

Large random tilings of a hexagon with periodic weightings: steepest descent analysis on the double amoeba

Based on joint work Arno Kuijlaars[†]

Max van Horssen[†]

[†]KU Leuven

Integrable Combinatorics: from exact enumeration to limit shapes
Louvain-la-Neuve, November 19, 2025

A 3×3 -periodic hexagon tiling

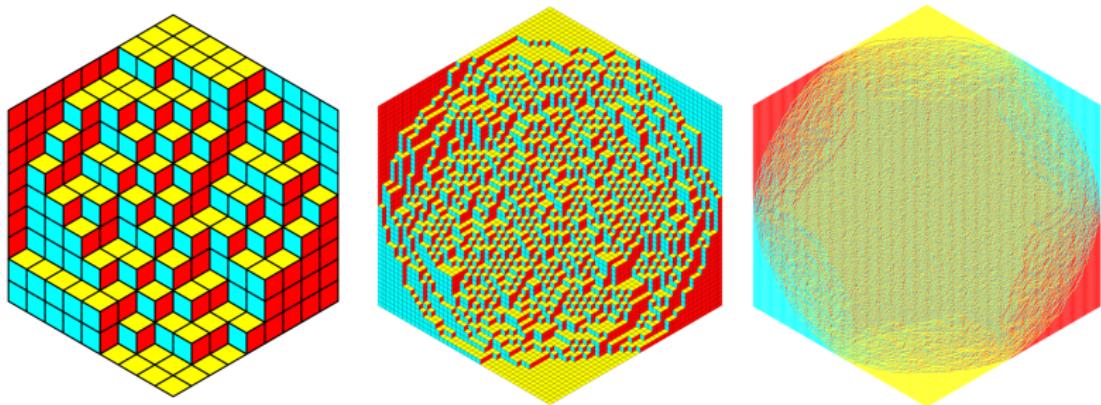


Figure: Created using a Python adaptation of Christophe Charlier's tiling program, developed by Lennart Hübner and MvH (publicly available on GitHub). Moreover, all figures in this talk are created using this program.

A 3×3 -periodic hexagon tiling: three regions and arctic curves

- **Three regions** (or phases) appear: **solid**, **liquid**, and **gas**.
- The boundaries between these regions are called the **arctic curves**.
- The outer arctic curve resembles a **circle** and the inner has **six cusp points**.

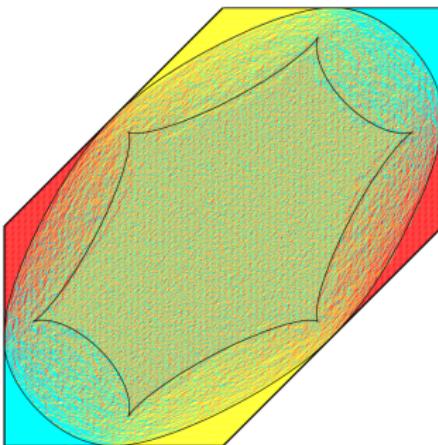


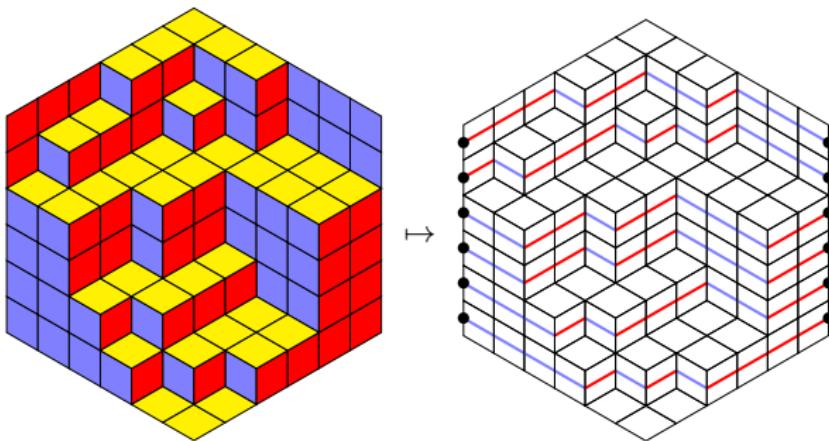
Figure: Large (skewed) hexagon tiling with the arctic curves.

Random point process I

- Given a **hexagon tiling** \mathcal{T} , we replace the red and blue tiles by lines:

$$\text{Red hexagon} \mapsto \text{Red line}, \quad \text{Blue hexagon} \mapsto \text{Blue line}, \quad \text{Yellow hexagon} \mapsto \text{Yellow line}.$$

- Result: a **non-intersecting path system** \mathcal{P} connecting the left to the right points ..

