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Plan

I. Introduce alternating sign matrices (ASMs) & state a formula for their enumeration.

II. Introduce odd-order diagonally & antidiagonally symmetric alternating sign matrices

(DASASMs) & state a formula for their enumeration.

III. Introduce diagonally symmetric alternating sign matrices (DSASMs) & state a formula

for their enumeration.

IV. Summarize some further ASM-related results.

I′. Outline a proof of the ASM formula, involving the integrable six-vertex model on a

square with domain-wall boundary conditions (Kuperberg 1996).

II′. Outline a proof of the odd-order DASASM formula, involving the integrable six-vertex

model on an isosceles triangle with certain boundary conditions

(RB, Fischer, Konvalinka 2017).

III′. Outline a proof of the DSASM formula, involving the integrable six-vertex model on

an “equilateral” triangle with certain boundary conditions

(RB, Fischer, Koutschan 2023).



I. Alternating Sign Matrices (ASMs)

ASM: square matrix for which:

• Each entry is 0, 1 or −1.

• Each row & column contains at least one 1.

• Along each row & column, the nonzero entries alternate in sign,

starting & ending with a 1.

e.g.







0 0 0 1 0
1 0 0 0 0
0 0 1 −1 1
0 1 −1 1 0
0 0 1 0 0








History:

• Arose during study of Dodgson condensation algorithm for determinant evaluation

(Mills, Robbins, Rumsey 1982; Robbins, Rumsey 1986).

• Many subsequent appearances in combinatorics, algebra, mathematical physics, . . .

Observations: • First/last row/column of an ASM contains a single 1 & all other entries 0.

• Acting on an ASM with any symmetry operation of the square (reflection

in 4 symmetry axes, rotation by 0◦, 90◦, 180◦ or 270◦) gives another ASM.

• Any permutation matrix (exactly one 1 in each row & column, all other

entries 0) is an ASM.



Elementary Bounds on Number of n×n ASMs

{n×n permutation matrices} ⊆ {n×n ASMs}

⊆ {n×n matrices with each entry 0, 1 or − 1}

implies

(# of n×n permutation matrices) ≤ (# of n×n ASMs)

≤ (# of n×n matrices with each entry 0, 1 or −1)

implies

n! ≤ (# of n×n ASMs) ≤ 3n2

.



Exact Number An of n×n ASMs

n=1

(1) ⇒ A1 = 1.

n=2
(
1 0

0 1

)

,

(
0 1

1 0

)

⇒ A2 = 2.

n=3




1 0 0

0 1 0

0 0 1



 ,





0 1 0

1 0 0

0 0 1



 ,





1 0 0

0 0 1

0 1 0



 ,





0 0 1

0 1 0

1 0 0



 ,





0 0 1

1 0 0

0 1 0



 ,





0 1 0

0 0 1

1 0 0



 ,





0 1 0

1 −1 1

0 1 0





⇒ A3 = 7.



n=4

• 4! = 24 matrices without any −1’s (permutation matrices).

• 4 matrices with one −1 at position 2,2:






0 1 0 0

1 −1 1 0

0 1 0 0

0 0 0 1







,







0 1 0 0

1 −1 1 0

0 0 0 1

0 1 0 0







,







0 1 0 0

1 −1 0 1

0 1 0 0

0 0 1 0







,







0 1 0 0

1 −1 0 1

0 0 1 0

0 1 0 0







.

Similarly:

4 matrices with one −1 at 2,3,

4 matrices with one −1 at 3,2,

4 matrices with one −1 at 3,3.

So, 16 matrices with one −1.

• 2 matrices with two −1’s:






0 1 0 0

1 −1 1 0

0 1 −1 1

0 0 1 0







,







0 0 1 0

0 1 −1 1

1 −1 1 0

0 1 0 0







.

⇒ A4 = 24+ 16+ 2 = 42.



General Case

# of n×n ASMs: An =

n−1∏

i=0

(3i+1)!

(n+i)!
= 1, 2, 7, 42, 429, 7436, . . .

• Recurrence:
(
2n
n

)

An+1 =
(
3n+1

n

)

An.

• Conjectured: Mills, Robbins, Rumsey 1982.

• First proved:

– Zeilberger 1996 using constant term identities & known enumeration of totally

symmetric self-complementary plane partitions (84 pages).

– Kuperberg 1996 using connections with integrable six-vertex model (12 pages).

• Several subsequent proofs – e.g. Fischer, Konvalinka 2021 using signed bijections.

• No simple combinatorial proof (i.e. using elementary counting arguments) currently

known.

• Book: D. Bressoud Proofs & Confirmations: The Story of the ASM Conjecture

Cambridge University Press (1999), 274 pages.



• Outline of Kuperberg proof (more details soon):

– Obtain bijection between n×n ASMs & configurations of six-vertex model

on n×n square with domain-wall boundary conditions.

– Introduce spectral parameter-dependent vertex weights & consider weighted sum

over all configurations of model, i.e. (inhomogeneous) partition function.

– Use Yang–Baxter equation & other properties to obtain Izergin–Korepin formula

for partition function as n×n determinant.

– Evaluate determinant at certain values of parameters for which all weights are 1

(homogeneous limit).



II. Diagonally & Antidiagonally Symmetric

Alternating Sign Matrices (DASASMs)

DASASM: ASM which is invariant under:

• reflection in the diagonal &

• reflection in the antidiagonal.

e.g.











0 0 1 0 0 0 0
0 1 −1 0 1 0 0

1 −1 0 1 −1 1 0

0 0 1 −1 1 0 0

0 1 −1 1 0 −1 1
0 0 1 0 −1 1 0

0 0 0 0 1 0 0












History:

• Arose during studies of classes of ASMs invariant under the action of subgroups

of the symmetry group of the square (Robbins 1985; Stanley 1986).

Observations: • Any DASASM is also invariant under rotation by 180◦.

• Any DASASM is uniquely determined by its entries in an isosceles

triangle bounded by diagonal & antidiagonal.

• Central entry of an odd-order DASASM is ±1.



