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A 3 × 3-periodic hexagon tiling

Figure: Created using a Python adaptation of Christophe Charlier’s tiling program, developed by Lennart Hübner
and MvH (publicly available on GitHub). Moreover, all figures in this talk are created using this program.
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A 3 × 3-periodic hexagon tiling: three regions and arctic curves

• Three regions (or phases) appear: solid, liquid, and gas.
• The boundaries between these regions are called the arctic curves.
• The outer arctic curve resembles a circle and the inner has six cusp points.

Figure: Large (skewed) hexagon tiling with the arctic curves.
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Random point process I

• Given a hexagon tiling T , we replace the red and blue tiles by lines:

7→ , 7→ , 7→ .
• Result: a non-intersecting path system P connecting the left to the right points ·.

• T 7→ P is a bijective correspondence.

7→
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Random point process II

• All path systems P are part of a directed graph (V,E).
• Introduce a weight function w : E → R+, and the weight of P

w(P) =
∏
e∈P

w(e).

• Define the probability of P as

Pr(P) =
1
Z

w(P), Z =
∑
P′

w(P ′).

• Placing points · on and gives a
particle system.

• This defines a random point process Pr
on the hexagon.
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Random point process III

• The weight function w is determined by
aj,k and bj,k.

• We assume 3 × 3-periodicity of w, i.e.,

aj+3n,k+3m = aj,k,

bj+3n,k+3m = bj,k.

• Simplifying assumptions are needed to
use [Kuijlaars, ’25].
=⇒ aj,k and bj,k are reduced to two

parameters: α1 and α2.
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Figure: Taken from [Kuijlaars, ’25].

5



Random point process III

• The weight function w is determined by
aj,k and bj,k.

• We assume 3 × 3-periodicity of w, i.e.,

aj+3n,k+3m = aj,k,

bj+3n,k+3m = bj,k.

• Simplifying assumptions are needed to
use [Kuijlaars, ’25].
=⇒ aj,k and bj,k are reduced to two

parameters: α1 and α2.
a11

a12

a13

a11

a21

a22

a23

a21

a23

a31

a32

a11

a13

a23

a22

a23

a32

a33

a12

a23

a21

a22

a21

a22

a33

a31

a32

a13

a11

a12

a12

a13

a22

a23

a32

a33

b12

b13
b21

b33

b31

b33

b32

b12

b11

b12

b11

b21

b22

b23

b33

b32

b33

b32

b12

b11

b13

b11

b13

b22

b33

b31

b32

b11
b22

b23

b21

b22

b33

b31

b32

b33

Figure: Taken from [Kuijlaars, ’25].

5



Simplifying assumptions

• The simplifying assumptions exclude, among other things, the appearance of
quasi-solid regions:
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Determinantal point process

• Define the correlation function ρn for distinct v1, . . . , vn ∈ V:

ρn(v1, . . . , vn) = Pr({v1, . . . , vn} ⊂ P)(
= probability of P passing through v1, . . . , vn

)

• The random point process Pr is determinantal: there exists a function K : V × V → R
such that

ρn(v1, . . . , vn) = det
(
K(vi, vj)

)n
i,j=1.

The function K is called the correlation kernel. This follows from [Eynard–Mehta, ’98],
in which also an explicit K is given.
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Transition matrices

• We encode the weight function w by the transition matrices

T̂i(j, k) =


ai+1,j+1 if k = j,
bi+1,j+1 if k = j + 1,
0 otherwise,

• which can be recovered from their symbols

T0(z) =

(α1 1 0
0 α−1

2 1

z 0 α−1
1 α2

)
, T1(z) =

(
α−1

1 1 0
0 α2 1
z 0 α1α

−1
2

)
, T2(z) =

1 1 0
0 1 1
z 0 1

.

