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Plan

Introduce alternating sign matrices (ASMs) & state a formula for their enumeration.

Introduce odd-order diagonally & antidiagonally symmetric alternating sign matrices
(DASASMSs) & state a formula for their enumeration.

Introduce diagonally symmetric alternating sign matrices (DSASMs) & state a formula
for their enumeration.

Summarize some further ASM-related results.

Outline a proof of the ASM formula, involving the integrable six-vertex model on a
square with domain-wall boundary conditions (Kuperberg 1996).

Outline a proof of the odd-order DASASM formula, involving the integrable six-vertex
model on an isosceles triangle with certain boundary conditions
(RB, Fischer, Konvalinka 2017).

Outline a proof of the DSASM formula, involving the integrable six-vertex model on
an ‘“equilateral” triangle with certain boundary conditions
(RB, Fischer, Koutschan 2023).



I. Alternating Sign Matrices (ASMs)

ASM: square matrix for which:
e Each entry is O, 1 or —1.
e Each row & column contains at least one 1.

e Along each row & column, the nonzero entries alternate in sign,
starting & ending with a 1.

e.g. OO0 O 1 O
10 O 0O O
OO0 1 —-11
01 -1 1 0
OO0 1 0 O
History:

e Arose during study of Dodgson condensation algorithm for determinant evaluation
(Mills, Robbins, Rumsey 1982; Robbins, Rumsey 1986).

e Many subsequent appearances in combinatorics, algebra, mathematical physics, ...

Observations: e First/last row/column of an ASM contains a single 1 & all other entries 0.
e Acting on an ASM with any symmetry operation of the square (reflection
in 4 symmetry axes, rotation by 0°, 90°, 180° or 270°) gives another ASM,
e Any permutation matrix (exactly one 1 in each row & column, all other
entries 0) is an ASM.



Elementary Bounds on Number of nxn ASMS

{nxn permutation matrices} {nxn ASMs}

{nxn matrices with each entry 0, 1 or — 1}
implies

(# of nxn permutation matrices) (# of nxn ASMS)

(# of nxn matrices with each entry 0, 1 or —1)

implies

n! < (# of nxn ASMs) < 3".
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n=4
e 4! = 24 matrices without any —1's (permutation matrices).

e 4 matrices with one —1 at position 2,2:

O 1 0 O O 1 0 O O 1 0 O
1 -1 1 O 1 -1 1 O 1 -1 0 1
O 1 O oj’”|jo O O 11”10 1 0 0}’
O O 0 1 O 1 0 0 O O 1 O
Similarly:
4 matrices with one —1 at 2,3,
4 matrices with one —1 at 3,2,
4 matrices with one —1 at 3,3.
So, 16 matrices with one —1.
e 2 matrices with two —1's:
O 1 O O O O 1 O
1 -1 1 O o 1 -1 1
o 1 -1 11’11 -1 1 oO
O O 1 O O 1 O O

= A, = 2441642 = 42.

O orOo
o oo
O orOo



General Case

n—1
(3i4+1)!
H AP

of nxn ASMs: A, =
# of mxn Pl (n+41)!

= 1,2,7,42, 429, 7436, ...

Recurrence: (an) Apy1 = (3"’+1) An.

Conjectured: Mills, Robbins, Rumsey 1982.

First proved:

— Zeilberger 1996 using constant term identities & known enumeration of totally
symmetric self-complementary plane partitions (84 pages).

— Kuperberg 1996 using connections with integrable six-vertex model (12 pages).
Several subsequent proofs — e.g. Fischer, Konvalinka 2021 using signed bijections.

No simple combinatorial proof (i.e. using elementary counting arguments) currently
known.

Book: D. Bressoud Proofs & Confirmations: The Story of the ASM Conjecture
Cambridge University Press (1999), 274 pages.



e Outline of Kuperberg proof (more details soon):

Obtain bijection between nxn ASMs & configurations of six-vertex model
on nxXn square with domain-wall boundary conditions.

Introduce spectral parameter-dependent vertex weights & consider weighted sum
over all configurations of model, i.e. (inhomogeneous) partition function.

Use Yang—Baxter equation & other properties to obtain Izergin—Korepin formula
for partition function as nxn determinant.

Evaluate determinant at certain values of parameters for which all weights are 1
(homogeneous limit).



II. Diagonally & Antidiagonally Symmetric
Alternating Sign Matrices (DASASMS)

DASASM: ASM which is invariant under:
e reflection in the diagonal &
e reflection in the

1 0 9)
o)

e.d. (

History:
e Arose during studies of classes of ASMs invariant under the action of subgroups
of the symmetry group of the square (Robbins 1985; Stanley 1986).

Observations: ¢ Any DASASM is also invariant under rotation by 180°.
e Any DASASM is uniquely determined by its entries in an isosceles
triangle bounded by diagonal & antidiagonal.
e Central entry of an odd-order DASASM is +1.