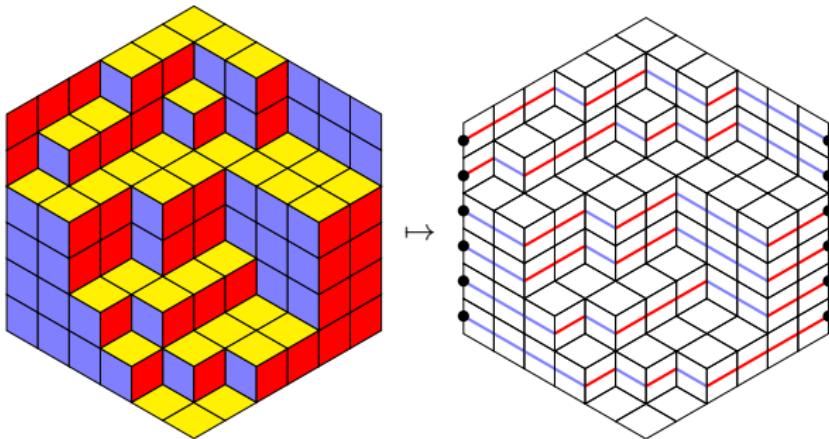


Random point process I

- Given a **hexagon tiling** \mathcal{T} , we replace the red and blue tiles by lines:

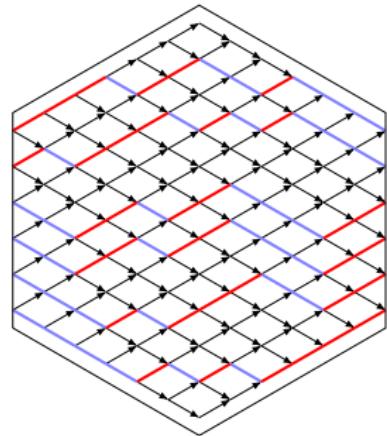
$$\text{Red hexagon} \mapsto \text{Red line}, \quad \text{Blue hexagon} \mapsto \text{Blue line}, \quad \text{Yellow hexagon} \mapsto \text{Yellow line}.$$

- Result: a **non-intersecting path system** \mathcal{P} connecting the left to the right points ..
- $\mathcal{T} \mapsto \mathcal{P}$ is a bijective correspondence.



- All path systems \mathcal{P} are part of a directed graph (V, E) .
- Introduce a **weight function** $w : E \rightarrow \mathbb{R}^+$, and the **weight** of \mathcal{P}

$$w(\mathcal{P}) = \prod_{e \in \mathcal{P}} w(e).$$

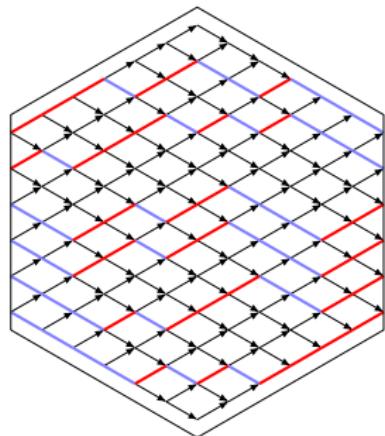


- All path systems \mathcal{P} are part of a directed graph (V, E) .
- Introduce a **weight function** $\mathbf{w} : E \rightarrow \mathbb{R}^+$, and the **weight** of \mathcal{P}

$$\mathbf{w}(\mathcal{P}) = \prod_{e \in \mathcal{P}} \mathbf{w}(e).$$

- Define the **probability** of \mathcal{P} as

$$\Pr(\mathcal{P}) = \frac{1}{\mathcal{Z}} \mathbf{w}(\mathcal{P}), \quad \mathcal{Z} = \sum_{\mathcal{P}'} \mathbf{w}(\mathcal{P}').$$



Random point process II

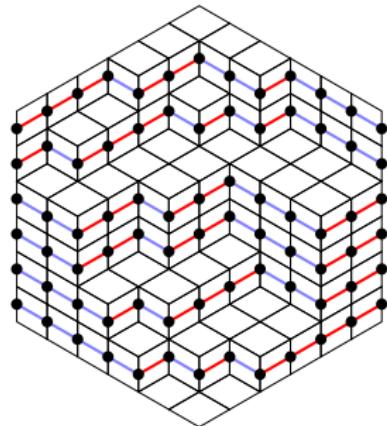
- All path systems \mathcal{P} are part of a directed graph (V, E) .
- Introduce a **weight function** $\mathbf{w} : E \rightarrow \mathbb{R}^+$, and the **weight** of \mathcal{P}

$$\mathbf{w}(\mathcal{P}) = \prod_{e \in \mathcal{P}} \mathbf{w}(e).$$

- Define the **probability** of \mathcal{P} as

$$\Pr(\mathcal{P}) = \frac{1}{Z} \mathbf{w}(\mathcal{P}), \quad Z = \sum_{\mathcal{P}'} \mathbf{w}(\mathcal{P}').$$

- Placing points and gives a **particle system**.
- This defines a **random point process** \Pr on the hexagon.