• Periodicity =⇒ T3i+j = Tj.
• Notation: Ti,j = Ti · · · Tj and W = T0T1T2.
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Integral representation of the correlation kernel

• Double contour integral representation of K from [Duits–Kuijlaars, ’21]:

[K((3x1 + j1, 3y1 + k1), (3x2 + j2, 3y2 + k2))]
2
k1,k2=0 =

−
χ3x1+j1>3x2+j2

2πi

∮
T

T−1
0,j2

(z)
W(z)x1−x2

zy1−y2
T0,j1 (z)

dz
z

+
1

(2πi)2

∮
T

∮
T

T−1
0,j2

(z1)
W(z1)

2N−x2

z2N−y2
1

RN(z1, z2)
W(z2)

x1

zy1
2

T0,j1 (z2)
dz1dz2

z2
.

• T = unit circle.
• W(z)2N/z2N = a non-Hermitian 3 × 3-matrix-weight.
• RN(z1, z2) = reproducing kernel of the MVOP PN(z).
• Existence of PN(z) comes from the random tiling.
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Riemann surface

• The spectral curve is defined by

P(z, λ) := det(λI3 − W(z)) = 0.

• Explicitly,
P(z, λ) = (λ− z − 1)3 − 27(1 + β)λz = 0,

with

β =
(1 + α1 + α2)

3

27α1α2
− 1.

• We represent the associated compact Riemann surface R as follows:

P0

z = 0
λ = 1

P∞
z = ∞
λ/z = 1

0 ∞

0

P1

λ = 0
z = −1 ∞
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Main theorem

• Take (ξ1, ξ2) in the liquid region and suppose that ξ1,N and ξ2,N vary with N such that
ξ1,N → ξ1 and ξ2,N → ξ2 (and Nξ1,N ,Nξ2,N ∈ Z). Define the scaling coordinates:

v1,N = (3N(1 + ξ1,N), 3N(1 + ξ2,N)) + v1

v2,N = (3N(1 + ξ1,N), 3N(1 + ξ2,N)) + v2.

Theorem
The large-N limit of the correlation kernel is given by

lim
N→∞

K(v1,N , v2,N) = K(ξ1,ξ2)
(v1, v2).

The 3 × 3-periodic limit kernel K(ξ1,ξ2)
: Z2 × Z2 → R equals

[
K(ξ1,ξ2)

(v1, v2)
]2

k1,k2=0
= −

χ3x1+j1>3x2+j2

2πi

∮
T

T−1
0,j2

(z)W(z)x1−x2 T0,j1 (z)

zy1−y2

dz
z

+
1

2πi

∫
γ(ξ1,ξ2)

λ(p)x1−x2

z(p)y1−y2
T−1

0,j2
(z(p))Ξ(p)T0,j1 (z(p)),

with v1 = (3x1 + j1, 3y1 + k1) and v2 = (3x2 + j2, 3y2 + k2). Here x1, y1, x2, y2 ∈ Z
and j1, k1, j2, k2 ∈ {0, 1, 2}.

11



Main theorem

• Take (ξ1, ξ2) in the liquid region and suppose that ξ1,N and ξ2,N vary with N such that
ξ1,N → ξ1 and ξ2,N → ξ2 (and Nξ1,N ,Nξ2,N ∈ Z). Define the scaling coordinates:

v1,N = (3N(1 + ξ1,N), 3N(1 + ξ2,N)) + v1

v2,N = (3N(1 + ξ1,N), 3N(1 + ξ2,N)) + v2.

Theorem
The large-N limit of the correlation kernel is given by

lim
N→∞

K(v1,N , v2,N) = K(ξ1,ξ2)
(v1, v2).