Number Dn of (2n+1)×(2n+1) DASASMs

& numbers D±n of (2n+1)×(2n+1) DASASMs with central entry ±1

n=0

(1)

⇒ D0 = 1

&
D−0
D+

0

=
0

1
.

n=1




1 0 0

0 1 0

0 0 1



 ,





0 0 1

0 1 0

1 0 0



 ,





0 1 0

1 −1 1

0 1 0





⇒ D1 = 3

&
D−1
D+

1

=
1

2
.



n=2






1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1







,







0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0







,







0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0







,







1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1







,







0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0







,







0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0







,







0 1 0 0 0
1 −1 0 1 0
0 0 1 0 0
0 1 0 −1 1
0 0 0 1 0







,







0 0 0 1 0
0 1 0 −1 1
0 0 1 0 0
1 −1 0 1 0
0 1 0 0 0







,







0 0 1 0 0
0 1 −1 1 0
1 −1 1 −1 1
0 1 −1 1 0
0 0 1 0 0







,







1 0 0 0 0
0 0 1 0 0
0 1 −1 1 0
0 0 1 0 0
0 0 0 0 1







,







0 0 0 0 1
0 0 1 0 0
0 1 −1 1 0
0 0 1 0 0
1 0 0 0 0







,







0 0 1 0 0
0 1 0 0 0
1 0 −1 0 1
0 0 0 1 0
0 0 1 0 0







,







0 0 1 0 0
0 0 0 1 0
1 0 −1 0 1
0 1 0 0 0
0 0 1 0 0







,







0 1 0 0 0
1 −1 1 0 0
0 1 −1 1 0
0 0 1 −1 1
0 0 0 1 0







,







0 0 0 1 0
0 0 1 −1 1
0 1 −1 1 0
1 −1 1 0 0
0 1 0 0 0







⇒ D2 = 15

&
D−2
D+

2

=
6

9
=

2

3
.



General Case

# of (2n+1)×(2n+1) DASASMs: Dn =

n∏

i=0

(3i)!

(n+i)!
= 1, 3, 15, 126, 1782, . . .

• Recurrrence:
(
2n− 1

n

)

Dn =
(
3n
n

)

Dn−1.

• Conjectured: Robbins 1985.

• Proved: RB, Fischer, Konvalinka 2017.

• No simple combinatorial proof currently known.

#’s of (2n+1)×(2n+1) DASASMs with central entry ±1:
D−n

D+
n

=
n

n+ 1

• Conjectured: Stroganov 2008.

• Proved: RB, Fischer, Konvalinka 2017.

• No simple combinatorial proof currently known.



III. Diagonally Symmetric Alternating Sign Matrices

(DSASMs)

DSASM: ASM which is invariant under reflection in the main diagonal, i.e. under

matrix transposition.

e.g.











0 0 0 1 0 0 0

0 1 0 −1 1 0 0

0 0 1 0 −1 0 1

1 −1 0 0 1 0 0
0 1 −1 1 −1 1 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0












Observation:

• Any DSASM is uniquely determined by its upper triangular part.



Number Tn of n×n DSASMs

n=1

(1) ⇒ T1 = 1.

n=2
(
1 0

0 1

)

,

(
0 1

1 0

)

⇒ T2 = 2.

n=3




1 0 0

0 1 0

0 0 1



 ,





0 1 0

1 0 0

0 0 1



 ,





1 0 0

0 0 1

0 1 0



 ,





0 0 1

0 1 0

1 0 0



 ,





0 1 0

1 −1 1

0 1 0



 ⇒ T3 = 5.



General Case

# of n×n DSASMs:

Tn = Pfaffian
0or1≤i,j≤n−1





min(i,j)
∑

k=0

(3− δk,0)

((
i+ j − 2k − 1

i− k

)

−
(
i+ j − 2k − 1

j − k

))




= 1, 2, 5, 16, 67, 368, 2630, 24376, 293770, 4610624, . . .

[For an even-order skew-symmetric matrix A: detA = (PfaffianA)2.]

• Range for i, j starts at 0 for n even, 1 for n odd.

• Proved: RB, Fischer, Koutschan 2023.

• Tn for n = 1,2, . . . ,1000 has been computed using this formula.

• No simpler formula currently known.

• Product formula (i.e. product of ratios of factorials similar to formulae for # of

ASMs or # of odd-order DASASMs) unlikely to exist, since prime factors of Tn do

not seem bounded above by a polynomial in n.



IV. Further ASM-Related Results

• Product formulae conjectured for # of ASMs in most symmetry classes: Robbins 1985.

• All these formulae now proved:

– Odd-order vertically symmetric ASMs: Kuperberg 2002.

– Odd-order vertically & horizontally symmetric ASMs: Okada 2006.

– Even-order half-turn symmetric ASMs: Kuperberg 2002.

– Odd-order half-turn symmetric ASMs: Razumov, Stroganov 2006.

– Order 0 mod 4 quarter-turn symmetric ASMs: Kuperberg 2002.

– Odd-order quarter-turn symmetric ASMs: Razumov, Stroganov 2006.

– Odd-order diagonally & antidiagonally symmetric ASMs (DASASMs):

RB, Fischer, Konvalinka 2017.

• # of ASMs in remaining nonempty symmetry classes:

– Diagonally symmetric ASMs (DSASMs): Pfaffian formula obtained
RB, Fischer, Koutschan 2023.

– Odd-order totally symmetric ASMs: multiple contour-integral formula obtained
Liénardy, Walmsley Hagendorf 2025.

– Even-order diagonally & antidiagonally symmetric ASMs (DASASMs): no formula

currently known.



• Various formulae also known for # of all ASMs & # of symmetric ASMs with

fixed values of certain statistics (e.g. positions of 1’s in first/last row/column,

# of −1’s, # of ‘inversions’).

• e.g. # of all ASMs with fixed positions of 1’s in first/last row/column:

– SINGLE 1: Zeilberger 1996.

– TWO 1’s on opposite or adjacent boundaries: Stroganov 2006

– THREE or FOUR 1’s: Ayyer, Romik 2013; RB 2013.

• No simple combinatorial proofs of any of the previous ASM enumeration formulae

currently known.



ASMs & Other Combinatorial Objects

Razumov–Stroganov correspondence

• Involves associating ‘fully-packed loop configurations’ & ‘link patterns’ with ASMs

& characterizing # of ASMs with fixed link pattern

Cantini, Sportiello 2011; Cantini, Sportiello 2014.

• Proved using elegant combinatorial arguments: a rare case of such a proof for a

nontrivial ASM-related result.

ASM – descending plane partition correspondence

• Known (non-bijectively) that:

# of n×n ASMs with fixed values of four statistics

= # of order-n ‘descending plane partitions’ with fixed values of four statistics

RB, Di Francesco, Zinn-Justin 2012; RB, Di Francesco, Zinn-Justin 2013

[see also Fischer, Schreier-Aigner 2023 ].

• Gives:

# of arrow-preserving orientations of certain square lattice with domain-wall boundaries

= # of rotationally-invariant tilings of certain triangular lattice with central hole.

• Square ↔ triangle duality holds:

# arrow-preserving orientations of certain triangular lattice with domain-wall boundaries

= # of rotationally-invariant tilings of certain square lattice with central hole

Di Francesco, Guitter 2020; Di Francesco 2021.