Random point process III

- The weight function w is determined by $a_{j,k}$ and $b_{j,k}$.
- We assume **3×3 -periodicity** of w , i.e.,

$$a_{j+3n,k+3m} = a_{j,k},$$

$$b_{j+3n,k+3m} = b_{j,k}.$$

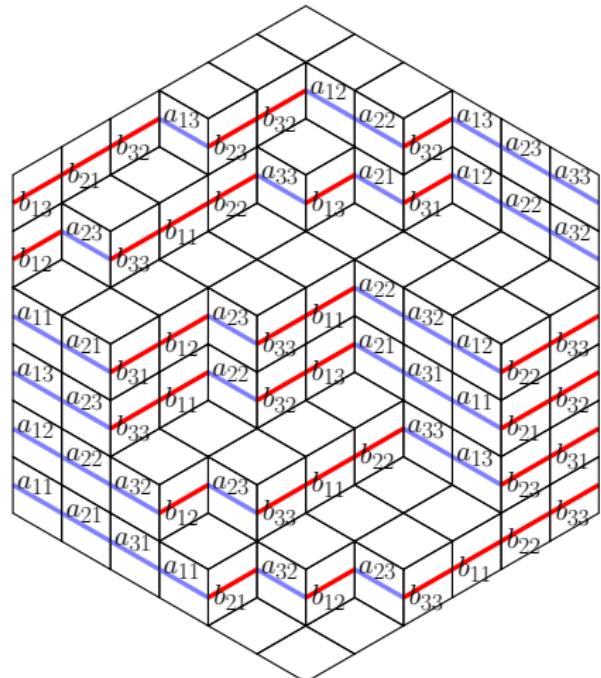


Figure: Taken from [Kuijlaars, '25].

- The weight function w is determined by $a_{j,k}$ and $b_{j,k}$.
- We assume **3 × 3-periodicity** of w , i.e.,

$$a_{j+3n,k+3m} = a_{j,k},$$

$$b_{j+3n,k+3m} = b_{j,k}.$$

- **Simplifying assumptions** are needed to use [Kuijlaars, '25].
 $\Rightarrow a_{j,k}$ and $b_{j,k}$ are reduced to two parameters: α_1 and α_2 .

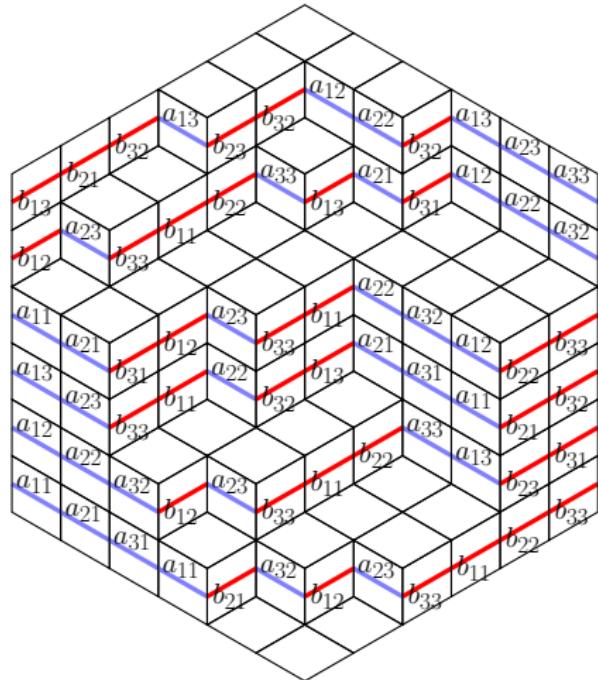
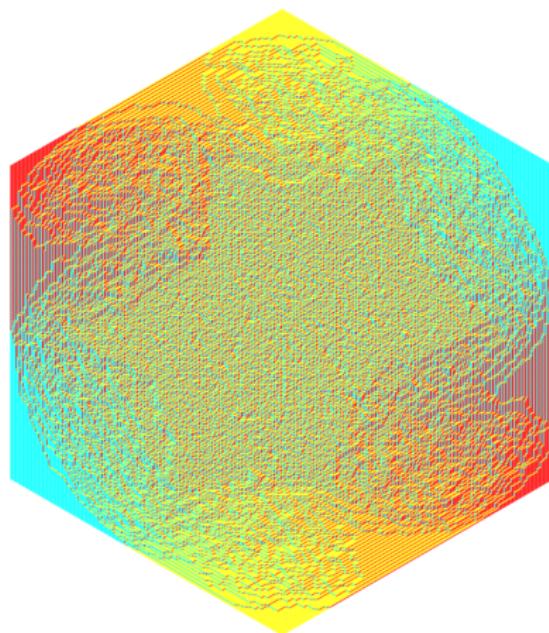


Figure: Taken from [Kuijlaars, '25].

Simplifying assumptions

- The simplifying assumptions exclude, among other things, the appearance of quasi-solid regions:



- Define the **correlation function** ρ_n for distinct $v_1, \dots, v_n \in V$:

$$\rho_n(v_1, \dots, v_n) = \mathbf{Pr}(\{v_1, \dots, v_n\} \subset \mathcal{P})$$

(= probability of \mathcal{P} passing through v_1, \dots, v_n)

- Define the **correlation function** ρ_n for distinct $v_1, \dots, v_n \in V$:

$$\rho_n(v_1, \dots, v_n) = \mathbf{Pr}(\{v_1, \dots, v_n\} \subset \mathcal{P})$$

(= probability of \mathcal{P} passing through v_1, \dots, v_n)

(= probability of \mathcal{T} having or at v_1, \dots, v_n).

- Define the **correlation function** ρ_n for distinct $v_1, \dots, v_n \in V$:

$$\rho_n(v_1, \dots, v_n) = \mathbf{Pr}(\{v_1, \dots, v_n\} \subset \mathcal{P})$$

(= probability of \mathcal{P} passing through v_1, \dots, v_n)

(= probability of \mathcal{T} having or at v_1, \dots, v_n).

- The random point process \mathbf{Pr} is **determinantal**: there exists a function $K : V \times V \rightarrow \mathbb{R}$ such that

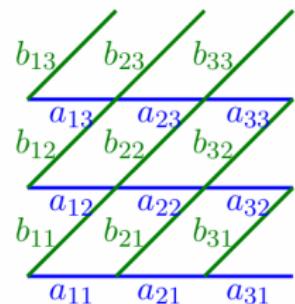
$$\rho_n(v_1, \dots, v_n) = \det(K(v_i, v_j))_{i,j=1}^n.$$

The function K is called the **correlation kernel**. This follows from [Eynard–Mehta, '98], in which also an **explicit** K is given.

Transition matrices

- We encode the weight function w by the **transition matrices**

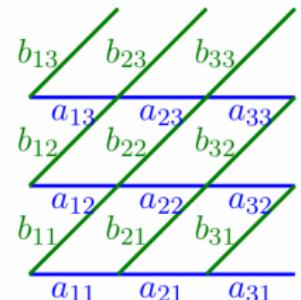
$$\widehat{T}_i(j, k) = \begin{cases} a_{i+1, j+1} & \text{if } k = j, \\ b_{i+1, j+1} & \text{if } k = j + 1, \\ 0 & \text{otherwise,} \end{cases}$$



Transition matrices

- We encode the weight function w by the **transition matrices**

$$\widehat{T}_i(j, k) = \begin{cases} a_{i+1, j+1} & \text{if } k = j, \\ b_{i+1, j+1} & \text{if } k = j + 1, \\ 0 & \text{otherwise,} \end{cases}$$



- which can be recovered from their symbols

$$T_0(z) = \begin{pmatrix} \alpha_1 & 1 & 0 \\ 0 & \alpha_2^{-1} & 1 \\ z & 0 & \alpha_1^{-1}\alpha_2 \end{pmatrix}, \quad T_1(z) = \begin{pmatrix} \alpha_1^{-1} & 1 & 0 \\ 0 & \alpha_2 & 1 \\ z & 0 & \alpha_1\alpha_2^{-1} \end{pmatrix}, \quad T_2(z) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ z & 0 & 1 \end{pmatrix}.$$

- Periodicity $\implies T_{3i+j} = T_j$.
- Notation: $T_{i,j} = T_i \cdots T_j$ and $W = T_0 T_1 T_2$.

Integral representation of the correlation kernel

- **Double contour integral** representation of K from [Duits–Kuijlaars, '21]:

$$\begin{aligned}[K((3x_1 + j_1, 3y_1 + k_1), (3x_2 + j_2, 3y_2 + k_2))]_{k_1, k_2=0}^2 = \\ -\frac{\chi_{3x_1 + j_1 > 3x_2 + j_2}}{2\pi i} \oint_{\mathbb{T}} T_{0, j_2}^{-1}(z) \frac{W(z)^{x_1 - x_2}}{z^{y_1 - y_2}} T_{0, j_1}(z) \frac{dz}{z} \\ + \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}} \oint_{\mathbb{T}} T_{0, j_2}^{-1}(z_1) \frac{W(z_1)^{2N - x_2}}{z_1^{2N - y_2}} R_N(z_1, z_2) \frac{W(z_2)^{x_1}}{z_2^{y_1}} T_{0, j_1}(z_2) \frac{dz_1 dz_2}{z_2}.\end{aligned}$$

Integral representation of the correlation kernel

- **Double contour integral** representation of K from [Duits–Kuijlaars, '21]:

$$\begin{aligned}[K((3x_1 + j_1, 3y_1 + k_1), (3x_2 + j_2, 3y_2 + k_2))]_{k_1, k_2=0}^2 = \\ -\frac{\chi_{3x_1 + j_1 > 3x_2 + j_2}}{2\pi i} \oint_{\mathbb{T}} T_{0, j_2}^{-1}(z) \frac{W(z)^{x_1 - x_2}}{z^{y_1 - y_2}} T_{0, j_1}(z) \frac{dz}{z} \\ + \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}} \oint_{\mathbb{T}} T_{0, j_2}^{-1}(z_1) \frac{W(z_1)^{2N - x_2}}{z_1^{2N - y_2}} R_N(z_1, z_2) \frac{W(z_2)^{x_1}}{z_2^{y_1}} T_{0, j_1}(z_2) \frac{dz_1 dz_2}{z_2}.\end{aligned}$$

- $\mathbb{T} =$ unit circle.
- $W(z)^{2N}/z^{2N} =$ a non-Hermitian 3×3 -matrix-weight.
- $R_N(z_1, z_2) =$ **reproducing kernel** of the MVOP $P_N(z)$.
- **Existence** of $P_N(z)$ comes from the random tiling.