Number D, of (2n+1)x(2n+1) DASASMs
& numbers DI of (2n+1)x(2n+1) DASASMs with central entry +1
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General Case

# of (2n+1)x(2n+1) DASASMs: D, = [] (3’)_' — 1, 3,15, 126, 1782, ...

Recurrrence: (27’“ - 1) D, = (?m’) D, 1.
mn mn

Conjectured: Robbins 1985.
Proved: RB, Fischer, Konvalinka 2017.

No simple combinatorial proof currently known.

D
#'s of (2n+1)x(2n+1) DASASMs with central entry +£1: — =
DY n+1

Conjectured: Stroganov 2008.
Proved: RB, Fischer, Konvalinka 2017.

No simple combinatorial proof currently known.




III. Diagonally Symmetric Alternating Sign Matrices
(DSASMs)

DSASM: ASM which is invariant under reflection in the main diagonal, i.e. under
matrix transposition.

e.q. ( 1 0 00
1 1 0 0
0 -1 0 1
1 0
0 1 -1 1
0 0 O
\o 0o 1 )

Observation:

e Any DSASM is uniquely determined by its upper triangular part.



Number 7,, of nxn DSASMS
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General Case

# of nxn DSASMs:

min(4,5)
| —2k—1 —2k—1
T, = Pfaffian Z (3—51?(3)((2_'_‘7 k )_<Z+Jj—k )>

0or1<i,j<n—1

— 1,2, 5, 16, 67, 368, 2630, 24376, 293770, 4610624, . ..

[For an even-order skew-symmetric matrix A: det A = (Pfaffian 4)2.]

Range for 4,5 starts at O for n even, 1 for n odd.

Proved: RB, Fischer, Koutschan 2023.

T, forn=1,2,...,1000 has been computed using this formula.
No simpler formula currently known.

Product formula (i.e. product of ratios of factorials similar to formulae for # of
ASMs or # of odd-order DASASMSs) unlikely to exist, since prime factors of T,, do
not seem bounded above by a polynomial in n.



IVV. Further ASM-Related Results

e Product formulae conjectured for # of ASMs in most symmetry classes: Robbins 1985.

e All these formulae now proved:
— Odd-order vertically symmetric ASMs: Kuperberg 2002.
— Odd-order vertically & horizontally symmetric ASMs: Okada 2006.
— Even-order half-turn symmetric ASMs: Kuperberg 2002.
— Odd-order half-turn symmetric ASMs: Razumov, Stroganov 2006.
— Order 0 mod 4 quarter-turn symmetric ASMs: Kuperberg 2002.
— Odd-order quarter-turn symmetric ASMs: Razumov, Stroganov 2006.

— Odd-order diagonally & antidiagonally symmetric ASMs (DASASMSs):
RB, Fischer, Konvalinka 2017.

e # of ASMSs in remaining nonempty symmetry classes:

— Diagonally symmetric ASMs (DSASMs): Pfaffian formula obtained
RB, Fischer, Koutschan 2023.

— Odd-order totally symmetric ASMs: multiple contour-integral formula obtained
Lienardy, Walmsley Hagendorf 2025.

— Even-order diagonally & antidiagonally symmetric ASMs (DASASMSs): no formula
currently known.



e Various formulae also known for # of all ASMs & # of symmetric ASMs with
fixed values of certain statistics (e.g. positions of 1's in first/last row/column,
# of —1's, # of ‘inversions’).

e e.g. # of all ASMs with fixed positions of 1's in first/last row/column:
— SINGLE 1: Zeilberger 1996.
— TWO 1's on opposite or adjacent boundaries: Stroganov 2006
— THREE or FOUR 1's: Ayyer, Romik 2013; RB 2013.

e NO simple combinatorial proofs of any of the previous ASM enumeration formulae
currently known.



ASMs & Other Combinatorial Objects

Razumov—Stroganov correspondence

e Involves associating ‘fully-packed loop configurations' & ‘link patterns’ with ASMs
& characterizing # of ASMs with fixed link pattern
Cantini, Sportiello 2011, Cantini, Sportiello 2014.

e Proved using elegant combinatorial arguments: a rare case of such a proof for a
nontrivial ASM-related result.

ASM — descending plane partition correspondence

e Known (non-bijectively) that:
# of nxn ASMs with fixed values of four statistics
— # of order-n ‘descending plane partitions’ with fixed values of four statistics
RB, Di Francesco, Zinn-Justin 2012; RB, Di Francesco, Zinn-Justin 2013
[see also Fischer, Schreier-Aigner 2023].

e Gives:
# of arrow-preserving orientations of certain lattice with domain-wall boundaries
— # of rotationally-invariant tilings of certain lattice with central hole.
° > duality holds:
# arrow-preserving orientations of certain lattice with domain-wall boundaries
— # of rotationally-invariant tilings of certain lattice with central hole

Di Francesco, Guitter 2020, Di Francesco 2021.