ASM – totally symmetric self-complementary partition correspondence

• Known (non-bijectively) that:

# of n×n ASMs with fixed values of two statistics

= # of ‘totally symmetric self-complementary partitions’ in a 2n×2n×2n box

with fixed values of two statistics Fonseca, Zinn-Justin 2008.



Totally Symmetric Self-Complementary

Plane Partitions (TSSCPPs)

TSSCPP: aligned stack of unit cubes in a box, which is invariant under

reflections, rotations & box-complementation

• Introduced: Stanley 1986

e.g. TSSCPP in 12× 12× 12 box:



Number Pn of TSSCPPs in a 2n×2n×2n box

n=1

⇒ P1 = 1

n=2

⇒ P2 = 2



n=3

⇒ P3 = 7



General Case

(# of TSSCPPs in 2n×2n×2n box): Pn =

n−1∏

i=0

(3i+1)!

(n+i)!
= 1, 2, 7, 42, 429, 7436, . . .

• Conjectured: Mills, Robbins, Rumsey 1986.

• Proved: Andrews 1994.

• Proof: Use sequences of nonintersecting lattice paths, Lindström–Gessel–Viennot

theorem & determinant evaluation.

• Therefore

(# of TSSCPPs in 2n×2n×2n box) = (# of n×n ASMs)

• No explicit bijection currently known between {TSSCPPs in 2n×2n×2n box} &

{n×n ASMs} for arbitrary n.

• “This is one of the most intriguing open problems in the area of bijective proofs.”

(R. Stanley 2009)

• “The greatest, still unsolved, mystery concerns the question of what plane

partitions have to do with alternating sign matrices.” (C. Krattenthaler 2016)



I′. Outline of Proof of ASM Formula

(# of n×n ASMs) =

n−1∏

i=0

(3i+1)!

(n+i)!

(1) Obtain bijection between n×n ASMs & configurations of six-vertex model

on n×n square with domain-wall boundary conditions.

(2) Introduce spectral parameter-dependent vertex weights & consider weighted sum

over all configurations of model, i.e. (inhomogeneous) partition function.

(3) Use Yang–Baxter equation & other properties to obtain Izergin–Korepin formula

for partition function as n×n determinant.

(4) Evaluate determinant at certain values of parameters for which all weights are 1

(homogeneous limit).



Configurations of Six-Vertex Model on a Square

with Domain-Wall Boundary Conditions

• Consider the n× n grid graph Gn :=

b b b b b b

b b b b b b

b

b

b

b

b

b

b

b

b

b

b

b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

n

n .

• The set of config’ns of the six-vertex model on Gn with domain-wall boundary conditions is

6V(n) :=







edge orientations

of Gn

∣
∣
∣
∣
∣
∣
∣
∣
∣

• 2 in & 2 out arrows at each degree-4 vertex

(⇒ 6 options:
u

u

u ub ,
u

u

u ub ,

u

u

u ub ,

u

u

u ub ,

u

u

u ub ,
u

u

u ub )

• all arrows out of Gn at top & bottom boundaries

• all arrows into Gn at left & right boundaries







.

• e.g. 6V(1) =
{ u

u

uu b

}
, 6V(2) =

{ u

u

u

u u

u

u u
u

u
u u

,
b b

b b

u

u

u

u

u

u

u

u

u
u

u

u b b

b b

}

,

6V(3) =







u

u

u

u

u

u

u

u

u

u

u

u

u

u
u

u
u

u

u
u

u

u
u

u

,

b b b

b b b

b b b

u

u

u

u

u u

u u

u

u

u

u

u u
u

u
u

u

u
u

u

u
u u

,

b b b

b b b

b b b

u

u

u

u

u

u

u

u

u

u u

u

u

u
u

u
u

u

u
u

u

u
u u

,

b b b

b b b

b b b

u

u

u

u

u u

u

u

u u

u

u

u

u
u

u
u

u

u
u

u

u
u u

,

b b b

b b b

b b b

u

u u

u

u

u

u

u

u

u

u

u

u u
u

u
u

u

u
u

u

u
u

u

,

b b b

b b b

b b b

u

u

u u

u

u

u u

u

u

u

u

u u
u

u
u

u

u
u

u

u
u

u

,

b b b

b b b

b b b

u

u

u

u

u

u

u

u

u

u

u

u

u

u
u

u
u

u

u
u

u

u
u

u

b b b

b b b

b b b






.

⇒ |6V(1)| = 1, |6V(2)| = 2, |6V(3)| = 7.



• Simple bijection between 6V(n) & {n× n ASMs} obtained by associating six-vertex

model local configurations at degree-4 vertices with ASM entries according to:

six-vertex model ASM

u

u

u ub ←→ 1

u

u

u ub ←→ −1

u

u

u ub ,
u

u

u ub ,

u

u

u ub ,

u

u

u ub ←→ 0

(Elkies, Kuperberg, Larsen, Propp 1992).

• e.g.
u u u u u u

u u u u u

u u u u

u u u

u u

u

u u u u u u

u u u u u

u u u u

u u u

u u

u

u
u

u
u

u
u

u
u

u
u

u

u
u

u
u

u
u

u

u
u

u

u
u

u
u

u
u

u
u

u
u

u

u
u

u
u

u
u

u

u
u

u

b b b b b

b b b

b b b

b b b b b

b b b

b b b b b

b

b

b

b

b b

b

b b

b b

b

←→












0 0 0 1 0 0

0 1 0 −1 1 0

1 −1 1 0 0 0

0 0 0 1 0 0

0 1 0 −1 0 1

0 0 0 1 0 0












.



Vertex Weights

• Associate weights with six-vertex model local configurations at degree-4 vertices:

W( •

u

u

uu , u) = W( •

u

u

uu , u) = σ(q u)
σ(q2)

,

W( •
u

u

uu , u) = W( •

u

u

uu , u) = σ(q u−1)
σ(q2)

,

W( •
u

u

u u , u) = W( •

u

u

u u , u) = 1,

where σ(x) := x− x−1, u = ‘spectral parameter’, q = global parameter.

• Simple properties of weights:

– At u = 1 & q = eiπ/3: W
(

•a

b

c
d

,1
)

|q=eiπ/3 = 1.

– At u = q±1: W
(

•a

b

c
d

, q−1
)

= δab′ δcd′ & W
(

•a

b

c
d

, q
)

= δad′ δbc′,

where a′ denotes reversal of orientation a (i.e. in ↔ out).



