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e Random domino tilings of the one-periodic Aztec diamond and the Schur process
e The one-periodic Aztec diamond in random environment: the annealed CLT

e Global fluctuations of discrete N-particle systems

e The one-periodic Aztec diamond in random environment: the quenched CLT

e Other applications



Domino tilings of the Aztec Diamond

e The Aztec Diamond of size /N is the set of all lattice squares which are (fully) contained in
{(zy):|z[+]y|<N+1}.

e Domino tilings of the Aztec diamond were introduced by Elkies-Kuperberg-Larsen-Propp'92. They
proved that the number of tilings is equal to 2V(V+1)/2,




Let us consider a chessboard coloring of the Aztec diamond. It is useful to distinguish not two, but four
types of dominoes
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A uniformly random domino tiling of the Aztec diamond has some structure.

Theorem (Jockusch-Propp-Shor'98). Asymptotically a uniformly random tiling becomes frozen outside
of a certain circle.
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There are many methods how to study this object:
e Analysis of a sampling (shuffling) algorithm: Jockusch-Propp-Shor'98

e Kasteleyn matrix: Kenyon'00, Cohn-Kenyon-Propp'02, Kenyon-Okounkov-Sheffield'06,
Kenyon-Okounkov'07, ...

Johansson'03, Chhita-Johansson-Young'12, Chhita-Johansson’'14, Johansson-Mason'23,...

Duits-Kuijlaars'17, Berggren-Borodin'23, Boutillier-de Tiliere'24, Bobenko-Bobenko'24,
Berggren-Nicoletti’'25

e Schur generating functions: Bufetov-Gorin'13,'16: can be efficiently used at least for the global
behavior: limit shape and fluctuations.

Gorin-Panova'l3, Panova'l4, Bufetov-Knizel'l6, Boutillier-Li'17, Gorin-Sun’'18,
Huang'18, Benaych-Georges-Cuenca-Gorin'21, Keating-Li-Prause'23, Bufetov-Z'24,
Cuenca-Dolega’25, ...



In this talk we will consider the Aztec diamond with random edge weights.

Physics literature: There are studies for the Aztec diamond with all edge weights being
chosen i.i.d. Perret-Ristivojevic-Le Doussal-Schehr-Wiese'12. This model is conjectured
to display a super-rough region.

Mathematics literature: Dimer models with layered disorder—the weights are periodic
in one direction Bufetov-Petrov-Z."25, Moulard-Toninelli'25, Z.'25. Despite the disorder
integrable structure is preserved.

In the context of random environment it is common to distinguish between two types of expectations:
e Quenched: We first fix the random environment and then compute expectations.

e Annealed: We average in both over the randomness in the tilings and the randomness
in the environment.



One-periodic model of weights-given by Schur measure/process introduced by Okounkov and
Okounkov-Reshetikhin.

Let us take the parameters wq,...,wy; random: independent and identically distributed.












Signatures and Schur functions

A signature of length NV is an N-tuple of integers A=(A1>A2>--> Ay ). We will use the notation

e Signy—the set of all signatures of length V.

e The Schur function is defined by

Ly,
g L
H1§¢<j§]\r (xi_xj)
where )\ is a signature of length V. The Schur function is a Laurent polynomial in x1,....,zx.
e Signatures \e€Signy and pE€Signy 1 interlace (A=), if \;>p;>N;1q, for all i=1,...,N—1.
e Signatures \,0cSigny interlace vertically (60>,2), if 0,—X;€{0,1}, for all i=1,...,N.
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Domino tilings of the Aztec diamond of size M are in bijection with sequences of signatures {\() 9() 1M,
of the form

0<0M = XD <@ A2 ... oMy ADM)—(),

where AV 9()ecSing;.

The one-periodic probability measure with parameters w1,...,wy; make these signatures random. Our
main application is to describe the behavior of such random signatures.