The 3 × 3-periodic limit kernel K(ξ1,ξ2)
: Z2 × Z2 → R equals

[
K(ξ1,ξ2)

(v1, v2)
]2

k1,k2=0
= −

χ3x1+j1>3x2+j2

2πi

∮
T

T−1
0,j2

(z)W(z)x1−x2 T0,j1 (z)

zy1−y2

dz
z

+
1

2πi

∫
γ(ξ1,ξ2)

λ(p)x1−x2

z(p)y1−y2
T−1

0,j2
(z(p))Ξ(p)T0,j1 (z(p)),

with v1 = (3x1 + j1, 3y1 + k1) and v2 = (3x2 + j2, 3y2 + k2). Here x1, y1, x2, y2 ∈ Z
and j1, k1, j2, k2 ∈ {0, 1, 2}.

11



Main theorem

Theorem
The large-N limit of the correlation kernel is given by

lim
N→∞

K(v1,N , v2,N) = K(ξ1,ξ2)
(v1, v2).

The 3 × 3-periodic limit kernel K(ξ1,ξ2)
: Z2 × Z2 → R equals

[
K(ξ1,ξ2)

(v1, v2)
]2

k1,k2=0
= −

χ3x1+j1>3x2+j2

2πi

∮
T

T−1
0,j2

(z)W(z)x1−x2 T0,j1 (z)

zy1−y2

dz
z

+
1

2πi

∫
γ(ξ1,ξ2)

λ(p)x1−x2

z(p)y1−y2
T−1

0,j2
(z(p))Ξ(p)T0,j1 (z(p)),

with v1 = (3x1 + j1, 3y1 + k1) and v2 = (3x2 + j2, 3y2 + k2). Here x1, y1, x2, y2 ∈ Z
and j1, k1, j2, k2 ∈ {0, 1, 2}.

• Ξ = (ηj,k)
2
j,k=0 is a matrix with meromorphic differentials on R.

• γ(ξ1, ξ2) is a contour on the double cover of R depending on (ξ1, ξ2).
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Strategy

• For simplicity, we take x1 = x2 = x, y1 = y2 = y and j1 = j2 = 0, i.e.,

[K(v1, v2)]
2
k1,k2=0 =

1
(2πi)2

∮
T

∮
T

W(z1)
2N−x

z2N−y
1

RN(z1, z2)
W(z2)

x

zy
2

dz1dz2

z2
.

• Follow the transformations of the Riemann–Hilbert analysis:

Y 7→ X 7→ T 7→ S 7→ R.

• Transfer to a double contour integral on the Riemann surface:

1
(2πi)2

∮ ∮
exp(N(Φ(p1)− Φ(p2)))

z(p1)− z(p2)

(
bounded in N

)dz(p1)dz(p2)

z(p2)
.

• Perform steepest descent analysis (or saddle point analysis). A special role will be
played by a saddle point s of Φ(p).

• Study the level set ReΦ(p) = ReΦ(s), and use these to prove the existence of
steepest descent/ascent curves.
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First transformation Y 7→ X

From the previous talk, we recall the following:
• Riemann–Hilbert problem:

Y+(z) = Y−(z)
(

I3 W(z)2N/z2N

03 I3

)
, z ∈ T.

• Christoffel–Darboux formula:

RN(z1, z2) =
1

z2 − z1

(
03 I3

)
Y−1(z1)Y(z2)

(
I3
03

)
, z1 ̸= z2.

Note that RN(z1, z2) is a polynomial of degree N − 1 in both variables and that the
right-hand side still makes sense even when z1 = z2 due to a zero-pole cancellation.

• First transformation:

X(z) = Y(z)
(

E(z) 03
03 E(z)

)
with W(z) = E(z)Λ(z)E−1(z).

• After substitution:

RN(z1, z2) =
1

z2 − z1
E(z1)

(
03 I3

)
X−1(z1)X(z2)

(
I3
03

)
E−1(z2).
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First transformation Y 7→ X

• After contour deformation, we have
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∮
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∮
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.
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First transformation Y 7→ X: a balancing trick

• A consequence of the jump condition for X is:

X(z)
(

I3
03

)
Λ(z)2N

z2N
= X+(z)

(
03
I3

)
− X−(z)

(
03
I3

)
, z ∈ T.