• Weights satisfy the Yang–Baxter Equation (YBE):

For all a1, b1, a2, b2, a3, b3 ∈ {in,out},

∑

c1,c2,c3

W
(

•c2
c1

a2

a1

, q u v−1
)

W
(

•a3

b2

c3

c2

, v w
)

W
(

•c3

b1

b3

c1

, uw
)

=
∑

c1,c2,c3

W
(

•a3

c1

c3

a1

, uw
)

W
(

•c3
c2

b3

a2

, v w
)

W
(

•b2
b1

c2

c1

, q u v−1
)

,

where sums are over all c1, c2, c3 ∈ {in,out} with 2 in & 2 out arrows at each vertex.

• YBE depicted as:

• •

•

quv−1

vw uw

a1 a2

b1b2

a3 b3

=

• •

•

quv−1

uw vw

a1 a2

b1b2

a3 b3

.



Partition Function

• Define the partition function as

Z(u1, . . . , un, v1, . . . , vn) :=
∑

C∈6V(n)

n∏

i,j=1

W(Cij, uiv
−1
j ),

where Cij = local configuration at vertex in row i & column j of grid Gn.

• e.g. Z(u1, u2, u3, v1, v2, v3) = sum of 7 terms, each consisting of a product of 9 weights

“ = ”

• • •

• • • • •

• • • • •

• • • • •

• • •

u u u

u u u

u
u

u

u
u

u

u1v1
−1 u1v2

−1 u1v3
−1

u2v1
−1 u2v2

−1 u2v3
−1

u3v1
−1 u3v2

−1 u3v3
−1

.

• Since W(Cij,1)|q=eiπ/3 = 1 for all i, j & 6V(n) is in bijection with {n× n ASMs}:

Z(1, . . . ,1
︸ ︷︷ ︸

2n

)|q=eiπ/3 = |6V(n)| = (# of n× n ASMs).



Izergin–Korepin Formula

• The Izergin–Korepin Formula is

Z(u1, . . . , un, v1, . . . , vn)

=

∏n
i,j=1 σ(q uiv

−1
j )σ(q u−1i vj)

σ(q2)n(n−1)
∏

1≤i<j≤n σ(uiu
−1
j )σ(v−1i vj)

det
1≤i,j≤n

(

1

σ(q uiv
−1
j )σ(q u−1i vj)

)

(Izergin 1987)

Proof outline:

(a) Show that a function X(u1, . . . , un, v1, . . . , vn) which satisfies the following conditions is

uniquely determined:

(i) X(u1, v1) = 1 (Initial condition).

(ii) X(u1, . . . , un, v1, . . . , vn) is a Laurent polynomial in u1 of lower degree ≥ −n+1 &

upper degree ≤ n−1 (Laurent polynomial condition).

(iii) If u1v
−1
1 = q±1, then

X(u1, . . . , un, v1, . . . , vn) =

∏n
i=2 σ(q

±1u1v
−1
i )σ(q±1uiv

−1
1 )

σ(q2)2n−2
X(u2, . . . , un, v2, . . . , vn).

(Recurrence condition).

(iv) X(u1, . . . , un, v1, . . . , vn) is symmetric in v1, . . . , vn (Symmetry condition).

(b) Show that LHS of Izergin–Korepin formula satisfies conditions (i)–(iv).

(c) Show that RHS of Izergin–Korepin formula satisfies conditions (i)–(iv).



Subsections of Proof of Izergin–Korepin Formula

(a) If X(u1, . . . , un, v1, . . . , vn) satisfies the following conditons, then it is uniquely determined:

(i) X(u1, v1) = 1.

(ii) X(u1, . . . , un, v1, . . . , vn) is a Laurent polynomial in u1 of lower degree ≥ −n+1 &

upper degree ≤ n−1.

(iii) If u1v
−1
1 = q±1, then

X(u1, . . . , un, v1, . . . , vn) =

∏n
i=2 σ(q

±1u1v
−1
i )σ(q±1uiv

−1
1 )

σ(q2)2n−2
X(u2, . . . , un, v2, . . . , vn).

(iv) X(u1, . . . , un, v1, . . . , vn) is symmetric in v1, . . . , vn.

Proof:

By (ii), X(u1, . . . , un, v1, . . . , vn) is uniquely determined if it is known at 2n−1 values of u1.

Combining (iii) & (iv) gives expressions at 2n values of u1, i.e.

X(q±1vi, u2, . . . , un, v1, . . . , vn) = . . . X(u2, . . . , un, v1, . . . , vi−1, vi+1, . . . , vn) for i = 1, . . . , n.

Required result now follows using recursion on n, together with (i). ✷



(b) The LHS of the Izergin-Korepin formula, i.e. the partition function Z(u1, . . . , un, v1, . . . , vn),

satisfies:

(i) Z(u1, v1) = 1.

(ii) Z(u1, . . . , un, v1, . . . , vn) is a Laurent polynomial in u1 of lower degree ≥ −n+1 &

upper degree ≤ n−1.

(iii) If u1v
−1
1 = q±1, then

Z(u1, . . . , un, v1, . . . , vn) =

∏n
i=2 σ(q

±1u1v
−1
i )σ(q±1uiv

−1
1 )

σ(q2)2n−2
Z(u2, . . . , un, v2, . . . , vn).

(iv) Z(u1, . . . , un, v1, . . . , vn) is symmetric in v1, . . . , vn.

Proof:

(i) & (ii) follow straightforwardly from definitions of weights & partition function.

As an example of (iii), let n = 3 & u1v1−1 = q−1.

Then Z(u1, u2, u3, v1, v2, v3)

=

• • •

• • • • •

• • • • •

• • • • •

• • •

u

u

u u u

u u u

u
u

u

u
u

u

=

• • •

• • • • •

• • • • •

• • • • •

• • •

u u

u

u u u

u
u

u u u

u u u

u
u

u

u
u

u

= σ(q−1u1v2
−1)σ(q−1u1v3

−1)σ(q−1u2v1
−1)σ(q−1u3v1

−1)
σ(q2)4

Z(u2, u3, v2, v3).



As an example of (iv), symmetry of Z(u1, u2, u3, v1, v2, v3) in v2 & v3 follows by using

Yang-Baxter equation 3 times:

W( •

u

u

uu , qv2−1v3)Z(u1, u2, u3, v1, v2, v3)

=

• •
•

• • • • •

• • • • •

• • • • •

• • •

u u

u

u u u

u
u

u

u
u

u

YBE 3 times
=

• • •

• • • • •

• • • • •

• • • • •

•
• •

u u u

u

u u

u
u

u

u
u

u

= W( •

u

u

uu , qv2−1v3)Z(u1, u2, u3, v1, v3, v2).



(c) The RHS of the Izergin–Korepin formula, i.e.