0<0W = AV <@ N2 <... M) AM)—(),

One-periodic probability measure:
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For N<M, the marginal distribution of A(¥) is given by the Schur measure:
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We assume that w,=(;/(1—0;), 5;€(0,1), and (31,...,0ys are independent and identically distributed,
with distribution £.

We study two cases:

First, we assume that the variance of 3 decays like M ~1,
limy; oo E[B]=b, limp;_...MVar(8)=c>

Second, we study the case of fixed distribution £.



0<0M = ND <0 A\2) ... 2g(M)y A(M)_—(

For N<M, let
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e Every domino tiling is uniquely determined by the height function,

H(y,n):={1<i< [N AN DN —i> Ny Y, y€Z~o, n€(0,1).

Theorem Bufetov-Petrov-Z.'25

(LnM )
k

In the case of decreasing variance, {%(p _E[pl(anMJ)])}kez>0,ne(o,1) converge to jointly

Gaussian distribution, whose covariance can be computed explicitly.



Covariance structure: For limy, . E[S]=b and, limy; ..M Var(3)=c?, we have:
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1. . _
——— is a Gaussian Free Field term.
(z—w)
min{l—n1,1—n2}0?

(15292 (1Thw)? is a new term, it is generated by a one-dimensional Brownian motion.

This case actually fits the setup of general theorems from Bufetov-Gorin'16.

Gaussian Free Field convergence for uniform tilings of Aztec diamond: Chhita-Johansson-Young'12,
Bufetov-Gorin'16.



Theorem Bufetov-Petrov-Z.'25

In the case of fixed distribution 3, the vector
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Theorem Bufetov-Petrov-Z.'25

In the case of fixed distribution (3, the vector
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converges to a jointly Gaussian distribution with covariance given by
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e Discrete particle system: [1>--->Ix, [;EZ

e We consider a probability measure on RR:

m[l]:z%é 5(%)

e If [; are random, the m/[l] is a random probability measure on RR.

e We are interested in asymptotic behavior of m[l], as N—oo. Concentration?
Gaussian fluctuations?

e Characteristic functions??? N-tuples of integers are a dual object to the unitary group of dimension
N.

e Goal: Describe the convergence in terms of such characteristic functions.
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Sign——the set of all signatures of length N. Let Signy2>A—p(A) be a probability measure on Sign .

Definition (Bufetov-Gorin) The Schur generating function of p is defined by

Sp($1,...,xN):: Z p(A)S)\(wl,...,ZEN)

A€ESigny SML-1)

Claim: A Schur generating function is a good analog of a characteristic function for asymptotic questions.
0<0W = AD<0@ - A\@) <... oM N(M)—()

o For N<M, the (quenched) Schur generating function of the distribution of A(*) s

N M
SLaw(MN))(xl,---,ZEN):H H (1— 08+ 6,x;).
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m|pn]: NZ 5( it Z), where (A1>-->\y) is py-distributed.

Theorem Bufetov-Petrov-Z.'25

Assume that py is a sequence of probability measure on Signy, such that for any fixed k>1,

limN_,oo%logSpN(ul,...,uk,1,...,1):Fk(u1,...,uk).

Then, m[pn]| converges in probability to a deterministic probability measure on R, with moments given
by

m-+1
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limN_,oollogSpN(ul,...,uk,l,...,1):Fk(u1,...,uk)

N

e The case where Fy(u1,...,ur)=Y(u1)+---+W¥(ug), was considered by Bufetov-Gorin'13.

N M
0= = A <@ AP <. <MD XM=0, S oy (@r,zn)=] [ [] (1—8+8:).
i=1 j=N+1

e For the uniform probability measure on domino tilings of the Aztec diamond, we have for N <M,

1 14+x;
NlogSLaw(A(N))(xla-"7$k717' Z lo ( )

e For i.i.d. edge weights, for the annealed Schur generating function we have

H (1—B+z:8)

1 M—N
NlogSLaW(Aw))(xl,...,xk,l,...,1) N log(IE@
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m[pN]::]iVZ 5<)\i+—]]\>]_l), where (A1>-->\y) is py-distributed.
i—1

Theorem Bufetov-Petrov-Z.'25

Assume that py is a sequence of probability measure on Signy, such that for any fixed k>1,

1

NlogSpN(ul,...,uk,l,...,1):Fk(u1,...,uk).