ASM — totally symmetric self-complementary partition correspondence

e Known (non-bijectively) that:
# of nxn ASMs with fixed values of two statistics
= F# of 'totally symmetric self-complementary partitions’ in a 2nx2n x2n box
with fixed values of two statistics Fonseca, Zinn-Justin 2008.



Totally Symmetric Self~-Complementary
Plane Partitions (TSSCPPs)

TSSCPP: aligned stack of unit cubes in a box, which is invariant under
reflections, rotations & box-complementation

e Introduced: Stanley 1986

e.g. TSSCPP in 12 x 12 x 12 box:




Number P, of TSSCPPs In a 2nx2nx2n box







General Case

— (3i+1)!

n—1
(# of TSSCPPs in 2nx2nx2n box): P, = [] i = 1,2, 7,42, 429, 7436, ...
n 1):
1=0

e Conjectured: Mills, Robbins, Rumsey 1986.

e Proved:. Andrews 1994.

e Proof: Use sequences of nonintersecting lattice paths, Lindstrom—Gessel—-Viennot
theorem & determinant evaluation.

e [ herefore

(# of TSSCPPs in 2nx2nx2n box) = (# of nxn ASMSs)

e No explicit bijection currently known between {TSSCPPs in 2nx2nx2n box} &
{nxn ASMs} for arbitrary n.

e ““This is one of the most intriguing open problems in the area of bijective proofs.”
(R. Stanley 2009)

e ““The greatest, still unsolved, mystery concerns the question of what plane
partitions have to do with alternating sign matrices.” (C. Krattenthaler 2016)




I'. Outline of Proof of ASM Formula

n—1
(3i4-1)!
(# of nxn ASMs) = .
g) (n41)!

(1) Obtain bijection between nxn ASMs & configurations of six-vertex model
on nXxXn square with domain-wall boundary conditions.

(2) Introduce spectral parameter-dependent vertex weights & consider weighted sum
over all configurations of model, i.e. (inhomogeneous) partition function.

(3) Use Yang—Baxter equation & other properties to obtain Izergin—Korepin formula
for partition function as nxn determinant.

(4) Evaluate determinant at certain values of parameters for which all weights are 1
(homogeneous limit).



Configurations of Six-Vertex Model on a Square
with Domain-Wall Boundary Conditions

e Consider the n x n grid graph G, =

[ J [ [} [ [ J [
<

e T heset of config’'ns of the six-vertex model on G,, with domain-wall boundary conditions is

( e 2 in & 2 out arrows at each degree-4 vertex )
6V/(n) = | edge orientations | (= 6 options: *fﬂ +> %'7 +, *$+, +)
of Gn e all arrows out of G, at top & bottom boundaries
\ e all arrows into G, at left & right boundaries )

e e.g. 6V(1) = {r¥«}, 6V(2) = {}
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= 6V(1)|=1, |6V(2)| =2, |6V(3)|=T.



e Simple bijection between 6V(n) & {n x n ASMs} obtained by associating six-vertex
model local configurations at degree-4 vertices with ASM entries according to:

six-vertex model ASM
+$+ — 1
Y

4> <——>

g o

(Elkies, Kuperberg, Larsen, Propp 1992).

A A A T A A
© CJ. i ereroes o ( O O O 1 0O O\

A A A } A A

[N S R VD SN S 1 0 1 0
A v A A v A

<40 > < < < | 1 1 O O O
Y A Vv A vy a —>

> > > > < < 4 O O O 1 O O
\ 4 A \ 4 \ 4 \ 4 A

> > < < > > | O 1 O O 1
4 4 4 \4 4
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Vertex Weights

e Associate weights with six-vertex model local configurations at degree-4 vertices:
o(qu)
WL = Wiow = 588
_ — o(qu™®)
W (e, u) = Wb u) = 28,
W(te,u) = W(+du) = 1,

where o(z) :=x — =1, u= ‘spectral parameter’, g = global parameter.

e Simple properties of weights:

— Atu=1 & g=¢€"/3:

— At u = ¢t!: & :

where a’ denotes reversal of orientation a (i.e. in +» out).



e Weights satisfy the Yang—Baxter Equation (YBE):

For all a1, b1, a>, by, as, e {in,out},
Z W(Czﬁiaz,quv_l) W( ; , VU )W( +1 , U )
C1 b, by

C1,Co,

= S Wl F o) w ) Wb quo),
C1,Co, @ €2 b

where sums are over all ¢, co,c3 € {in,out} with 2 in & 2 out arrows at each vertex.

e YBE depicted as:

ax (05) ax (05)

quv~ —

b2 bl b2 bl



Partition Function

e Define the partition function as

Z(ui, ..., Up,Vi,...,VUp) = Z H W(C’ij,uivj_l),

where C;; = local configuration at vertex in row ¢ & column j of grid G,.

e e.9. Z(ui,u>,us,v1,v2,v3) = sum of 7 terms, each consisting of a product of 9 weights
[ 1 ]
—)p ° ® ® <4—o

wiv Y wivst wvst

e Since W(Cij,1)|,—cns =1 for all 4,5 & 6V(n) is in bijection with {n x n ASMs}:

Z(l,.2..,1)|q:€m/3 = |6V (n)| = (# of n xn ASMs).