Y (u1, . . . , un, v1, . . . , vn) :=

∏n
i,j=1 σ(q uiv

−1
j )σ(q u−1i vj)

σ(q2)n(n−1)
∏

1≤i<j≤n σ(uiu
−1
j )σ(v−1i vj)

det
1≤i,j≤n

(

1

σ(q uiv
−1
j )σ(q u−1i vj)

)

,

satisfies:

(i) Y (u1, v1) = 1.

(ii) Y (u1, . . . , un, v1, . . . , vn) is a Laurent polynomial in u1 of lower degree ≥ −n+1,

upper degree ≤ n−1.

(iii) If u1v
−1
1 = q±1, then

Y (u1, . . . , un, v1, . . . , vn) =

∏n
i=2 σ(q

±1u1v
−1
i )σ(q±1uiv

−1
1 )

σ(q2)2n−2
Y (u2, . . . , un, v2, . . . , vn).

(iv) Y (u1, . . . , un, v1, . . . , vn) is symmetric in v1, . . . , vn.

Proof:

(i) is trivial.

(ii) follows from expansion of determinant.

(iii) holds since, by multiplying first row of matrix by σ(qu1v
−1
1 )σ(qu−11 v1) from prefactor,

& then setting u1v
−1
1 = q±1, this row becomes (1,0, . . . ,0).

(iv) holds since if vi & vj (for i 6= j) are interchanged, then determinant simply changes

sign, since columns i & j of the matrix are swapped, & prefactor also changes sign. ✷



Evaluation of RHS of Izergin–Korepin Formula

with u1 = . . . = un = v1 = . . . = vn = 1 & q = eiπ/3

• Recall that Z(1, . . . ,1
︸ ︷︷ ︸

2n

)|q=eiπ/3 = (# of n× n ASMs).

• Cannot immediately evaluate RHS of Izergin–Korepin formula at u1 = . . . = un

= v1 = . . . = vn = 1 since setting ui = uj or vi = vj for i 6= j gives 0 /0.

• Instead will first set q = eiπ/3 & then use a result of Okada.

[This differs from the method used by Kuperberg.]

• Z(u1, . . . , un, v1, . . . , vn)|q=eiπ/3 =

3−n(n−1)/2
( n∏

i=1

uivi

)−n+1

s(n−1,n−1,...,2,2,1,1)(u
2
1, . . . , u

2
n, v

2
1, . . . , v

2
n) (Okada 2006)

[where sλ(x1, . . . , xk) = Schur function].

• A proof of this will be sketched soon.

• Now set u1 = . . . = un = v1 = . . . = vn = 1.

• Then apply standard fact for Schur function with all variables 1:

sλ(1, . . . ,1︸ ︷︷ ︸
k

) = SSYTλ(k)

[where SSYTλ(k) = (# of semistandard Young tableaux of shape λ with entries ≤ k)].



• Finally, apply standard product formula for # of semistandard Young tableaux:

SSYTλ(k) =

∏

1≤i<j≤k(λi − λj − i+ j)
∏k−1

i=1 i!
.

• Gives (# of n× n ASMs) = 3−n(n−1)/2 SSYT(n−1,n−1,...,2,2,1,1)(2n)

=

n−1∏

i=0

(3i+ 1)!

(n+ i)!
as required.



Sketch of Okada’s proof that

Z(u1, . . . , un, v1, . . . , vn)|q=eiπ/3 = 3−n(n−1)/2
( n∏

i=1

uivi

)−n+1

s(n−1,n−1,...,2,2,1,1)(u
2
1, . . . , u

2
n, v

2
1, . . . , v

2
n):

• Set q = eiπ/3 in Izergin–Korepin formula.

• Apply identity which relates certain n× n determinant to certain 2n× 2n determinant:

det
1≤i,j≤n

(ai − bj

xi − yj

)

=
(−1)n(n+1)/2

∏n
i,j=1(xi − yj)

det









1 a1 x1 a1x1 . . . xn−1
1 a1x

n−1
1

1 b1 y1 b1y1 . . . yn−11 b1y
n−1
1...

...
...

... . . . ...
...

1 an xn anxn . . . xn−1
n anxn−1

n
1 bn yn bnyn . . . yn−1n bnyn−1n









(Okada 1998)

with appropriate ai, bi, xi & yi.

• Use standard determinantal expression for Schur function:

sλ(x1, . . . , xn) =

det
1≤i,j≤n

(x
λj+n−j
i )

∏

1≤i<j≤n(xi − xj)
.



II′. Outline of Proof of Odd-Order DASASM Formula

(# of (2n+1)×(2n+1) DASASMs) =

n∏

i=0

(3i)!

(n+i)!

(1) Obtain bijection between (2n+1)×(2n+1) DASASMs & configurations of

six-vertex model on a certain isosceles triangle.

(2) Introduce parameter-dependent bulk weights, boundary weights & associated

partition function.

(3) Use Yang–Baxter equation, reflection equation & other properties to prove formula

for partition function involving sum of two (n+1)×(n+1) determinants.

(4) Evaluate determinantal formula at values of parameters for which all weights

are 1 (homogeneous limit).



Configurations of Six-Vertex Model on Isosceles Triangle

• Let Tn :=

2n+1 col’s

n+2 rows ,

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • •

• • • • • • •

• • • • •

• • •

•

6VDA(n) :=







orientations of

edges of Tn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

• 2 in & 2 out arrows at each degree 4 vertex

(⇒ 6 cases)

• no restriction at degree 2 vertices (⇒ 4 cases)

• all arrows upward on top boundary

• no restriction on single bottom edge (⇒ 2 cases)







.

• e.g. 6VDA(1) =

{
• • •

• • •

•

u u u

u u

u

,

• • •

• • •

•

u u u

u u

u

,

• • •

• • •

•

u u u

u u

u

}

.

• e.g.

∈ 6VDA(3).

• • • • • • •

• • • • • • •

• • • • •

• • •

•

u u u u u u u

u u u u u

u u u

u

u u u u u u

u uu u

u u



Six-Vertex Model Configuration – DASASM Bijection

six-vertex model DASASM

•
u

u

u u , •
u

u , •
u

u , •
u

←→ 1

•

u

u

u u , •

u

u , •

u

u , •

u

←→ −1

•
u

u

uu , •

u

u

uu , •
u

u

uu , •

u

u

uu , •
u

u , •

u

u , •
u

u , •

u

u ←→ 0

• Also use reflections in diagonal & antidiagonal.

• Gives bijection between 6VDA(n) & {(2n+1)×(2n+1) DASASMs}.

• e.g.
• • • • • • •

• • • • • • •

• •• ••

• • •

•

u u u u u u u

u u u u u

u u u

u

u u u u u u

u uu u

u u

←→







0 0 1 0 0 0 0

1 −1 0 1 0

0 1 −1

−1






←→













0 0 1 0 0 0 0

0 1 −1 0 1 0 0

1 −1 0 1 −1 1 0

0 0 1 −1 1 0 0

0 1 −1 1 0 −1 1

0 0 1 0 −1 1 0

0 0 0 0 1 0 0













.



Vertex Weights

• σ(x) := x− x−1. • u = ‘spectral parameter’. • q = global parameter.

• Bulk weights (with q from previous ASM case replaced by q2):

W
(

•

u

u

uu , u
)

= W
(

•

u

u

uu , u
)

= σ(q2u)
σ(q4)

,

W
(

•
u

u

uu , u
)
= W

(

•

u

u

uu , u
)

= σ(q2u−1)
σ(q4)

,

W
(

•
u

u

u u , u
)

= W
(

•

u

u
u u , u

)

= 1.

• Left boundary weights: W(•
u

u , u) = W(•

u

u , u) = σ(q u)
σ(q)

,

W(•
u

u , u) = W(•

u

u , u) = 1.

• Right boundary weights: W( •
u

u , u) = W( •

u

u , u) = σ(q u−1)
σ(q)

,

W( •
u

u , u) = W( •

u

u , u) = 1.

• At u = 1 & q = eiπ/6: W(c,1)|q=eiπ/6 = 1 for all c.

• At u = q±2: W
(

•a

b

c
d

, q−2
)

= δab′ δcd′ & W
(

•a

b

c
d

, q2
)

= δad′ δbc′,

where a′ denotes reversal of orientation a (i.e. in ↔ out).



• Yang–Baxter equation:

• •

•

q2uv−1

vw uw

a1 a2

b1b2

a3 b3

=

• •

•

q2uv−1

uw vw

a1 a2

b1b2

a3 b3

or

•

•

•q2uv−1

vw

uw

a1

a2

a3

b1

b2

b3

=

•

•

•q2uv−1

uw

vw

a1

a2

a3

b1

b2

b3

.

• Left & right reflection equations (boundary Yang–Baxter equations):

•

• •

•

q2uv−1

uvv

u

a1 a2

b1

b2 = •

•

•

•q2uv−1

uvu

v

a1 a2

b1

b2 &

•

•

•

•

q2uv−1

uv

u

va1

a2

b1 b2

=

•

••

•

q2uv−1

uv

v

ua1

a2

b1 b2

.



Odd-Order DASASM Partition Function

• Z(u1, . . . , un+1) :=

∑

C∈6VDA(n)

n∏

i=1

W(Cii, ui)





2n+1−i∏

j=i+1

W(Cij, ui umin(j,2n+2−j))



 W(Ci,2n+1−i, ui)

[where Cij = local configuration at vertex in row i & column j of Tn].

• e.g. Z(u1, u2, u3, u4) =

• • • • • • •

• • • • • • •

• • • • •

• • •

•

u u u u u u u

u1 u1u2 u1u3 u1u4 u1u3 u1u2 u1

u2 u2u3 u2u4 u2u3 u2

u3 u3u4 u3

.

• Therefore Z(1, . . . ,1
︸ ︷︷ ︸

n+1

)|q=eiπ/6 = |6VDA(n)| = (# of (2n+1)× (2n+1) DASASMs).



Sum of Determinants Formula for Partition Function

Z(u1, . . . , un+1) =

σ(q2)n

σ(q)2n σ(q4)n2

n∏

i=1

σ(ui)σ(qui)σ(qu
−1
i )σ(q2uiun+1)σ(q

2u−1i u−1n+1)

σ(uiu
−1
n+1)

∏

1≤i<j≤n

(

σ(q2uiuj)σ(q2u
−1
i u−1j )

σ(uiu
−1
j )

)2

×



 det
1≤i,j≤n+1











q2+q−2+u2
i+u−2j

σ(q2uiuj)σ(q2u−1i u−1j )
, i ≤ n

un+1−1
u2

j−1
, i = n+1



+ det
1≤i,j≤n+1











q2+q−2+u−2i +u2
j

σ(q2uiuj) σ(q2u−1i u−1j )
, i ≤ n

u−1n+1
−1

u−2j −1
, i = n+ 1







.

Proof outline:

• Show that a function X(u1, . . . , un+1) which satisfies the following properties is uniquely

determined:

(i) X(u1) = 1.

(ii) X(u1, . . . , un+1) a Laurent polynomial in un+1 of lower degree ≥ −n, upper degree ≤ n.

(iii) X(u1, . . . , un+1)|u1un+1=q2 =
σ(qu1) (σ(qu

−1
1 )+σ(q))

∏n

i=2
σ(q2u1ui)σ(q2uiun+1)

σ(q)2 σ(q4)2n−2
X(u2, . . . , un, u1).

(iv) X(u1, . . . , un+1) symmetric in u1, . . . , un.

(v) X(u−11 , . . . , u−1n+1) = X(u1, . . . , un+1).

(vi) X(u1, . . . , un+1) even in ui, for i = 1, . . . , n.

• Show that LHS & RHS of required formula both satisfy all these properties.



Sections of Proof

• If a function X(u1, . . . , un+1) satisfies following properties, then it is uniquely determined:

(i) X(u1) = 1.

(ii) X(u1, . . . , un+1) a Laurent polynomial in un+1 of lower degree ≥ −n, upper degree ≤ n.

(iii) X(u1, . . . , un+1)|u1un+1=q2 =
σ(qu1) (σ(qu

−1
1 )+σ(q))

∏n

i=2
σ(q2u1ui)σ(q2uiun+1)

σ(q)2 σ(q4)2n−2
X(u2, . . . , un, u1).

(iv) X(u1, . . . , un+1) symmetric in u1, . . . , un.

(v) X(u−11 , . . . , u−1n+1) = X(u1, . . . , un+1).

(vi) X(u1, . . . , un+1) even in ui, for i = 1, . . . , n.

Proof:

By (ii), X(u1, . . . , un+1) is uniquely determined if known at 2n+1 values of un+1.

Combining (iii) with (iv)–(vi) gives expressions at 4n (≥ 2n+1) values of un+1, i.e.

X(u1, . . . , un, q±2u
−1
i ) expressed in terms of X(u1, . . . , ui−1, ui+1, . . . , un, ui) &

X(u1, . . . , un,−q±2u
−1
i ) expressed in terms of X(u1, . . . , ui−1, ui+1, . . . , un,−ui), i = 1, . . . , n.

Result follows using recursion on n, together with (i). ✷



• The partition function Z(u1, . . . , un+1) satisfies:

(i) Z(u1) = 1.

(ii) Z(u1, . . . , un+1) a Laurent polynomial in un+1 of lower degree ≥ −n, upper degree ≤ n.