• We use this to split the integral:

[K(v1, v2)]
2
k1,k2=0 =

1
(2πi)2

∮
T1−δ

E(z1)
Λ(z1)

2N−x

z2N−y
1

(
03 I3

)
X−1(z1)

×
(∮

T1−δ/2

X(z2)

(
03
I3

)
Λ(z2)

−(2N−x)

z−(2N−y)
2

E−1(z2)

z2 − z1

dz1dz2

z2

−
∮
T1+δ/2

X(z2)

(
03
I3

)
Λ(z2)

−(2N−x)

z−(2N−y)
2

E−1(z2)

z2 − z1

dz1dz2

z2

)
.

• Disclaimer: we should treat λ3 differently due to λ3(−1) = 0, but we choose to ignore
this to simplify the exposition.
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Second transformation X 7→ T

• Recall second transformation:

T(z) =
(

e2NℓI3 03
03 I3

)
X(z)

(
GN
+(z) 03
03 GN

−(z)

)(
e−2NℓI3 03

03 I3

)
,

with

G±(z) =

exp(±g1(z))
exp(±g2(z))

exp(±g3(z))

 .

• After substitution:(
03 I3

)
X−1(z1)X(z2)

(
03
I3

)
= GN

+(z1)
(
03 I3

)
T−1(z1)T(z2)

(
03
I3

)
GN
−(z2),

so that

[K(v1, v2)]
2
k1,k2=0 =

1
(2πi)2

∮
T1−δ

E(z1)GN
+(z1)

Λ(z1)
2N−x

z2N−y
1

(
03 I3

)
T−1(z1)

×
(∮

T1−δ/2

T(z2)

(
03
I3

)
GN
−(z2)

Λ(z2)
−(2N−x)

z−(2N−y)
2

E−1(z2)

z2 − z1

dz1dz2

z2

−
∮
T1+δ/2

T(z2)

(
03
I3

)
GN
−(z2)

Λ(z2)
−(2N−x)

z−(2N−y)
2

E−1(z2)

z2 − z1

dz1dz2

z2

)
.
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Remaining transformations T 7→ S 7→ M 7→ R

• Outside the lens, we have

T(z) =
(

LN 03
03 L−N

)
S(z) =

(
LN 03
03 L−N

)
R(z)M(z)

for some constant lower-triangular matrix L and

R(z) = I6 +O
(

e−cN

1 + |z|

)
for some c > 0.

• Therefore, for a small enough lens, we may take

T(z) =
(

LN 03
03 L−N

)
M(z),

which only contributes an exponentially small error (in N).
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Remaining transformations T 7→ S 7→ R

• Finally, we arrive at

[K(v1, v2)]
2
k1,k2=0 =

1
(2πi)2

∮
T1−δ

∮
T1−δ/2

A(z1)B(z2)

z2 − z1

dz1dz2

z2

−
1

(2πi)2

∮
T1−δ

∮
T1+δ/2

A(z1)B(z2)

z2 − z1

dz1dz2

z2
,

with

A(z) = E(z)GN
+(z)

Λ(z)2N−x

z2N−y

(
03 I3

)
M−1(z)

B(z) = M(z)
(

03
I3

)
GN
−(z)

Λ(z)−(2N−x)

z−(2N−y)
E−1(z).

• A(z) and B(z) only have a jump on T.
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Functions on the Riemann surface

• Writing

Λ(z) =
(

λ1(z)
λ2(z)

λ3(z)

)
,

we find a function λ on the Riemann
surface by defining

λ(p) =


λ1(z(p)) if p lies on the first sheet;
λ2(z(p)) if p lies on the second sheet;
λ3(z(p)) if p lies on the third sheet.

P0

z = 0
λ = 1

P∞
z = ∞
λ/z = 1

0 ∞

0

P1

λ = 0
z = −1 ∞

• Generically there are three points p0(z), p1(z), and p2(z) above z, i.e., z(pj(z)) = z, so

Λ(z) =
2∑

j=0

λ(pj(z))Sh(pj(z)), Sh(p) =


( 1

0
0

)
if p lies on the first sheet;( 0

1
0

)
if p lies on the second sheet;( 0

0
1

)
if p lies on the third sheet.
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Interpreting the integrals on the Riemann surface

• Similarly, we have

G±(z) =
2∑

j=0

exp(±g(pj(z)))Sh(pj(z)),

so that

A(z) =
2∑

j=0

A(pj(z)), B(z) =
2∑

j=0

B(pj(z)).

• Hence,

1
(2πi)2

∮
T1−δ

∮
T1∓δ/2

A(z1)B(z2)

z2 − z1

dz1dz2

z2

=
1

(2πi)2

2∑
j,k=1

∮
T1−δ

∮
T1∓δ/2

A(pj(z1))B(pk(z2))

z2 − z1

dz1dz2

z2

=
1

(2πi)2

∮
γ1

∮
γ2,∓

A(p1)B(p2)

z(p2)− z(p1)

z(p1)dz(p2)

z(p2)
.
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Interpreting the integrals on the Riemann surface

• As promised, we arrive at

[K(v1, v2)]
2
k1,k2=0 =

∮
γ1

∮
γ2,+∪γ2,−

exp(N(Φ(p1)− Φ(p2)))

z(p1)− z(p2)

(
bounded in N

)dz(p1)dz(p2)

z(p2)

with Φ(p) = g(p) + (1 − ξ1) log λ(p)− (1 − ξ2) log z(p).

Figure: γ1 (left) and γ2,± (right).
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Curves on the amoeba

• The curve P(z, λ) = 0 has the Harnack property:

log : (z, λ) 7→ (log |z|, log |λ|)

is at most 2-to-1.

• The image is known as the amoeba:
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Curves on the amoeba

• The function Φ(p) still has a jump on Γ1 ∪ Γ2:

Φ+(p) = −Φ−(p), z ∈ Γ1 ∪ Γ2.

• It has an analytic continuation to the double cover of the Riemann surface.

• We represent the double cover by the double amoeba:

23



Curves on the amoeba

• The function Φ(p) still has a jump on Γ1 ∪ Γ2:

Φ+(p) = −Φ−(p), z ∈ Γ1 ∪ Γ2.

• It has an analytic continuation to the double cover of the Riemann surface.
• We represent the double cover by the double amoeba:

23



Level sets on the double amoeba

• Two possible configurations of the level set ReΦ(p) = ReΦ(s) are:
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Contour deformations on the double amoeba
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Steepest descent analysis

• As promised, we arrive at

[K(v1, v2)]
2
k1,k2=0 =

1
(2πi)2

∮
γ̃1

∮
γ̃2

exp(N(Φ(p1)− Φ(p2)))

z(p1)− z(p2)

(
bounded in N

)dz(p1)dz(p2)

z(p2)

+
1

2πi

∮
γ(ξ1,ξ2)

E(z(p))Sh(p)E−1(z(p))
dz(p)
z(p)

where

ReΦ(p1) ≤ ReΦ(s)

ReΦ(p2) ≥ ReΦ(s)

γ̃1 and γ̃2 follow the paths of steepest descent/ascent near s.

• The double contour integral tends to 0 as N → ∞ outside a small neighborhood of s.
• Local analysis shows that the remaining part also vanishes.
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+
1

2πi

∮
γ(ξ1,ξ2)

E(z(p))Sh(p)E−1(z(p))
dz(p)
z(p)

where

ReΦ(p1) ≤ ReΦ(s)

ReΦ(p2) ≥ ReΦ(s)

γ̃1 and γ̃2 follow the paths of steepest descent/ascent near s.

• The double contour integral tends to 0 as N → ∞ outside a small neighborhood of s.
• Local analysis shows that the remaining part also vanishes.
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Main Theorem

Theorem
The large-N limit of the correlation kernel is given by

lim
N→∞

K(v1,N , v2,N) = K(ξ1,ξ2)
(v1, v2).

The 3 × 3-periodic limit kernel K(ξ1,ξ2)
: Z2 × Z2 → R equals

[
K(ξ1,ξ2)

(v1, v2)
]2

k1,k2=0
= −

χ3x1+j1>3x2+j2

2πi

∮
T

T−1
0,j2

(z)W(z)x1−x2 T0,j1 (z)

zy1−y2

dz
z

+
1

2πi

∫
γ(ξ1,ξ2)

λ(p)x1−x2

z(p)y1−y2
T−1

0,j2
(z(p))Ξ(p)T0,j1 (z(p)),

with v1 = (3x1 + j1, 3y1 + k1) and v2 = (3x2 + j2, 3y2 + k2). Here x1, y1, x2, y2 ∈ Z
and j1, k1, j2, k2 ∈ {0, 1, 2}.

• Ξ = (ηj,k)
2
j,k=0 is a matrix with meromorphic differentials on R.

• γ(ξ1, ξ2) is a contour on the double cover of R that connects s to s in a specific way.
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Outlook: non-regular random hexagon tilings

• The 3 × 3-periodic tiling model is very rich; even for the specialized weights.
• Keeping A = 1 and varying B = C ∈ (0, 1) ∪ (1,∞), we observe that the gas phase

splits in two different ways.
• The inner arctic curve consists of two curves with four cusp points (cf. one curve

with six cusp points).

• Merging occurs at either one or two cusp points.
• The geometry is captured by the double cover.
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What happens to the equilibrium measure?

• In the regular case, the support of the equilibrium measure equals Γ1 ∪ Γ2.
• The support is also a trajectory of a quadratic differential Q(z, λ)dz2.
• The “root of Q(z, λ)dz2” extends to a meromorphic differential on the double cover.

• Recall that:

number of zeros − number of poles = 2 · genus − 2

6 − 6 = 2 · 1 − 2. ✓

Z Z Z

P P P
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Moving zeros: track & trace (B = C > 1)

Z Z Z
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Moving zeros: track & trace (B = C > 1)

1
2Z

1
2Z

Z Z

P P P
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Ramified double cover

• For B = C = c > 1, the support is some subarc of Γ1 ∪ Γ2.
• The support is a trajectory of an explicit quadratic differential Qc(z, λ)dz2.
• The double cover becomes ramified for large c > 1.

• The “root of Qc(z, λ)dz2” satisfies:

number of zeros − number of poles = 2 · genus − 2

number of zeros = 6 + 2 · 2 − 2 = 8.

• 2 extra zeros are created by dz because of the ramification:

dz = d(z
1
2 )2 = 2z

1
2 dz

1
2 (z

1
2 local coordinate).

1
2Z

1
2Z

Z Z

P P P
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Moving zeros: unknown (B = C < 1)
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Moving zeros: unknown (B = C < 1)
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Moving zeros: unknown (B = C < 1)

Z

1
2Z

1
2Z

Z

P P P

? ?
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Computing arctic curves

• For (ξ1, ξ2) ∈ L, there is a unique zero sc(ξ1, ξ2) inside R̃c,+ of

Q
1
2
c dz + ξ1d log λ− ξ2d log z.

• The map
L → R̃c,+, (ξ1, ξ2) 7→ sc(ξ1, ξ2)

is a homeomorphism that extends continuously to the boundary: Ωc.
• The arctic curves are given by

Ω−1
c

(
(un)bounded ovals

)
.
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Splitting of the gas phase (B = C > 1)
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Splitting of the gas phase (B = C < 1)
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Final gallery
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Final gallery

Thank you for your attention!
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