Then, the moments of m[py] have Gaussian fluctuations of order /.

The formula for the covariance in the general case is explicit, but quite complicated.

These complicated formulas in the abstract setting vastly simplify in the case of Aztec diamond with
i.i.d. edge weights.



e In the annealed case the GFF fluctuations become invisible, washed away by the much larger ones
of the random environment.

Question. Does the global behavior of the one-periodic Aztec diamond change, when we condition on
the environment?

N
0<OM s XD <9 AR 4. 2p(M) e (M) plgmzz AL N —4)*.
1=1

Theorem Z.'25 Assume that the distribution of 3 is fixed. For almost every realization of the environ-
ment, the vector {%(péL”MD—E,\[p;L”M converges to a jointly Gaussian distribution,

and
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N
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e The one-dimensional Brownian motions of the annealed CLTs arise due to the fluctuations of the
quenched mean E,[p™].

Question. Where is the randomness of the environment in the quenched CLT?

e Analogously, the higher-order cumulants of {N_’“p;,N)}kZl (with respect to [£,) concentrate to
those of the Gaussian Free Field, and they have Gaussian fluctuations.



It is also possible to consider non i.i.d. edge weights.

N (N) .
0<9(1)>v)\<1)49(2)%)\(2)*"<9<M)>U)\(M):O, m{)\(zv)]:iz 5(&- —|—N—z>.

Global conditions asymptotic for the random measure

1 N

mN[ﬁ]:WZ 0(3:), where wiz%.
i=1 t

are sufficient to extract analogous global asymptotic results for m[\V)].
o If my[f3] has a limit shape, then m[A\")] also has a limit shape.

e If my|[3] has Gaussian fluctuations, then m[A\?)] also has Gaussian fluctuations.



Schur generating functions and outliers of the Aztec diamond

In the remaining time, we consider a different setup, where the edge weights are deterministic.

Let us take w1=W, and all other parameters to be equal to 1.



0_<(9(1)>_U)\(1)_<Q(2)>_v)\(2)_<..._<9(M)>_U)\(M):O’
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Theorem Bufetov-Z.'24

Assume that py is a sequence of probability measure on Signy, such that for any fixed k>1,

i=1

k k
limN_,oo<logSpN(zU1,...,mk,1,...,1)NZ \I’(mz)>zz D (x;),

=1

where W, ® are analytic functions in a complex neighborhood of 1, and the above convergence is uniform
in a complex neighborhood of 1*. Then

thHoo( > pw(MZ( AtV ) NM)MQ,

AESigny

where pi, iy, can be computed explicitly.



k k
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The moments .,y are given by

7712:( )m-|—1)|dd;n(96k\1ﬂ(x))k—m
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e The 1/N correction has been studied extensively in the context of random matrices Shlyakhtenko'15.

In certain cases, explicit formulas for the signed measure ', lead to Baik-Ben Arous-Peche phase
transitions.

e It also fits into the abstract framework of Infinitesimal Free Probability.






We again study this picture via moments
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Consider the differential operators

Dy(-): H

j::( =) (g (;m_mj).).

They act nicely on Schur generating functions.

S a:,
Spn(@ran)= 3 py()2ELtN),

AESign N Y

The Schur polynomials are eigenfunctions of Dy

Dks}\(xh 33]\]) Z 2+N S)\(le,...,ZEN)-
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’Dkl...’DkVSpN<ZIf1,---,xN) |mi:1:

> pN(A)<Z (AﬁNz’)’“l)...(Z (AﬁNz’)"?V).
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General conditions on S, allow to compute the left hand side. The right hand side divided by N*++kvtv
approximates expectations of the moments of (a priori random) limit measure

1D

Hl A x’“,u(dx)].