(v) Z(u−11 , . . . , u−1n+1) = Z(u1, . . . , un+1).

(vi) Z(u1, . . . , un+1) even in ui, for i = 1, . . . , n.

Proof:

(i), (ii) & (vi) follow straightforwardly from definition of weights & partition function.

(v) follows from reflection of configurations in central vertical line of graph Tn. ✷



• (iv) Z(u1, . . . , un+1) is symmetric in u1, . . . , un.

Proof:

Use Yang–Baxter & reflection equations (YBE, LRE, RRE) to show that Z(u1, . . . , un+1)

is symmetric in ui & ui+1, i = 1, . . . , n−1.

e.g. n = 3 & i = 2:

W( •

u

u

uu , q2u2
−1u3)Z(u1, u2, u3, u4)

=

u u

u u u uu

• •
•

•
• • • •

• • • • • • •

• • • • •

• • •

•

YBE
=

u u u u u u u

•

• • • • • • •

• • • • • • •

• • • • •

• • •

•

LRE
=

u u u u u u u

•

• • • • • • •

• • • • • • •

• • • • •

• • •

•

YBE
=

u u u u u u u

•

• • • • • • •

• • • • • • •

• • • • •

• • •

•

RRE
=

u u u u u u u

•

• • • • • • •

• • • • • • •

• • • • •

• • •

•

YBE
=

u u

u u u u u

• •

•
•• • • •

• • • • • • •

• • • • •

• • •

•

= W( •

u

u

uu , q2u2
−1u3)Z(u1, u3, u2, u4). ✷



• (iii) Z(u1, . . . , un+1)|u1un+1=q2 =
σ(qu1) (σ(qu

−1
1 )+σ(q))

∏n

i=2
σ(q2u1ui)σ(q2uiun+1)

σ(q)2 σ(q4)2n−2
Z(u2, . . . , un, u1).

Proof:

e.g. n = 3:

Z(u1, u2, u3, u4)|u1u4=q2 =

u u u u u u u

• • • • • • •

• • • • • • •

• • • • •

• • •

•

=

u u u u u u

u

• • •

• • • •

• • •

• • •

• • • • •

• • •

•

= σ(qu1)σ(q2u1u2)σ(q2u1u3)
σ(q) σ(q4)2

u u

u u u

• • •

• • • • •

• • • • •

• • •

•

= σ(qu1)σ(q2u1u2)σ(q2u1u3)
σ(q) σ(q4)2

u u u u u

• • • • •

• • • • •

• • •
•

•

• •



YBE,RRE
= σ(qu1)σ(q2u1u2)σ(q2u1u3)

σ(q) σ(q4)2

u u u

u u

• •
• • •

•
• • • • •

• • •

• •
•

RRE,YBE
= σ(qu1)σ(q2u1u2)σ(q2u1u3)

σ(q) σ(q4)2

u u

u

u u

• •

•
• •

•

•

• • • • •

• • •

• •

= σ(qu1)σ(q2u1u2)σ(q2u2u4)σ(q2u1u3)σ(q2u3u4)
σ(q)σ(q4)4

u u u u u

• • • • •

• • • • •

• • •

• •

= σ(qu1)σ(q2u1u2)σ(q2u2u4)σ(q2u1u3)σ(q2u3u4)
σ(q)σ(q4)4

(
σ(qu1

−1)
σ(q)

+1)(Z−(u2, u3, u1) + Z+(u2, u3, u1))

= σ(qu1) (σ(qu1
−1)+σ(q)) σ(q2u1u2) σ(q2u2u4)σ(q2u1u3)σ(q2u3u4)

σ(q)2 σ(q4)4
Z(u2, u3, u1). ✷



• Y (u1, . . . , un+1) :=

σ(q2)n

σ(q)2n σ(q4)n2

n∏

i=1

σ(ui)σ(qui)σ(qu
−1
i )σ(q2uiun+1)σ(q

2u−1i u−1n+1)

σ(uiu
−1
n+1)

∏

1≤i<j≤n

(

σ(q2uiuj)σ(q2u
−1
i u−1j )

σ(uiu
−1
j )

)2

×



 det
1≤i,j≤n+1











q2+q−2+u2
i+u−2j

σ(q2uiuj)σ(q2u−1i u−1j )
, i ≤ n

un+1−1
u2

j−1
, i = n+1



+ det
1≤i,j≤n+1











q2+q−2+u−2i +u2
j

σ(q2uiuj) σ(q2u−1i u−1j )
, i ≤ n

u−1n+1
−1

u−2j −1
, i = n+ 1









satisfies:

(i) Y (u1) = 1.

(ii) Y (u1, . . . , un+1) a Laurent polynomial in un+1 of lower degree ≥ −n, upper degree ≤ n.

(iii) Y (u1, . . . , un+1)|u1un+1=q2 =
σ(qu1) (σ(qu

−1
1 )+σ(q))

∏n

i=2
σ(q2u1ui)σ(q2uiun+1)

σ(q)2 σ(q4)2n−2
Y (u2, . . . , un, u1).

(iv) Y (u1, . . . , un+1) symmetric in u1, . . . , un.

(v) Y (u−11 , . . . , u−1n+1) = Y (u1, . . . , un+1).

(vi) Y (u1, . . . , un+1) even in ui, for i = 1, . . . , n.

Proof:

Reasonably straightforward, using standard properties of determinants. ✷



Partition Function at q = eiπ/6

Z(u1, . . . , un+1)|q=eiπ/6 = 3−n(n−1)/2
(

un
n+1

un+1+1
s(n,n−1,n−1,...,2,2,1,1)(u

2
1, u

−2
1 , . . . , u2

n, u
−2
n , u−2n+1)

+
u−nn+1

u−1n+1
+1

s(n,n−1,n−1,...,2,2,1,1)(u
2
1, u

−2
1 , . . . , u2

n, u
−2
n , u2

n+1)
)

[where sλ(x1, . . . , xk) = Schur function].

Proof outline:

• Substitute q = eiπ/6 into determinantal expression for partition function.

• Apply general determinant identity

det
1≤i,j≤k

(ai − bj

xi − yj

)

=
(−1)k(k+1)/2

∏k
i,j=1(xi − yj)

det









1 a1 x1 a1x1 . . . xk−1
1 a1x

k−1
1

1 b1 y1 b1y1 . . . yk−11 b1y
k−1
1...

...
...

... . . . ...
...

1 ak xk akxk . . . xk−1
k akx

k−1
k

1 bk yk bkyk . . . yk−1k bky
k−1
k









(Okada 1998)

with ai =

{

u±2i +u±4i , i ≤ n
−1, i = n+1,

xi =

{

u±6i , i ≤ n
1, i = n+1,

bj = u∓2j +u∓4j , yj = u∓6j .

• Use standard determinantal expression for Schur function:

sλ(x1, . . . , xk) = det
1≤i,j≤k

(x
λj+k−j
i )/

∏

1≤i<j≤k(xi − xj).



# of Odd-Order DASASMs

(# of (2n+1)× (2n+1) DASASMs) = 3−n(n−1)/2 SSYT(n,n−1,n−1,...,2,2,1,1)(2n+ 1)

=

n∏

i=0

(3i)!

(n+ i)!

[where SSYTλ(k) = (# of semistandard Young tableaux of shape λ with entries ≤ k)].

Proof:

• Recall (# of (2n+1)× (2n+1) DASASMs) = Z(1, . . . ,1
︸ ︷︷ ︸

n+1

)|q=eiπ/6.

• Set u1 = . . . = un+1 = 1 in Schur function expression for Z(u1, . . . , un+1)|q=eiπ/6.

• Apply standard fact for Schur function with all variables 1:

sλ(1, . . . ,1︸ ︷︷ ︸
k

) = SSYTλ(k).

• Apply standard product formula for # of semistandard Young tableaux:

SSYTλ(k) =

∏

1≤i<j≤k(λi − λj − i+ j)
∏k−1

i=1 i!
.



# of Odd-Order DASASMs with Fixed Central Entry

# of (2n+1)× (2n+1) DASASMs with central entry −1

# of (2n+1)× (2n+1) DASASMs with central entry 1
=

n

n+1
.

Proof outline:

• Introduce partition functions Z±(u1, . . . , un+1) for (2n+1)× (2n+1) DASASMs

with central entry ±1.

• Show that Z±(u1, . . . , un+1) = 1
2

(
Z(u1, . . . , un, un+1)± (−1)nZ(u1, . . . , un,−un+1)

)
.

• Use previous results for Z(u1, . . . , un+1).



Special Features of Odd-Order DASASM Proof

• Six-vertex model considered on triangle instead of square.

• Only a single set u1, . . . , un+1 of spectral parameters used.

• Last spectral parameter un+1 plays special role.

• Yang–Baxter and reflection equation needed (with certain boundary weights).

• Partition function formula involves sum of two determinantal terms.



III′. Outline of Proof of DSASM Formula

(# of n×n DSASMs)

= Pfaffian
0or1≤i,j≤n−1





min(i,j)
∑

k=0

(3− δk,0)

((
i+ j − 2k − 1

i− k

)

−
(
i+ j − 2k − 1

j − k

))




[range for i, j starts at 0 for n even, 1 for n odd]

(1) Obtain bijection between n×n DSASMs & configurations of six-vertex model on

a certain triangle.

(2) Introduce parameter-dependent bulk weights, left boundary weights & associated

partition function.

(3) Use Yang–Baxter equation, left reflection equation & other properties to prove

formula for partition function involving Pfaffian.

(4) Evaluate Pfaffian formula at values of parameters for which all weights are 1

(homogeneous limit).

• Steps (1)–(3) are, to some extent, similar to steps (1)–(3) for odd-order DASASMs.

• In steps (2) & (3), the partition function was independently defined & the Pfaffian

formula was independently obtained by Garbali, de Gier, Mead, Wheeler 2023.



A Few Details of DSASM Proof

• Let En :=

• • • • •

• • • • • •

• • • • •

• • • •

• • •

• •

n

n .

• 6VD(n) =







orientations of

edges of En

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

• 2 in & 2 out arrows at each degree 4 vertex

(⇒ 6 cases)

• no restriction at degree 2 vertices (⇒ 4 cases)

• all arrows upward on top boundary

• all arrows leftward on right boundary







.

• e.g. 6VD(3) =
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u u

u

u u
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u u u

u
u

u
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u

u u

u ,

• • •

• • • •

• • •

• •

u u u

u
u

u

u

u

u

u
u

u

,

• • •

• • • •

• • •

• •

u u u
u

u
u

u u

u

u

u u

,

• • •

• • • •

• • •

• •

u u u

u
u

u

uu

u

uu

u

}

.



• Partition function: e.g. Z(u1, u2, u3, u4) =

• • • •

• • • • •

• • • •

• • •

• •

u1 u1u2 u1u3 u1u4

u2 u2u3 u2u4

u3 u3u4

u4

u u u u

u
u

u
u

.

• Symmetry of partition function: e.g.

W( •
u

u

uu , q2u2
−1u3)Z(u1, u2, u3, u4) =

u u

u u

u
u

u
u

• •
•

•
• •

• • • • •

• • • •

• • •

• •

YBE
=

u u u u

u
u

u
u

•

• • • •

• • • • •

• • • •

• • •

• •

LRE
=

u u u u

u
u

u
u

•

• • • •

• • • • •

• • • •

• • •

• •

YBE
=

u u u u

u
u

u
u

•
•

•

• • • •

• • • • •

• • •

• •

• •

= W( •
u

u

uu , q2u2
−1u3)Z(u1, u3, u2, u4).



• Pfaffian formula for partition function:

Z(u1, . . . , un) =
∏

1≤i<j≤n

σ(q2uiuj)σ(q2u
−1
i u−1j )

σ(q4)σ(uiu
−1
j )

Pfaffian
0or1≤i<j≤n






Z(uj), i = 0

σ(q4)σ(uiu
−1
j )Z(ui, uj)

σ(q2uiuj)σ(q2u
−1
i u−1j )

, i ≥ 1






(RB, Fischer, Koutschan 2023; Garbali, de Gier, Mead, Wheeler 2023).

– Range for i, j starts at 0 for n odd, 1 for n even.

– Only strictly upper triangular part of skew-symmetric matrix is shown for Pfaffian.

– Z(uj) & Z(ui, uj) in Pfaffian can easily be written explicitly using sums over 6VD(1)

& 6VD(2).

– Formula remains valid for general six-vertex model boundary weights.

• In step (4) of proof, evaluation of RHS of Pfaffian formula at u1 = . . . = un = 1 &

q = eiπ/6 involves application of general result for homogeneous limit of certain

multivariate Pfaffian expressions.

• In this case, Z(u1, . . . , un)|q=eiπ/6 is not a Schur function.



Final Messages

• ASMs are interesting combinatorial objects.

• Many results involving ASMs have been proved using certain connections with

integrability.

• Most proofs are indirect & technical.

• Various aspects of ASMs are still not properly understood.

“These conjectures are of such compelling simplicity that it is hard

to know how any mathematician can bear the pain of living

without understanding why they are true . . . I expect that these

problems will remain with us for some time.”

(Robbins 1991, “The story of 1, 2, 7, 42, 429, 7436, . . . ”)