Izergin—Korepin Formula

e [ he Izergin—Korepin Formula is

Z(ui, ..., Up,Vi,...,Un)
n ~1 ~1
Lo_10(quv; ) o(qu; “vj) 1
_ - [1 ,Jl 1 J = J — et — — (Izergin 1987)
o(g?)rn=1) H1§i<j§n U(Uiuj )o(v; "v;) 1siisn \ (g UiV, ) o(qu; "vj))

Proof outline:

(a) Show that a function X (u1,...,un,v1,...,v,) Which satisfies the following conditions is
uniquely determined:

(i) X(u1,v1) =1 (nitial condition).
(i) X(ui,...,up,v1,...,v,) IS a Laurent polynomial in u; of lower degree > —n+1 &
upper degree < n—1 (Laurent polynomial condition).

(iii) If uivy! = ¢*1, then
[T, o (¢ urv; Do (¢ luw; )

X('U,]_,...,'U,n,'v]_,...,'vn) — O_(qz)zn_z X(“Q,---auTL)UQ)"'),Un)'
(Recurrence condition).
(iv) X(ui,...,upn,v1,...,v,) iS sSymmetric in v1,...,v, (Symmetry condition).

(b) Show that LHS of Izergin—Korepin formula satisfies conditions (i)—(iv).

(c) Show that RHS of Izergin—Korepin formula satisfies conditions (i)—(iv).



Subsections of Proof of Izergin—Korepin Formula

(a) If X(u1,...,un,v1,...,v,) Satisfies the following conditons, then it is uniquely determined:
(i) X(ui,v1)=1.
(i) X(ui,...,upn,v1,...,v,) is @ Laurent polynomial in u; of lower degree > —n+1 &

upper degree < n—1.

(iii) If upvyt = ¢*1, then
X(ui,...,Up,V1,...,0n) = = O(Qi(l;z;zi)sgfz(qjduwll) X(uz,...,un,v2,...,0n).
(iv) X(ui,...,upn,v1,...,v,) iS SYymmetric in vq,...,v,.
Proof:
By (ii), X(u1,...,un,v1,...,v,) iS uniquely determined if it is known at 2n—1 values of u;.

Combining (iii) & (iv) gives expressions at 2n values of u1, i.e.

+1 — .
X(gF v, U, .oy Up,y V1, ey Un) = oo X(UDy ey Uy U1y ooy Vim1, Vit 1,--.,0p) TOri=1,... n.

Required result now follows using recursion on n, together with (i).



(b) The LHS of the Izergin-Korepin formula, i.e. the partition function Z(u1,...,un,v1,...,v,),

satisfies:
(i) Z(ui,v1) = 1.
(i) Z(u1,...,un,v1,...,v,) iS @ Laurent polynomial in u; of lower degree > —n+1 &

upper degree < n—1.
(iii) If uivy! = ¢*1, then
| U(Qiluw{l)O(qiluwl—l)
o(g2)2n—2

(iv) Z(u1,...,un,v1,...,v,) iS Symmetric in vi,...,v,.

Z(ui, ..., Un,V1,...,Un) = Z(uz, ..., Up,V2,...,0n).

Proof:
(i) & (ii) follow straightforwardly from definitions of weights & partition function.
As an example of (iii), let n =3 & uwiv; P =¢ 1.
Then Z(ui,us,us,v1,v2,v3)

ol tue Dol s olg e Dog i )
0'((]2)4 Z(




As an example of (iv), symmetry of Z(u1,u>, us,v1,v2,v3) in vo & vz follows by using
Yang-Baxter equation 3 times:

W(*‘I*>qu_1v3)Z(U1>U2> , U1, V2, U3)

YBE 3_times

= W(*‘I*,qu_lvs)z(m,’uz , U1, V3, V2).



(c) The RHS of the Izergin—Korepin formula, i.e.

n —1 —1
ii=10(quv; ") o(qu; “vj) 1
Y(u:]_,...,u'n,, ’Ul,...,’Un) = > 751:71)1 ! J ] ’ 1 det 1 —1 '
o(q?) [l1<icjcn o(uin; "o (v, v;) 1sidsn \ o(quiv; ™) o(qu; "v))
satisfies:
() Y(ui,v1) = 1.
(i) Y(uy,...,upn,v1,...,v,) is a Laurent polynomial in u; of lower degree > —n—+1,

upper degree < n—1.
(iii) If uivy! = ¢*1, then

[T, o (¢ urv; Do (¢l uwt)

Y('LL]_,...,'U,TL,'U]_,...,'UTL) — a(qz)zn_z Y(UQ,---,Un,U27---7Un)-
(iv) Y(ui,...,upn,v1,...,v,) iS sSymmetric in vq, ..., v,.
Proof:
(i) is trivial.

(ii) follows from expansion of determinant.

(iii) holds since, by multiplying first row of matrix by o(quivy') o(quitvi) from prefactor,
& then setting ulvl_l = ¢*!, this row becomes (1,0,...,0).

(iv) holds since if v; & wv; (for i % j) are interchanged, then determinant simply changes
sign, since columns ¢ & 5 of the matrix are swapped, & prefactor also changes sign. O



Evaluation of RHS of Izergin—Korepin Formula

with u1=.. =up=v1=...=v, =1 & q=em/3
Recall that Z(1,..., 1)\q:em/3 = (# of n x n ASMs).
2n
Cannot immediately evaluate RHS of Izergin—Korepin formula at u1 = ... = uy
= v =...=v, = 1 since setting u; = u; or v; = v; for i # j gives 0/ 0.

Instead will first set ¢ = ¢'™/3 & then use a result of Okada.
[This differs from the method used by Kuperberg.]

Z(ui, ..., Up, V1,... 71}”)‘(]:6”’/3 —

3-n(n—1)/2 <ﬁ WZ)_”H Stnotm-1..2211) UL, -, UD, VT, ..., U (Okada 2006)
= [where s)(x1,...,x,) = Schur function].
A proof of this will be sketched soon.
Now set u1 =...=u, =v1 = ... =v, = 1.

Then apply standard fact for Schur function with all variables 1:

1,...,1) = SSYT,(k
SA( ’ ' ) ) A( )
[where SSY T, (k) = (# of semistandard Young tableaux of shape A with entries < k)].



e Finally, apply standard product formula for # of semistandard Young tableaux:
[licicj<r(i = A — i+ )
[Ty |
e Gives (# of n xn ASMs) = 37 nn=D/2SSYT(, 1, 1 2511)(2n)
B ﬁ (3i + 1)!
B Pl (n 4+ 1)!

SSYT\(k) =

as required.



Sketch of Okada’'s proof that

n
—n+1
— —n(n—1)/2 2 2 .2 PAN
Z(ul, ey Un,V1,y. .., 'Un)‘q:em/3 = 3 ( )/ (H Uz"Ui) S(n—l,n—l,...,2,2,1,1)(ula ey Uy, Uy oo, U, )
=1

e Set ¢ = /3 in Izergin—Korepin formula.

e Apply identity which relates certain n x n determinant to certain 2n x 2n determinant:

l a1 =1 aixi ... x’f_l alx?_l\
a; — b (—1)n+1)/2 1 b1 y1 bayn ... yih byt
det ( 3) = det|: : = . . ; (Okada 1998)
1stjsn Az — Y; Hi,j=1(xi —Yj) 1 an Tn apxn ... 200 apa’ !
\1 b Yn bnyn ... yg_l bnyg_l

with appropriate a;, b;, z; & ;.

e Use standard determinantal expression for Schur function:

Ai+n—j
det -
1§z',j§n($2 )

H1§i<j§n(5’7i - C’7‘7').

sa(z1,...,xp) =



I'. Outline of Proof of Odd-Order DASASM Formula

(# of (2n+1)x (2n+1) DASASMs) = f[ (31)!

(1) Obtain bijection between (2n + 1) x(2n 4+ 1) DASASMs & configurations of
Six-vertex model on a certain isosceles triangle.

(2) Introduce parameter-dependent bulk weights, boundary weights & associated
partition function.

(3) Use Yang—Baxter equation, reflection equation & other properties to prove formula
for partition function involving sum of two (n+1)x(n+1) determinants.

(4) Evaluate determinantal formula at values of parameters for which all weights
are 1 (homogeneous limit).



Configurations of Six-Vertex Model on Isosceles Triangle

|

«~— 2n+1 col's ——

o Let 7, = n-+2 rows ,
( e 2 in & 2 out arrows at each degree 4 vertex )
_ _ (= 6 cases)
6VDA(Rn) := { Z(rjleg;caot]lco;s T | o no restriction at degree 2 vertices (= 4 cases) 3.
J " e all arrows upward on top boundary
\ e no restriction on single bottom edge (= 2 cases) )
e e.g. 6VDA(1) = {L‘{N‘f Lé—‘j L%J}
e €.J.

€ 6VDA(3).



Six-Vertex Model Configuration — DASASM Bijection

SiXx-vertex model DASASM
+ t« »i i T 1

++++LLJJ<_> 0

e Also use reflections in diagonal & antidiagonal.
e Gives bijection between 6VDA(n) & {(2n+1)x(2n+1) DASASMs}.

e €.¢
£>A>%<I<A<}<£ O 0 1 0 O 0O (O 0 1 0 0 0 O\
{. 8 1 0 1 0 0 0O 1 00
[t’ — 0o 1 |1 0o 1 1 0
00 1 1 00
0 1 1 0 1
00 1 O 1 0
\0 0 0 0 1 0 0




Vertex Weights

e g = global parameter.

-1, e u = ‘spectral parameter’.

o o(z) =z—a
e Bulk weights
W(etu) = w(edeu) = 585,
(e = (o) = 8552
W<+$+u) — W(+u) —1.

e Left boundary weights: W(4s,u) = W (i, u) = 24,
W(ie,u) = Wis,u) =

e Right boundary weights: W (<%, u) =

e At u=1 & g = €/6; for all c.

o At u = ¢*2: & :
where o/ denotes reversal of orientation a (i.e. in < out)



e Yang—Baxter equation:

ay bQ
or q*uv! =

Az b1

ax asz b1 b-
= l a l =
b U & 1 uv* » ax
q2uv_1
——— b as a, ——e




Odd-Order DASASM Partition Function

o Z(Ut,y...,Upy1) i=
n 2n+1—1
Z H W (Cii, w;) H W(Cij> Uq umin(j,2n+2—j)) W(Ci,2n+1—i> u;)
CebVDA(n) i=1 J=i1+1

[where C;; = local configuration at vertex in row i & column j of T,].

>
L > —e
*—>r —o

® °
Uy Uy Ui1Us3 Uy UrUs3 Uy Ui
® 2.4. Z(’u, U ) = ° 'y Py P 'y
g 1, U2, U3, 0 s
® ® ®
U3z U3 us

e Therefore Z(1,...,1)| _.s = [6VDA(n) (# of (2n+1) x (2n+1) DASASMs).

n+1



Sum of Determinants Formula for Partition Function

Z(’U,l, s aun+1) —

o\ ~1 | I 2 —1. —1y\?2
o(q?) H 7 (o lgu)a (g Yo (i) (@i ) 1 <a<q uiu)o (qPu; o ))
2n 4\n? . a1

(QE+q2+ui+1fj2l i<n g(qjjz.;:?2u+lfl)a < n
X det o (q*uiu;) o(qy; U, ) _|_ det 7? Zlﬂ qu; Uy
1<i,j<n+1 “5]31_—11, i=n-+1 1<i,j<n+1 liz;_l_—l , i=n-4+1
Proof outline:
e Show that a function X (ui,...,u,+1) which satisfies the following properties is uniquely
determined:
() X(u1) = 1.
(i) X(ui,...,up+1) @ Laurent polynomial in wu,41 of lower degree > —n, upper degree < n.
o(qui) (o(qu;)+o (@) [ [ o(Puau) o (Puittigs)
(HI) X(u17 e 7'U/n—|—1)|u1un+1=q2 — - - CT(Z)2 l;[éf§2"‘2q : : X(u2a <+ oy Unp, ul)-
(iv) X(ui,...,up+1) Symmetric in ui,..., un,.
(v) X(ufl, . n+1) = X(u1,...,Upt1)-
(vi) X(ul,...,un_|_1) even in u;, fori =1,...,n.

e Show that LHS & RHS of required formula both satisfy all these properties.



Sections of Proof

e If a function X (u1,...,u,+1) satisfies following properties, then it is uniquely determined:
(i) X(u1) =1.
(i) X(ui,...,up+1) @ Laurent polynomial in u,41 of lower degree > —n, upper degree < n.
o(qui) (o(qu;)+o (@) [ [ o(Puiu)o (i)
(i) X(u1, .-y Unt1)|uu, = = ! - G(Z)Q}_([éffgn_gq TE X (ug, ..oy Un, ul).
(iv) X(ui,...,up+1) Symmetric in ug,..., un,.
(v) X(uit,... ,u;}H) = X(ut,...,Upt1)-
(vi) X(ui,...,up+1) €venin u;, fori=1,... n.
Proof:
By (ii), X(u1,...,upt1) is uniquely determined if known at 2n-+1 values of wu,41.

Combining (iii) with (iv)—(vi) gives expressions at 4n (> 2n-+1) values of u,4+1, i.e.
X (u1, ..., un, ¢T2u; 1) expressed in terms of X (w1, ..., Ui 1, Uit1,-- -, Un, i) &
X(ul,...,un,—qjﬂu;l) expressed in terms of X (w1, ..., Ui—1, Uit 1y, Un, —U;), T =1,...,n.

Result follows using recursion on n, together with (i). O



e The partition function Z(u1,...,u,+1) satisfies:

(i) Z(uy) = 1.
(i) Z(u1,...,upa1) a Laurent polynomial in u,11 of lower degree > —n, upper degree < n.
+ +
(v) Z(ufl,... n_|_1) = Z(U1, ..., Upt1).
(vi) Z(u1,...,upe1) €venin u;, fore=1,...,n.
_|_
Proof:

(i), (ii) & (vi) follow straightforwardly from definition of weights & partition function.

(v) follows from reflection of configurations in central vertical line of graph 7,. O



o (iv) Z(ui,...,upy1) is symmetric in uy, ..., un,.

Proof:

Use Yang—Baxter & reflection equations (YBE, LRE, RRE) to show that Z(ui,...,upt+1)
is symmetric in u; & w41, t=1,...,n—1.

eg n=3 & 1=2:

W (s, q?uotus) Z(ug, uo, us, us)

o— e
*— 0
*— 0

.<
W)
m
L 2
L 2




o(qui) (o(quit)+o " o (Purwy) o (Ut
o (i) Zut, o unp )l mp = "I L o)) )

Proof:

e.g. n = 3:

Z(’U,]_, y U3, )|u1 =q? — ¢ * ¢ —
[ ) [ )
® o
A A
[ ] /—l
A
— a(qul) a(q2u1 ) a(q2u1u3) ¢ ? ? ¢
a(q) o(q*)? |
[ )
[ ] ® [ ]
A A A

o(quy) o(q®uy 1) o(qPusus)
o(q) o(q*)? $—




»-@

[ 4
A
o ®
YBERRE o(qu) o(gPur) o(qPusus)
a(q) o(q*)?
[ 4
A
®

RRE’_YBE U(qul)U(QQW )a(q2u1u3)

a(q) o(q*)?

_ o(qui) o(qPuyu) o(qPusus) o(qPuius) o(qusi)
a(q) o(q*)*

*——0

_ o(qui) o(q?us )aa(gq) U(q)4;‘4(q urus) 0(g*ustis) (J(qutql) ) + D)(Z_(us,uz,u1r) + Z4(uo,uz, u1))

— o(qui) (o(qui)+0(q)) o(Puso) o(q®uous) o(Purus) o(g’us )Z(

o(q)? o (q*)* , U3, UL). O




o Y(ui,...,upy1) =

(2" Ha(w)a(qu»o(qu—l)a(q wittn+1) 0 (qu; tun k) 1l <a<q2uiuj>a<q2ui1ujl>>2
o(g)*"o(q*)™ -1 o (uiu, 1 1) L <isi<n o (uiu; ")
+q?t+uitu? +q+u?+u? P <
o[ det o(uu) olgru )’ b = det Pumy oty LS
1<i,j<n+1 uu+__—11, i=n<+1 1<i,j<n+1 u+__11, i=n4+1
satisfies:
(i) Y(u1) =1.
(i) Y(u1,...,uy+1) @ Laurent polynomial in u,4+1 of lower degree > —n, upper degree < n.
i) Y Cuty ooyt D) e = S @D ol ).

(iv) Y(u1,...,u,+1) Symmetric in ug,...,

(v) Y(uit,... u n+1) =Y (ug,...,

(vi) Y(ui,...,up+1) €venin u;, fori=1,...,
Proof:

Reasonably straightforward, using standard properties of determinants.



Partition Function at ¢ = /6

—_ 22— —-1)/2 n 2 2
Z(u17-"7un+1)‘q:eiﬂ/6 =3 n(n-1)/ (u +1—t|1_1 S(TLTL 1n—-1,..,22]1, 1)(“’17“’1 ooy Uy, Uy 7 n—l—l)
Uty 2 =2 2 -2 2
+ w41 S(n,n—l,n—l,...,Q,Q,l,l)(U'l? Uy ey Uy, Uy 7un+1))
[where s)(x1,...,xr) = Schur function].

Proof outline:

e Substitute ¢ = €/% into determinantal expression for partition function.

e Apply general determinant identity

(1 a1 T1 a1ri ... xlf_l alxlf_l\
a; — b (—1)kG+1)/2 1 b1 y1 byr ... ylf_l bly]f_l
1gfyt§k(a:z — yj) - 1. (i — y;) det |+ = - kE—l Ek—l (Okada 1998)
i,j =1\ J 1l ap, xp apxg x apx
\1 by Yk bryk yff‘l by, )
+2 44 . 16
with a; = {1_%174—% ,Zizﬁ—l, x; = {1{? ’zi2+1, bj=uf2-|—u;c4, Yj =u§c6.

e Use standard determinantal expression for Schur function:

)\—l-k
sa(@1,..., ) = 1get<k( J)/ H1<z<j<k(x2 — ;).



#£ of Odd-Order DASASMSs

(# of (2n+1) x (2n+1) DASASMs)

3—n(n—1)/2 SSYT(n,n—l,n—l
_ ﬁ (34)!
- Lt (n+1)!

[where SSYT (k) = (# of semistandard Young tableaux of shape A with entries < k)].

2 2,1,1)(2n + 1)

geee gy

Proof:

e Recall (# of (2n+1) x (2n+1) DASASMs) = Z(1,...,1)|,—cwe.
n—+1

e Set u1 =... =wuu4+1 =1 in Schur function expression for Z(u1, ..., un+1)|,—cms-

e Apply standard fact for Schur function with all variables 1:
1,...,1) = SSYT,(k).
SA( ) ' ) A( )

e Apply standard product formula for # of semistandard Young tableaux:
[licicjcxn(i = A =i+ )
[T=] ! |

SSYT\(k) =



7= of Odd-Order DASASMs with Fixed Central Entry

# of (2n+1) x (2n+1) DASASMs with central entry —1 n

# of (2n+1) x (2n+1) DASASMs with central entry 1 n+1

Proof outline:

e Introduce partition functions Zi(ui,...,upy1) for (2n+1) x (2n+1) DASASMs
with central entry +1.

e Show that Zi(ui,...,upt1) = % (Z(ul, ey Un, Unt1) (1) Z(ua, .. up, —un_|_1)).

e Use previous results for Z(ui,...,up+1).



Special Features of Odd-Order DASASM Proof

Six-vertex model considered on triangle instead of square.

Only a single set ui,...,u,+1 Of Spectral parameters used.

Last spectral parameter u,41 plays special role.

Yang—Baxter and reflection equation needed (with certain boundary weights).

Partition function formula involves sum of two determinantal terms.



III'. Outline of Proof of DSASM Formula

(# of nxn DSASMs)

= Pfaffian m%ﬁ(?)_dk )((Z—I_j_zkk_ 1) B (Z—I_]j_—zlf_ 1)>

0ori1<i,j<n—1

[range for i, starts at O for n even, 1 for n odd]

(1) Obtain bijection between nxn DSASMs & configurations of six-vertex model on
a certain triangle.

(2) Introduce parameter-dependent bulk weights, left boundary weights & associated
partition function.

(3) Use Yang—Baxter equation, left reflection equation & other properties to prove
formula for partition function involving Pfaffian.

(4) Evaluate Pfaffian formula at values of parameters for which all weights are 1
(homogeneous limit).

e Steps (1)—(3) are, to some extent, similar to steps (1)—(3) for odd-order DASASMs.

e In steps (2) & (3), the partition function was independently defined & the Pfaffian
formula was independently obtained by Garbali, de Gier, Mead, Wheeler 2023.



A Few Details of DSASM Proof

—O
L J
L J
L J
L J
[

o Let &, = 9

<— 3 —>

( e 2 in & 2 out arrows at each degree 4 vertex
(= 6 cases)

no restriction at degree 2 vertices (= 4 cases)
e all arrows upward on top boundary
L e all arrows leftward on right boundary

o o (i )

orientations of

* 6VD(n) =« edges of &,

N

~"
.




e Partition function: e.g. Z(u1,

U Uy

ULU3| UrUa

, U3, U4) —

U4

e Symmetry of partition function: e.g.

LVv(’i’aq2 -_11L3) Zf(ltl,

° ° ™
{ A A A
LRE YBE
— [ o <o —
o/ “eo—<«o
*—<«o

y U3, /LL4) —

|

YBE
«—eo — ° o <o
<o <o
*— <o *— <o

I
»>

*—>0
>

W(’i’7q2 _1’U,3) Z(’U,]_,U?,,




e Pfaffian formula for partition function:

Z(uj), i1 =20

o 2fUJZ"U,' o 2u._1u._1
Z(u1, ..., up) = H (g7uiu;) o(a7, — ) Pfaffian | o(q¢%) a(uiuj_l) Z (wi, wj)
1<i<j<n o(q*) O'(Uiuj_ ) 0or1<i<j<n

2 2,1, -1y~ 121
o(q?uiu;) o(q?u; “u; ™)

(RB, Fischer, Koutschan 2023; Garbali, de Gier, Mead, Wheeler 2023).

Range for ¢,5 starts at O for n odd, 1 for n even.

Only strictly upper triangular part of skew-symmetric matrix is shown for Pfaffian.

— Z(u;) & Z(ui,uj) in Pfaffian can easily be written explicitly using sums over 6VD(1)
& 6VD(2).

Formula remains valid for general six-vertex model boundary weights.

e In step (4) of proof, evaluation of RHS of Pfaffian formulaat ui1 =...=u, =1 &

q = e'™/® involves application of general result for homogeneous limit of certain
multivariate Pfaffian expressions.

e In this case, Z(u1,...,un)|,—us IS NOt @ Schur function.



Final Messages

ASMs are interesting objects.

Many results involving ASMs have been proved using certain connections with

Most proofs are indirect & technical.

Various aspects of ASMs are still not properly understood.

“These conjectures are of such compelling simplicity that it is hard
to know how any mathematician can bear the pain of living
without understanding why they are true ... I expect that these

problems will remain with us for some time.”

(Robbins 1991, “The story of 1, 2, 7, 42, 429, 7436, ...")



