�
xk
�
�0(x)¡ 1

2x

�
(	0(x))k¡m¡1

���������
x=1

:

� The 1/N correction has been studied extensively in the context of random matrices Shlyakhtenko'15.
In certain cases, explicit formulas for the signed measure �0, lead to Baik-Ben Arous-Peche phase
transitions.

� It also fits into the abstract framework of Infinitesimal Free Probability.





We again study this picture via moments

X
�2SignN

�N(�)�
X
i=1

N
 
�i
(N)

+N¡i
N

!
k

=N ��k;W+�k;W0 +o(1);
N
M
!�;

�k;W=

Z
R

tk�W(dt); �k;W
0 =

Z
R

tk�W
0 (dt):

We have

�W
0 (dt)=¡1

�>
(W+1)2

2(W2+1)

��
�
¡1+2�W¡W
�(W 2¡1)

�
¡1
2
1
�=

(W+1)2

2(W2+1)

��
�
¡1+2�W¡W
�(W 2¡1)

�

+

�
�+

1¡2�
4t

¡�(2�¡1)
4(�t¡1) +

�(2W 2�¡W 2¡2W+2�¡1)
2(¡�t+W 2�t¡2W�+1+W )

�
11¡(2�¡1)2¡(2�t¡1)2>0

� 1¡(2�¡1)2¡(2�t¡1)2
p dt;

�W(dt)=1(1¡2�t)2�1¡(1¡2�)2
1
�
arccos

 
1¡2�

1¡(1¡2�t)2
p !

dt+11�(1¡2�t)2>1¡(1¡2�)2dt:
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Consider the differential operators

Dk(�):=
Y
i<j

1
xi¡xj

X
i=1

N �
xi

@
@xi

�
k
 Y
i<j

(xi¡xj)�
!
:

They act nicely on Schur generating functions.

S�N(x1;:::;xN)=
X

�2SignN

�N(�)
s�(x1;:::;xN)

s�(1;:::;1)
:

The Schur polynomials are eigenfunctions of Dk:

Dks�(x1;:::;xN)=
X
i=1

N

(�i+N¡i)k�s�(x1;:::;xN):
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S�N(x1;:::;xN)=
X

�2SignN

�N(�)
s�(x1;:::;xN)

s�(1;:::;1)
:

Dk1:::Dk�S�N(x1;:::;xN)jxi=1=

X
�2SignN

�N(�)

 X
i=1

N

(�i+N¡i)k1
!
:::

 X
i=1

N

(�i+N¡i)k�
!
:

General conditions on S�N allow to compute the left hand side. The right hand side divided by Nk1+���+k�+�

approximates expectations of the moments of (a priori random) limit measure

E

"Y
i=1

� Z
R

xki�(dx)

#
:


