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A 3 x 3-periodic hexagon tiling

Figure: Created using a Python adaptation of Christophe Charlier’s tiling program, developed by Lennart Hilbner
and MvH (publicly available on GitHub). Moreover, all figures in this talk are created using this program.



A 3 x 3-periodic hexagon tiling: three regions and arctic curves

* Three regions (or phases) appear: solid, liquid, and gas.
® The boundaries between these regions are called the arctic curves.
® The outer arctic curve resembles a circle and the inner has six cusp points.

Figure: Large (skewed) hexagon tiling with the arctic curves.
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* Result: a non-intersecting path system P connecting the left to the right points ..

e Given a hexagon tiling 7, we replace the red and blue tiles by lines:
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e Given a hexagon tiling 7, we replace the red and blue tiles by lines:

-0 - oo

* Result: a non-intersecting path system P connecting the left to the right points ..

® 7 — Pis a bijective correspondence.
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Random point process Il

e All path systems P are part of a directed graph (V, E).
e Introduce a weight function w : £ — R, and the weight of P

w(P) = H w(e).
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Random point process Il

e All path systems P are part of a directed graph (V, E).
e Introduce a weight function w : £ — R, and the weight of P

w(P) = H w(e).

eeP

® Define the probability of P as
1
Pr(P) = EW(P)’ Z= ;W(P').
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Random point process Il

e All path systems P are part of a directed graph (V, E).
e Introduce a weight function w : E — R, and the weight of P

w(P) =[] we).

e€eP

e Define the probability of P as
1
Pr(P) = EW(P), Z= ;W(P’).
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® Placing points « on 6 and Q gives a
particle system.

® This defines a random point process Pr
on the hexagon.
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Figure: Taken from [Kuijlaars, '25].
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® The weight function w is determined by

aj k and bj,k-
® We assume 3 x 3-periodicity of w, i.e.,

Random point process lll



Random point process lll

® The weight function w is determined by
aj k and bj,k-

® We assume 3 x 3-periodicity of w, i.e.,

.;‘:‘.f‘

Ajt3n,k+3m = jk,

bjt3nk4+3m = bj k-

* Simplifying assumptions are needed to
use [Kuijlaars, '25].
= a; and b, are reduced to two
parameters: o and «;.

/[

[/ N\S\

VB BT

o

N\
EN

Figure: Taken from [Kuijlaars, '25].



among other things, the appearance of

® The simplifying assumptions exclude,
quasi-solid regions:
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Determinantal point process

® Define the correlation function p, for distinct v{,...,v, € V:

pn(vi,- o ve) =Pr({vi,...,va} CP)
( = probability of P passing through vi, ..., v4)




Determinantal point process

e Define the correlation function p, for distinct vy, ..., v, € V:

pn(Vly s ,Vn) = Pr({v17 s vv"} C P)
( = probability of P passing through v, ..., v,)

( = probability of 7~ having ’ or . atvy,...,vn).




Determinantal point process

e Define the correlation function p, for distinct vy, ..., v, € V:

pﬂ(vh’ . .,Vn) = Pr({vlz’ . 'vv"} C P)
( = probability of P passing through v, ..., v,)

( = probability of 7 having ’ or . atvy,...,vn).

® The random point process Pr is determinantal: there exists a function K : V. x V — R
such that
n
pn(vi, ..., vn) = det (K(Vi,Vj))i‘jzl.
The function K is called the correlation kernel. This follows from [Eynard—Mehta, '98],
in which also an explicit K is given.



Transition matrices

* We encode the weight function w by the transition matrices

R aiy1j+1 k=],
Ti(j k) = § bigrj+1 iThk=j+1,
0 otherwise,

ail a21 a3l




Transition matrices

* We encode the weight function w by the transition matrices

~ aiyrjp1 k=,
Ti(j,k) = { bit1j41 Thk=j+1,
0 otherwise,

ail a21 a3l

® which can be recovered from their symbols

ap 1_1 0 al_l 1 0 1 1 0
Toz)=( 0« 1 |, Ti@=| 0 ea 1 |, Ta(@=[0o 1 1.
z 0 al_laz z 0 ala;] = 0 1

L4 Pel'lOdlClty - T3i+j = Tj
e Notation: T,‘J =T; - T] and W = ToT T>.



Integral representation of the correlation kernel

* Double contour integral representation of K from [Duits—Kuijlaars, '21]:

[K((3x1 +j1,3y1 + k1), (3%2 42,392 + k)i, 4,0

_ X3x 41 >30+p fT—l )W(Z)xl_xz
2mi

W(zl)ZN 2 W(z)" dz1dz
27” f{?{ 0J2 2N - vy R z) Zgl To,jy (22) o

( )dz
T 02 21N 041 12 z




Integral representation of the correlation kernel

* Double contour integral representation of K from [Duits—Kuijlaars, '21]:

[K((3x1 +j1,3y1 + k1), (3%2 42,392 + k)i, 4,0

_ X3x 41 >3+ 71 )W(Z)xl_xz
2mi T 02 210

W(Z1)2N 2 W(z)" dz1dzp
27” ?{?{ 0J2 2N - vy R z) Zgl To,jy (22) o

dz
041 (Z)?

e T = unit circle.

® W(z)?V /22N = a non-Hermitian 3 x 3-matrix-weight.
® Ry(z1,z2) = reproducing kernel of the MVOP Py (z).
e Existence of Py(z) comes from the random tiling.



Riemann surface

® The spectral curve is defined by

P(z,\) := det(\z — W(z)) = 0.




Riemann surface

® The spectral curve is defined by

P(z,\) := det(\z — W(z)) = 0.

* Explicitly,
P(z,A) = (A —z—1)* —=27(1 + B)Az = 0,
with
3
8= ( +2041 + ) L
Taay

® We represent the associated compact Riemann surface R as follows:




Main theorem

® Take (&1,&) inthe liquid region and suppose that & y and & y vary with N such that
&y — & and & v — & (and N& v, N& v € Z). Define the scaling coordinates:

vin = BN+ & n), 3N+ & n)) + i
van = (BN(1 + & n),3N(1 + & n)) + vo.




Main theorem

® Take (&1,&) inthe liquid region and suppose that & y and & y vary with N such that
&y — & and & v — & (and N& v, N& v € Z). Define the scaling coordinates:

vin = BN+ & n),3N(1 + &) + 1
V2N = (3N(1 —+ 5171\/), 3N(1 —+ 52,1\1)) —+ ;.

Theorem
The large-N limit of the correlation kernel is given by

Nli—>n;o K(VI,N, VZ,N) = K(EI’EZ)(Vl,Vz).

The 3 x 3-periodic limit kernel K¢, ¢,y : Z* x Z* — R equals

2
(Keren 0102 4o = =75
1 )\(p) 1—X2

i yi—Y2 OJZ
21 Sy, ey 2P)

X3x1+ji >3x+jp Odz(z)W(Z)XI 270, (2) dz
T 2172

» Z(P)E(P)To,j, (2(p)),

with vy = (3x1 +i1,3y1 + k1) and va = (3x2 +j2,3y2 + ka). Here xi, y1,x2,y2 € Z
and ji1, k1, j2, k2 € {0,1,2}.



Main theorem

Theorem
The large-N limit of the correlation kernel is given by

Nh—>nc1>o K(vin van) = K(ilyéz)(vl’vz)‘

The 3 x 3-periodic limit kernel K¢, ¢,y : Z? X Z*> — R equals

X3v i1 >35 s % T @W (@12 To (@) dz
T

2 = —
[K(517§2)(v1’v2)]k1,k2:0 - i 21—n

s Ay

2mi 2(p)—2 Tos,

» Z(P)E(P)To,j, (2(p)),

V(&1,62)

with vi = (3x; +J1,3y1 + k1) and vo = (3xz +j2,3y2 +k2). Here x, y1,x2,y2 € Z
andj1$k1$j27k2 € {O, 172}'

® == (nx ) _o is @ matrix with meromorphic differentials on R.
® ~(&1,&) is a contour on the double cover of R depending on (¢4, &).



e For simplicity, we take x; =x» = x,y; =y, =yandj; =j, =0, i.e.,

1 Wz )2V W(z2)* dzidz
Ry (z1,22) T
TJT

Z%N = Z; 22

(K012} gm0 = (2mi)?




e For simplicity, we take x; = x, = x,y; =y =yandj; =j, =0, i.e,

1 ?{ W)= o @ Z)W(Zz)" dzydz
2ri)? JoJr 2V N T T,

[K(VI;VZ)]%I =0 = (

® Follow the transformations of the Riemann—Hilbert analysis:

Y—-X—T—S—R.




e For simplicity, we take x; = x, = x,y; =y =yandj; =j, =0, i.e,

1 W(z;)2N—* W(z2)* dz1dzy
RN (Z ) 22) -y - -
TJT

(2mi)? 2Ny 3 2

2
[K(v1, Vz)]kl =0 =

® Follow the transformations of the Riemann—Hilbert analysis:

Y—-X—T—S—R.

e Transfer to a double contour integral on the Riemann surface:

exp(N(®(p1) — ®(p2))) . &(p1)dz(p)
(2m ?{74 2(p1) — 2(p2) (bounded in N) PR




e For simplicity, we take x; = x, = x,y; =y =yandj; =j, =0, i.e,

1 W(z;)2N—* W(z2)* dz1dzy
Ry(z1,22) —5———
TJT

(2mi)? 2Ny 3 2

2
[K(v1, Vz)]kl =0 =

® Follow the transformations of the Riemann—Hilbert analysis:

Y—-X—T—S—R.

e Transfer to a double contour integral on the Riemann surface:

exp(N(®(p1) — ®(p2))) . &(p1)dz(p)
(2m ?{74 2(p1) — 2(p2) (bounded in N) PR

® Perform steepest descent analysis (or saddle point analysis). A special role will be
played by a saddle point s of ®(p).



e For simplicity, we take x; = x, = x,y; =y =yandj; =j, =0, i.e,

1 W(z;)2N—* W(z2)* dz1dzy
Ry(z1,22) —5———
TJT

(2mi)? 2Ny 3 2

2
[K(v1, VZ)]kl =0 =

® Follow the transformations of the Riemann—Hilbert analysis:

Y—-X—T—S—R.

® Transfer to a double contour integral on the Riemann surface:

exp(N(®(p1) — ®(p2))) . dz(py)dz(p2)
(27rz %?{ 2(p1) — 2(p2) (bounded in N) W

® Perform steepest descent analysis (or saddle point analysis). A special role will be
played by a saddle point s of ®(p).

® Study the level set Re ®(p) = Re ®(s), and use these to prove the existence of
steepest descent/ascent curves.



First transformation Y — X

From the previous talk, we recall the following:
® Riemann-Hilbert problem:

r@=r-(p "), cer

I




First transformation Y — X

From the previous talk, we recall the following:
® Riemann-Hilbert problem:

r@=r-(p "), cer

e Christoffel-Darboux formula:

Ry(z1,22) =

(03 13) Y_l(z1)Y(Zz) ((1)33) , U F# 2.

22—

Note that Ry(z1, z2) is a polynomial of degree N — 1 in both variables and that the
right-hand side still makes sense even when z; = z, due to a zero-pole cancellation.




First transformation Y — X

From the previous talk, we recall the following:
® Riemann-Hilbert problem:

r@=r-(p "), cer

e Christoffel-Darboux formula:

Ry(z1,22) =
22— 21

_ I
(03 I3> Y I(ZI)Y(ZZ) (033) , 21 7é 22-
Note that Ry(z1, z2) is a polynomial of degree N — 1 in both variables and that the
right-hand side still makes sense even when z; = z, due to a zero-pole cancellation.

e First transformation:

X() = ¥(2) (EO(? B )) with W(2) = EG)AGR)E~" (2).



First transformation Y — X

From the previous talk, we recall the following:
® Riemann-Hilbert problem:

r@=r-(p "), cer

e Christoffel-Darboux formula:

Ry(z1,22) =

(03 13) Y_l(z1)Y(Zz) ((1)33) . U F .

22—

Note that Ry(z1, z2) is a polynomial of degree N — 1 in both variables and that the
right-hand side still makes sense even when z; = z, due to a zero-pole cancellation.
e First transformation:

X(2) = ¥(2) (EO(? B )) with W(2) = EQAGR)E™ (2).

o After substitution:

Ryn(z1,22) = [ E(z1) (03 13) Xﬁl(zl)X(ZZ) (é’i) Eil(zz).



First transformation Y — X

e After contour deformation, we have

1 W(zp)2N—> W(z2)* dz1dz
L
Ty_s5JT 2y

(K12, ty=0 = (2mi)? s




First transformation Y — X

e After contour deformation, we have

1 W(zp)2N—> W(z2)* dz1dz
?{ (z1) Ru(z1,2) V2 (22)" dzdzy
Ty_s5JT

(2mi)? 2 3

2
[K(v1, vz)]licz:() =

e Thus

2N —x
[K(vl,v2)]z17k2=0= 7(2;_1.)2% E&(Zl)iA(ZZZ],g,y (05 1)X '(z1)
- 1

L\ Az)* E7(z) dzidz
X X ,
?1{1‘ (&) (03) Z{ 2-ua

where we have used that

121 E(z) (03 15) X~ '(21)X(z2) ((I)z) E™(22).

RN(ZlaZZ) =
22



First transformation Y — X: a balancing trick

® A consequence of the jump condition for X is:

X() (éi) A%N =X () (?33) ~X_() ((;33) . zeT.




First transformation Y — X: a balancing trick

® A consequence of the jump condition for X is:
5\ AR _ 03 03
x@ () "o =10 (7)) -x-@ (7). cer

® We use this to split the integral:

2N—x
[K(v1,v2)];fl,k2=o = ﬁ?_{m 12;(21)% (05 BYX '(z1)
- |

x 7{ X(z2) (03) A(z) =V E(z)) dzydzy
2
T 13 Z2—(2N—Y) -7 22

1-5/2
Tits/2 & Z;(ZNiy) 2= 2



First transformation Y — X: a balancing trick

® A consequence of the jump condition for X is:
5\ AR _ 03 03
x@ () "o =10 (7)) -x-@ (7). cer

® We use this to split the integral:

2N —x
[K(v1,v2)];fl,k2=o = ﬁ?_{m 12;(21)/\(;]#7y (05 BYX '(z1)
- 1

03 A(Zz)f(ZNf’o Eil(zz) dzydz
x <~7{T Xt (z2) (13) zz—(ZN—y)

22— 22

T - 13 Z;(ZN*}') 22— 22




First transformation Y — X: a balancing trick

® A consequence of the jump condition for X is:
5\ AR _ 03 03
x@ () "o =10 (7)) -x-@ (7). cer

® We use this to split the integral:

2N —x
(K197, g0 = 7(271i)27'{£r i(m)iA(;A),_y (03 L)X '(z1)
- 1

x 7{ X(z2) (03) A(z2) = VN9 E~(5p) dzidzy
d 2\ n SO n-u o

1-6/2
_ }1{ X(z2) (03) A(z2) =N E=1()) dzydz,
Tits/2 & Z;(ZNiy) 2= 2

¢ Disclaimer: we should treat \; differently due to A\3(—1) = 0, but we choose to ignore
this to simplify the exposition.



Second transformation X — T

e Recall second transformation:
2N N —2NL
e“VI; 03 G (Z) 03 e I; 03
T(z) = X +
@) ( 03 13) (Z)( 03 GY (2) 03 L)’

(exp(igl (2))

with

Gi(z) = exp(££2(2))

exp(+g3 (Z))> '




Second transformation X — T

e Recall second transformation:
2N N —2NL
e“VI; 03 G (Z) 03 e I; 03
T(z) = X +
@) ( 03 13) (Z)( 03 GY (2) 03 L)’

(exp(igl (2))

with

Gi(z) = exp(££2(2))

exp(+g3 (Z))> '

e After substitution:

(05 B) X '(21)X(z2) ((I):) =G (1) (0s B) T '(z1)T(z2) ((1)33) GN(2),




Second transformation X — T

e Recall second transformation:
2N N —2NL
e“VI; 03 G (Z) 03 e I; 03
T(z) = X +
@) ( 03 13) (Z)( 03 GY (2) 03 L)’

(exp(igl (2))

with

Gi(z) = exp(££2(2))

exp(+g3 (Z))> '

e After substitution:
(05 B) X '(21)X(z2) ((I):) =G (1) (0s B) T '(z1)T(z2) ((I):) GN(2),

so that
A(ZI)ZN—x

1
[K(thz)]zzl =0 = 37 ﬁ,i(Z])G{v* (Zl)z?vi,y (05 B)T™'(z1)

—(N—x) f—
X(ﬁr T(z) <(I)33) Glz(zz)A(ZZ) M BT (=) dzidz

—(N— _
1-5/2 2, e

0 Az)~N=0) E=1(2,) dz1d
- 4 1@ (,j) G () =2 —— “).

—(2N—
145/2 zz( M oan-u 2




Remaining transformations 7 — S — M — R

® Qutside the lens, we have
(N 04 (N 0
0= (5 )= (5, ) reme
for some constant lower-triangular matrix L and

e

M0=k+o(

—cN
7) for some ¢ > 0.
1+ |z




Remaining transformations 7 — S — M — R

® Qutside the lens, we have
(N 04 (N 0
0= (5 2)se=(5 5 reme
for some constant lower-triangular matrix L and

e

—cN
R(z) =1+ O ( ) for some ¢ > 0.

1+ 2|
® Therefore, for a small enough lens, we may take
(N 05
T(Z) - (03 L*N) M(Z)7

which only contributes an exponentially small error (in N).



Remaining transformations 7 — S — R

® Finally, we arrive at

! A(z1)B(z2) dz1dzp
KOwDR pmo= e § § S0
( 7”) Ti_5 /Ti—ssp 22 21 22

% % A(Z1)B(Zz) dzlez
(27”)2 T_s JT -1

1+68/2

with

(Z)

A(z) = E(2)GY () —5—— (03 LYM™'(2)

—(2N—x)
B0 = M) (7)) " )%E—‘@.



Remaining transformations 7 — S — R

e Finally, we arrive at

1 A(21)B(z2) dz1dza
KOwDR pmo= e § § S0
( 7”) Ti—s /Ti—ss2 %2 %1 2

% % A(Z1)B(Zz) dzldm
(27”)2 T,_s JT -1

1+68/2

with

(Z)

A(z) = E(2)GY () —5—— (03 LYM™'(2)

—(2N—x)
B0 = M) (7)) " )%E—‘@.

® A(z) and B(z) only have a jump on T.



Functions on the Riemann surface

® Writing

A N P

A1(2) z=0 25 00

A(Z) — ( )‘2(1) ), )\::1 /\/23:1
A3(2)
we find a function A on the Riemann 0 P ac
surface by defining B ‘
i (z(p)) ifplies onthe firstsheet; 4. B 0‘._.‘ —————

Alp) = ¢ Xa(z(p)) if p lies on the second sheet; A=0
A3(z(p)) if p lies on the third sheet.




Functions on the Riemann surface

® Writing

A N P

A1(2) Z20 =

A(Z) — ( )‘2(1) ), )\::1 /\/23:1
A3(2)
we find a function A on the Riemann 0 P m
surface by defining B ‘
i (z(p)) ifplies onthe firstsheet; 4. B 0‘._.‘ —————

Alp) = ¢ Xa(z(p)) if p lies on the second sheet; A=0
A3(z(p)) if p lies on the third sheet.

e Generically there are three points py(z), p1(z), and p»(z) above z, i.e., z(pj(z)) = z, SO

( ! 0 0) if p lies on the first sheet;
Az) = ZA(pj YSh(p;(2)), Sh(p) = (O i 0) if p lies on the second sheet;
(0 0 1) if p lies on the third sheet.



Interpreting the integrals on the Riemann surface

e Similarly, we have

2
Gx(2) = Y exp(£5(pi(2))Sh(p;(2),

j=0

so that

2 2
AR =D_A(pi(z),  BR) = Bp())
j=0 =0




Interpreting the integrals on the Riemann surface

e Similarly, we have

2
= exp(+e(p;()Sh(pi(2)),

=0

so that

2 2
AR =D_A(pi(z),  BR) = Bp())
j=0 =0

e Hence,

f‘ % A(z1) B(Zz) dz1dzy
(27” T,_sJT 2z 2

155/2

?{ 74 A(pj(21))B(pr(z2)) dzidzs
Ti—s /T

22— 2 22

(922
27rt) \£5/2



Interpreting the integrals on the Riemann surface

e Similarly, we have

2
= exp(+e(p;()Sh(pi(2)),

j=0

so that

2 2
AR =D_A(pi(z),  BR) = Bp())
j=0 =0

e Hence,

f‘ % A(z1) B(Zz) dzleQ
(271'1)2 T,_s JT -2

155/2

?{ 74 A(pj(21))B(pr(z2)) dzidzs
Ti—s /T

156/2 22— 2

2

27rt)2 Py

% f A(pl)B(pz) Z(Pl)dZ(P2).
2m) o S z2P2) = 2(p1)  2p2)



Interpreting the integrals on the Riemann surface

® As promised, we arrive at

[K1,v2)], gy=0 = ?{ 7{ U’YeXp (®(1) = (p2))) (bounded in N) &(p1)dz(p2)
1 2,+ 2

_zdp) —zp2)
with ®(p) = g(p) + (1 — &) log A(p) — (1 — &) log z(p).

z(p2)




Interpreting the integrals on the Riemann surface

® As promised, we arrive at

2 _ exp(N(®(p1) — 2(p2))) - dz(p1)dz(p2)
(K1, v2)]i gpmo = ?{1 ﬁz [T (bounded in N) ~on

With @(p) = g(p) + (1 — &) log A(p) — (1 — &) log 2(p).

CIN . 2 5 ) 5
7 | S~
N )
S~ J

P \
N

Figure: ~; (left) and v, 4 (right).



Curves on the amoeba

® The curve P(z, \) = 0 has the Harnack property:

log : (z,A) — (log |z, log [A])

is at most 2-to-1.




Curves on the amoeba

® The curve P(z, \) = 0 has the Harnack property:

log : (z,A) — (log |z, log [A])

is at most 2-to-1.
® The image is known as the amoeba:




Curves on the amoeba

® The function ®(p) still has a jump on I'; U I'p:

PL(p)=—-P_(p), zeT U,

® |t has an analytic continuation to the double cover of the Riemann surface.




Curves on the amoeba

® The function ®(p) still has a jump on I'; U I'p:

‘1>+(p)=—<1>_(p), zelul,.

® |t has an analytic continuation to the double cover of the Riemann surface.
® We represent the double cover by the double amoeba:

7




Level sets on the double amoeba

® Two possible configurations of the level set Re ®(p) = Re ®(s) are:




Contour deformations on the double amoeba




Contour deformations on the double amoeba




Contour deformations on the double amoeba




Contour deformations on the double amoeba




Steepest descent analysis

® As promised, we arrive at

exp(N(®(p1) — (p2))) . dz(p1)dz(p2)
2m)2 7{“ ﬁz 1) —2m) (bounded in N) 72(‘02)
dz(p)

L jJ E(z(p))Sh(p)E~" (2(p))

27i

2
(K(v1, Vz)]kl k=0 =

MGED) z(p)




Steepest descent analysis

® As promised, we arrive at

2
(K1, v2)l, py=0 =

exp(N(®(p1) — @(p2))) . dz(py)dz(p2)
2m)2 7 ?{ 1) — () (bounded in N) ﬁ
: E(z(p E~ dz(p)
i Sh(p)E~ ! (z(p
27i o (e,,6) () ) (z(p) )

where

Re®(p;) < Re®(s)
Re®(p2) > Re O(s)
71 and 7, follow the paths of steepest descent/ascent near s.



Steepest descent analysis

® As promised, we arrive at

exp(N(2(p1) — 2(p2))) , dz(p1)dz(p2)
2m)2 7{ f ) —20m) (bounded in N) 7z(p2)
dz(p)

1
— E(:(p))Sh(p)E™"
27 Poer e (z(p))Sh(p) (z(p) 2(p)

2
(K1, v2)l, py=0 =

where

Re®(p;) < Re®(s)
Re®(p2) > Re O(s)
71 and 7, follow the paths of steepest descent/ascent near s.

® The double contour integral tends to 0 as N — oo outside a small neighborhood of s.



Steepest descent analysis

® As promised, we arrive at

exp(N(®(p1) — @(p2))) ’ dz(p1)dz(p2)
2m)2 ?{ f 1) —20) (bounded in N) s
dz(p)

1
I Sh 1
5t § o o FEDSNDE () 7

2
(K1, v2)l, py=0 =

where

Re®(p;) < Re®(s)
Re®(p2) > Re O(s)
71 and 7, follow the paths of steepest descent/ascent near s.

® The double contour integral tends to 0 as N — oo outside a small neighborhood of s.
® Local analysis shows that the remaining part also vanishes.



Main Theorem

Theorem
The large-N limit of the correlation kernel is given by

Jim K(vinsvan) = Kie e0)(V1,v2).

The 3 x 3-periodic limit kernel K¢, ¢,y : Z? X Z* — R equals

X3y i1 >35 s % Ty, QWM To (@) dz
T

2 = —
[K(El,ﬁz)(vl’VZ)]kl,kzzo - i 21—n

R Alp)n 2

2mi 2(p)—2 Tos,

, Z(P)E(P)To,j, (2(p)),

V(&1,62)

with vi = (3x; +J1,3y1 + k1) and vo = (3xz +j2,3y2 +k2). Here x, y1,x2, 2 € Z
andj1$k1$j27k2 € {O, 172}'



Main Theorem

Theorem
The large-N limit of the correlation kernel is given by

Jim Ky, van) = K, ) (v15v2)-

The 3 x 3-periodic limit kernel K¢, ¢,y : Z? X Z* — R equals

X3v +j1 >35 + f To, @WE1 "2 To,, @) de
T

2 = —
[K(517§2)(v1’v2)]k1,k2:0 - i 21—n

1 Alp)n 2

2mi 2(p)—2 To,

, Z(P)E(P)To,j, (2(p)),

V(&1,62)

with vi = (3x; +J1,3y1 + k1) and vo = (3xz +j2,3y2 +k2). Here x, y1,x2, 2 € Z
andj1$k1$j27k2 S {0, 172}-

® == (nx ) _o is @ matrix with meromorphic differentials on R.

® ~(&1,&) is a contour on the double cover of R that connects s to 5 in a specific way.



Outlook: non-regular random hexagon tilings

® The 3 x 3-periodic tiling model is very rich; even for the specialized weights.
® Keeping A =1 and varying B= C € (0,1) U (1, 00), we observe that the gas phase
splits in two different ways.

® The inner arctic curve consists of two curves with four cusp points (cf. one curve
with six cusp points).




Outlook: non-regular random hexagon tilings

® The 3 x 3-periodic tiling model is very rich; even for the specialized weights.

® Keeping A =1 and varying B= C € (0,1) U (1, 00), we observe that the gas phase
splits in two different ways.

® The inner arctic curve consists of two curves with four cusp points (cf. one curve
with six cusp points).

® Merging occurs at either one or two cusp points.
® The geometry is captured by the double cover.




What happens to the equilibrium measure?

® In the regular case, the support of the equilibrium measure equals I'; U I';.
e The support is also a trajectory of a quadratic differential Q(z, \)dz>.
e The “root of Q(z, \)dz>” extends to a meromorphic differential on the double cover.
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What happens to the equilibrium measure?

® In the regular case, the support of the equilibrium measure equals I'; U I';.
e The support is also a trajectory of a quadratic differential Q(z, \)dz>.
e The “root of Q(z, \)dz>” extends to a meromorphic differential on the double cover.

e Recall that:

number of zeros — number of poles = 2 - genus — 2

6 - 6 =2.-1-2. V

------ R e G EEE PP T
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Moving zeros: track & trace (B=C > 1)




Moving zeros: track & trace (B=C > 1)




Moving zeros: track & trace (B=C > 1)




Moving zeros: track & trace (B=C > 1)




Ramified double cover

® For B=C = ¢ > 1, the support is some subarc of I"; U I';.
e The support is a trajectory of an explicit quadratic differential Q.(z, \)dz>.
® The double cover becomes ramified for large ¢ > 1.




Ramified double cover

For B = C = ¢ > 1, the support is some subarc of I'; U T';.

The support is a trajectory of an explicit quadratic differential Q.(z, \)dz?.
The double cover becomes ramified for large ¢ > 1.

The “root of Q.(z, \)dz?” satisfies:

number of zeros — number of poles = 2 - genus — 2

number of zeros =6+2-2 -2 =38.




Ramified double cover

For B = C = ¢ > 1, the support is some subarc of I'; U T';.
The support is a trajectory of an explicit quadratic differential Q.(z, \)dz?.
The double cover becomes ramified for large ¢ > 1.
The “root of Q. (z, \)dz>” satisfies:
number of zeros — number of poles = 2 - genus — 2
number of zeros =6+2-2 -2 =238.

® 2 extra zeros are created by dz because of the ramification:

dr=d(z2)? =2:2d:2 (22 local coordinate).




Moving zeros: unknown (B = C < 1)




Moving zeros: unknown (B = C < 1)




Moving zeros: unknown (B = C < 1)




Computing arctic curves

e For (&1,&) € L, there is a unique zero s.(&1, &) inside ﬁc,+ of

1
Q2dz+ &1dlog N — &dlogz.




Computing arctic curves

® For (&1,&) € L, there is a unique zero s.(&1, &) inside ﬁc,+ of

1
Q2dz+ &1dlog N — &dlogz.

e The map ~
L— Rc;‘ra (517£2) = SC(&I)&Z)
is a homeomorphism that extends continuously to the boundary: Q..
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Computing arctic curves

® For (&1,&) € L, there is a unique zero s.(&1, &) inside ﬁc,+ of

1
Q2dz+ &1dlog N — &dlogz.

® The map

L— ﬁc;‘ra (51752) = SC(&I)&Z)
is a homeomorphism that extends continuously to the boundary: Q..

® The arctic curves are given by

Q' ((un)bounded ovals).
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Splitting of the gas phase (B =C > 1)
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Splitting of the gas phase (B =C > 1)
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Splitting of the gas phase (B =C > 1)
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Splitting of the gas phase (B =C > 1)




Splitting of the gas phase (B =C > 1)
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Splitting of the gas phase (B =C < 1)




Splitting of the gas phase (B =C < 1)




Splitting of the gas phase (B =C < 1)




Splitting of the gas phase (B =C < 1)




Splitting of the gas phase (B =C < 1)
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Final gallery

Thank you for your attention!