- The **spectral curve** is defined by

$$P(z, \lambda) := \det(\lambda I_3 - W(z)) = 0.$$

Riemann surface

- The **spectral curve** is defined by

$$P(z, \lambda) := \det(\lambda I_3 - W(z)) = 0.$$

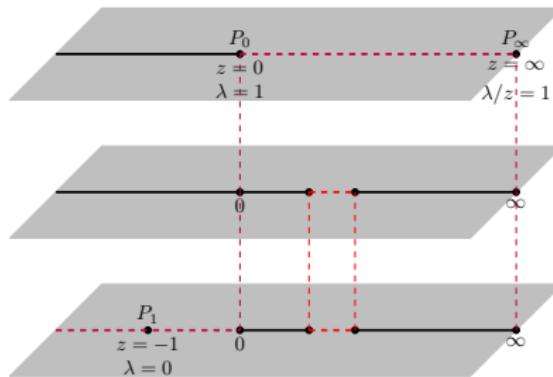
- Explicitly,

$$P(z, \lambda) = (\lambda - z - 1)^3 - 27(1 + \beta)\lambda z = 0,$$

with

$$\beta = \frac{(1 + \alpha_1 + \alpha_2)^3}{27\alpha_1\alpha_2} - 1.$$

- We represent the associated **compact Riemann surface \mathcal{R}** as follows:



Main theorem

- Take (ξ_1, ξ_2) in the **liquid region** and suppose that $\xi_{1,N}$ and $\xi_{2,N}$ vary with N such that $\xi_{1,N} \rightarrow \xi_1$ and $\xi_{2,N} \rightarrow \xi_2$ (and $N\xi_{1,N}, N\xi_{2,N} \in \mathbb{Z}$). Define the scaling coordinates:

$$v_{1,N} = (3N(1 + \xi_{1,N}), 3N(1 + \xi_{2,N})) + v_1$$

$$v_{2,N} = (3N(1 + \xi_{1,N}), 3N(1 + \xi_{2,N})) + v_2.$$

Main theorem

- Take (ξ_1, ξ_2) in the **liquid region** and suppose that $\xi_{1,N}$ and $\xi_{2,N}$ vary with N such that $\xi_{1,N} \rightarrow \xi_1$ and $\xi_{2,N} \rightarrow \xi_2$ (and $N\xi_{1,N}, N\xi_{2,N} \in \mathbb{Z}$). Define the scaling coordinates:

$$\begin{aligned}v_{1,N} &= (3N(1 + \xi_{1,N}), 3N(1 + \xi_{2,N})) + v_1 \\v_{2,N} &= (3N(1 + \xi_{1,N}), 3N(1 + \xi_{2,N})) + v_2.\end{aligned}$$

Theorem

The large- N limit of the correlation kernel is given by

$$\lim_{N \rightarrow \infty} K(v_{1,N}, v_{2,N}) = K_{(\xi_1, \xi_2)}(v_1, v_2).$$

The 3×3 -periodic limit kernel $K_{(\xi_1, \xi_2)} : \mathbb{Z}^2 \times \mathbb{Z}^2 \rightarrow \mathbb{R}$ equals

$$\begin{aligned}[K_{(\xi_1, \xi_2)}(v_1, v_2)]_{k_1, k_2=0}^2 &= -\frac{\chi_{3x_1+j_1 > 3x_2+j_2}}{2\pi i} \oint_{\mathbb{T}} \frac{T_{0,j_2}^{-1}(z) W(z)^{x_1-x_2} T_{0,j_1}(z)}{z^{y_1-y_2}} \frac{dz}{z} \\&\quad + \frac{1}{2\pi i} \int_{\gamma_{(\xi_1, \xi_2)}} \frac{\lambda(p)^{x_1-x_2}}{z(p)^{y_1-y_2}} T_{0,j_2}^{-1}(z(p)) \Xi(p) T_{0,j_1}(z(p)),\end{aligned}$$

with $v_1 = (3x_1 + j_1, 3y_1 + k_1)$ and $v_2 = (3x_2 + j_2, 3y_2 + k_2)$. Here $x_1, y_1, x_2, y_2 \in \mathbb{Z}$ and $j_1, k_1, j_2, k_2 \in \{0, 1, 2\}$.

Theorem

The large- N limit of the correlation kernel is given by

$$\lim_{N \rightarrow \infty} K(v_{1,N}, v_{2,N}) = K_{(\xi_1, \xi_2)}(v_1, v_2).$$

The 3×3 -periodic limit kernel $K_{(\xi_1, \xi_2)} : \mathbb{Z}^2 \times \mathbb{Z}^2 \rightarrow \mathbb{R}$ equals

$$\begin{aligned} [K_{(\xi_1, \xi_2)}(v_1, v_2)]_{k_1, k_2=0}^2 &= -\frac{\chi_{3x_1+j_1 > 3x_2+j_2}}{2\pi i} \oint_{\mathbb{T}} \frac{T_{0,j_2}^{-1}(z) W(z)^{x_1-x_2} T_{0,j_1}(z)}{z^{y_1-y_2}} \frac{dz}{z} \\ &\quad + \frac{1}{2\pi i} \int_{\gamma_{(\xi_1, \xi_2)}} \frac{\lambda(p)^{x_1-x_2}}{z(p)^{y_1-y_2}} T_{0,j_2}^{-1}(z(p)) \Xi(p) T_{0,j_1}(z(p)), \end{aligned}$$

with $v_1 = (3x_1 + j_1, 3y_1 + k_1)$ and $v_2 = (3x_2 + j_2, 3y_2 + k_2)$. Here $x_1, y_1, x_2, y_2 \in \mathbb{Z}$ and $j_1, k_1, j_2, k_2 \in \{0, 1, 2\}$.

- $\Xi = (\eta_{j,k})_{j,k=0}^2$ is a matrix with meromorphic differentials on \mathcal{R} .
- $\gamma(\xi_1, \xi_2)$ is a contour on the double cover of \mathcal{R} depending on (ξ_1, ξ_2) .

- For simplicity, we take $x_1 = x_2 = x$, $y_1 = y_2 = y$ and $j_1 = j_2 = 0$, i.e.,

$$[K(v_1, v_2)]_{k_1, k_2=0}^2 = \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}} \oint_{\mathbb{T}} \frac{W(z_1)^{2N-x}}{z_1^{2N-y}} R_N(z_1, z_2) \frac{W(z_2)^x}{z_2^y} \frac{dz_1 dz_2}{z_2}.$$

- For simplicity, we take $x_1 = x_2 = x$, $y_1 = y_2 = y$ and $j_1 = j_2 = 0$, i.e.,

$$[K(v_1, v_2)]_{k_1, k_2=0}^2 = \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}} \oint_{\mathbb{T}} \frac{W(z_1)^{2N-x}}{z_1^{2N-y}} R_N(z_1, z_2) \frac{W(z_2)^x}{z_2^y} \frac{dz_1 dz_2}{z_2}.$$

- Follow the transformations of the Riemann–Hilbert analysis:

$$Y \mapsto X \mapsto T \mapsto S \mapsto R.$$

- For simplicity, we take $x_1 = x_2 = x$, $y_1 = y_2 = y$ and $j_1 = j_2 = 0$, i.e.,

$$[K(v_1, v_2)]_{k_1, k_2=0}^2 = \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}} \oint_{\mathbb{T}} \frac{W(z_1)^{2N-x}}{z_1^{2N-y}} R_N(z_1, z_2) \frac{W(z_2)^x}{z_2^y} \frac{dz_1 dz_2}{z_2}.$$

- Follow the transformations of the Riemann–Hilbert analysis:

$$Y \mapsto X \mapsto T \mapsto S \mapsto R.$$

- Transfer to a double contour integral on the Riemann surface:

$$\frac{1}{(2\pi i)^2} \oint \oint \frac{\exp(N(\Phi(p_1) - \Phi(p_2)))}{z(p_1) - z(p_2)} \left(\text{bounded in } N \right) \frac{dz(p_1) dz(p_2)}{z(p_2)}.$$

- For simplicity, we take $x_1 = x_2 = x$, $y_1 = y_2 = y$ and $j_1 = j_2 = 0$, i.e.,

$$[K(v_1, v_2)]_{k_1, k_2=0}^2 = \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}} \oint_{\mathbb{T}} \frac{W(z_1)^{2N-x}}{z_1^{2N-y}} R_N(z_1, z_2) \frac{W(z_2)^x}{z_2^y} \frac{dz_1 dz_2}{z_2}.$$

- Follow the transformations of the Riemann–Hilbert analysis:

$$Y \mapsto X \mapsto T \mapsto S \mapsto R.$$

- Transfer to a double contour integral on the Riemann surface:

$$\frac{1}{(2\pi i)^2} \oint \oint \frac{\exp(N(\Phi(p_1) - \Phi(p_2)))}{z(p_1) - z(p_2)} \left(\text{bounded in } N \right) \frac{dz(p_1) dz(p_2)}{z(p_2)}.$$

- Perform steepest descent analysis (or saddle point analysis). A special role will be played by a saddle point s of $\Phi(p)$.

- For simplicity, we take $x_1 = x_2 = x$, $y_1 = y_2 = y$ and $j_1 = j_2 = 0$, i.e.,

$$[K(v_1, v_2)]_{k_1, k_2=0}^2 = \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}} \oint_{\mathbb{T}} \frac{W(z_1)^{2N-x}}{z_1^{2N-y}} R_N(z_1, z_2) \frac{W(z_2)^x}{z_2^y} \frac{dz_1 dz_2}{z_2}.$$

- Follow the transformations of the Riemann–Hilbert analysis:

$$Y \mapsto X \mapsto T \mapsto S \mapsto R.$$

- Transfer to a double contour integral on the Riemann surface:

$$\frac{1}{(2\pi i)^2} \oint \oint \frac{\exp(N(\Phi(p_1) - \Phi(p_2)))}{z(p_1) - z(p_2)} \left(\text{bounded in } N \right) \frac{dz(p_1) dz(p_2)}{z(p_2)}.$$

- Perform steepest descent analysis (or saddle point analysis). A special role will be played by a saddle point s of $\Phi(p)$.
- Study the level set $\operatorname{Re} \Phi(p) = \operatorname{Re} \Phi(s)$, and use these to prove the existence of steepest descent/ascent curves.

First transformation $Y \mapsto X$

From the previous talk, we recall the following:

- Riemann–Hilbert problem:

$$Y_+(z) = Y_-(z) \begin{pmatrix} I_3 & W(z)^{2N}/z^{2N} \\ 0_3 & I_3 \end{pmatrix}, \quad z \in \mathbb{T}.$$

First transformation $Y \mapsto X$

From the previous talk, we recall the following:

- Riemann–Hilbert problem:

$$Y_+(z) = Y_-(z) \begin{pmatrix} I_3 & W(z)^{2N}/z^{2N} \\ 0_3 & I_3 \end{pmatrix}, \quad z \in \mathbb{T}.$$

- Christoffel–Darboux formula:

$$R_N(z_1, z_2) = \frac{1}{z_2 - z_1} \begin{pmatrix} 0_3 & I_3 \end{pmatrix} Y^{-1}(z_1) Y(z_2) \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix}, \quad z_1 \neq z_2.$$

Note that $R_N(z_1, z_2)$ is a polynomial of degree $N - 1$ in both variables and that the right-hand side still makes sense even when $z_1 = z_2$ due to a zero-pole cancellation.

First transformation $Y \mapsto X$

From the previous talk, we recall the following:

- Riemann–Hilbert problem:

$$Y_+(z) = Y_-(z) \begin{pmatrix} I_3 & W(z)^{2N}/z^{2N} \\ 0_3 & I_3 \end{pmatrix}, \quad z \in \mathbb{T}.$$

- Christoffel–Darboux formula:

$$R_N(z_1, z_2) = \frac{1}{z_2 - z_1} \begin{pmatrix} 0_3 & I_3 \end{pmatrix} Y^{-1}(z_1) Y(z_2) \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix}, \quad z_1 \neq z_2.$$

Note that $R_N(z_1, z_2)$ is a polynomial of degree $N - 1$ in both variables and that the right-hand side still makes sense even when $z_1 = z_2$ due to a zero-pole cancellation.

- First transformation:

$$X(z) = Y(z) \begin{pmatrix} E(z) & 0_3 \\ 0_3 & E(z) \end{pmatrix} \quad \text{with } W(z) = E(z)\Lambda(z)E^{-1}(z).$$

First transformation $Y \mapsto X$

From the previous talk, we recall the following:

- Riemann–Hilbert problem:

$$Y_+(z) = Y_-(z) \begin{pmatrix} I_3 & W(z)^{2N}/z^{2N} \\ 0_3 & I_3 \end{pmatrix}, \quad z \in \mathbb{T}.$$

- Christoffel–Darboux formula:

$$R_N(z_1, z_2) = \frac{1}{z_2 - z_1} \begin{pmatrix} 0_3 & I_3 \end{pmatrix} Y^{-1}(z_1) Y(z_2) \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix}, \quad z_1 \neq z_2.$$

Note that $R_N(z_1, z_2)$ is a polynomial of degree $N - 1$ in both variables and that the right-hand side still makes sense even when $z_1 = z_2$ due to a zero-pole cancellation.

- First transformation:

$$X(z) = Y(z) \begin{pmatrix} E(z) & 0_3 \\ 0_3 & E(z) \end{pmatrix} \quad \text{with } W(z) = E(z)\Lambda(z)E^{-1}(z).$$

- After substitution:

$$R_N(z_1, z_2) = \frac{1}{z_2 - z_1} E(z_1) \begin{pmatrix} 0_3 & I_3 \end{pmatrix} X^{-1}(z_1) X(z_2) \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix} E^{-1}(z_2).$$

First transformation $Y \mapsto X$

- After contour deformation, we have

$$[K(v_1, v_2)]_{k_1, k_2=0}^2 = \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} \oint_{\mathbb{T}} \frac{W(z_1)^{2N-x}}{z_1^{2N-y}} R_N(z_1, z_2) \frac{W(z_2)^x}{z_2^y} \frac{dz_1 dz_2}{z_2}.$$

First transformation $Y \mapsto X$

- After contour deformation, we have

$$[K(v_1, v_2)]_{k_1, k_2=0}^2 = \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} \oint_{\mathbb{T}} \frac{W(z_1)^{2N-x}}{z_1^{2N-y}} R_N(z_1, z_2) \frac{W(z_2)^x}{z_2^y} \frac{dz_1 dz_2}{z_2}.$$

- Thus

$$\begin{aligned} [K(v_1, v_2)]_{k_1, k_2=0}^2 &= \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} E(z_1) \frac{\Lambda(z_1)^{2N-x}}{z_1^{2N-y}} \begin{pmatrix} 0_3 & I_3 \end{pmatrix} X^{-1}(z_1) \\ &\quad \times \oint_{\mathbb{T}} X(z_2) \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix} \frac{\Lambda(z_2)^x}{z_2^y} \frac{E^{-1}(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2}, \end{aligned}$$

where we have used that

$$R_N(z_1, z_2) = \frac{1}{z_2 - z_1} E(z_1) \begin{pmatrix} 0_3 & I_3 \end{pmatrix} X^{-1}(z_1) X(z_2) \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix} E^{-1}(z_2).$$

First transformation $Y \mapsto X$: a balancing trick

- A consequence of the jump condition for X is:

$$X(z) \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix} \frac{\Lambda(z)^{2N}}{z^{2N}} = X_+(z) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} - X_-(z) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix}, \quad z \in \mathbb{T}.$$

First transformation $Y \mapsto X$: a balancing trick

- A consequence of the jump condition for X is:

$$X(z) \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix} \frac{\Lambda(z)^{2N}}{z^{2N}} = X_+(z) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} - X_-(z) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix}, \quad z \in \mathbb{T}.$$

- We use this to split the integral:

$$\begin{aligned} [K(v_1, v_2)]_{k_1, k_2=0}^2 &= \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} E(z_1) \frac{\Lambda(z_1)^{2N-x}}{z_1^{2N-y}} \begin{pmatrix} 0_3 & I_3 \end{pmatrix} X^{-1}(z_1) \\ &\quad \times \left(\oint_{\mathbb{T}_{1-\delta/2}} X(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} \frac{\Lambda(z_2)^{-(2N-x)}}{z_2^{-(2N-y)}} \frac{E^{-1}(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \right. \\ &\quad \left. - \oint_{\mathbb{T}_{1+\delta/2}} X(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} \frac{\Lambda(z_2)^{-(2N-x)}}{z_2^{-(2N-y)}} \frac{E^{-1}(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \right). \end{aligned}$$

First transformation $Y \mapsto X$: a balancing trick

- A consequence of the jump condition for X is:

$$X(z) \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix} \frac{\Lambda(z)^{2N}}{z^{2N}} = X_+(z) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} - X_-(z) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix}, \quad z \in \mathbb{T}.$$

- We use this to split the integral:

$$\begin{aligned} [K(v_1, v_2)]_{k_1, k_2=0}^2 &= \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} E(z_1) \frac{\Lambda(z_1)^{2N-x}}{z_1^{2N-y}} \begin{pmatrix} 0_3 & I_3 \end{pmatrix} X^{-1}(z_1) \\ &\quad \times \left(\oint_{\mathbb{T}} X_+(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} \frac{\Lambda(z_2)^{-(2N-x)}}{z_2^{-(2N-y)}} \frac{E^{-1}(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \right. \\ &\quad \left. - \oint_{\mathbb{T}} X_-(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} \frac{\Lambda(z_2)^{-(2N-x)}}{z_2^{-(2N-y)}} \frac{E^{-1}(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \right). \end{aligned}$$

First transformation $Y \mapsto X$: a balancing trick

- A consequence of the jump condition for X is:

$$X(z) \begin{pmatrix} I_3 \\ 0_3 \end{pmatrix} \frac{\Lambda(z)^{2N}}{z^{2N}} = X_+(z) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} - X_-(z) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix}, \quad z \in \mathbb{T}.$$

- We use this to split the integral:

$$\begin{aligned} [K(v_1, v_2)]_{k_1, k_2=0}^2 &= \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} E(z_1) \frac{\Lambda(z_1)^{2N-x}}{z_1^{2N-y}} \begin{pmatrix} 0_3 & I_3 \end{pmatrix} X^{-1}(z_1) \\ &\quad \times \left(\oint_{\mathbb{T}_{1-\delta/2}} X(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} \frac{\Lambda(z_2)^{-(2N-x)}}{z_2^{-(2N-y)}} \frac{E^{-1}(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \right. \\ &\quad \left. - \oint_{\mathbb{T}_{1+\delta/2}} X(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} \frac{\Lambda(z_2)^{-(2N-x)}}{z_2^{-(2N-y)}} \frac{E^{-1}(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \right). \end{aligned}$$

- **Disclaimer:** we should treat λ_3 differently due to $\lambda_3(-1) = 0$, but we choose to ignore this to simplify the exposition.

Second transformation $X \mapsto T$

- Recall second transformation:

$$T(z) = \begin{pmatrix} e^{2N\ell}I_3 & 0_3 \\ 0_3 & I_3 \end{pmatrix} X(z) \begin{pmatrix} G_+^N(z) & 0_3 \\ 0_3 & G_-^N(z) \end{pmatrix} \begin{pmatrix} e^{-2N\ell}I_3 & 0_3 \\ 0_3 & I_3 \end{pmatrix},$$

with

$$G_{\pm}(z) = \begin{pmatrix} \exp(\pm g_1(z)) & & \\ & \exp(\pm g_2(z)) & \\ & & \exp(\pm g_3(z)) \end{pmatrix}.$$

Second transformation $X \mapsto T$

- Recall second transformation:

$$T(z) = \begin{pmatrix} e^{2N\ell}I_3 & 0_3 \\ 0_3 & I_3 \end{pmatrix} X(z) \begin{pmatrix} G_+^N(z) & 0_3 \\ 0_3 & G_-^N(z) \end{pmatrix} \begin{pmatrix} e^{-2N\ell}I_3 & 0_3 \\ 0_3 & I_3 \end{pmatrix},$$

with

$$G_{\pm}(z) = \begin{pmatrix} \exp(\pm g_1(z)) & & \\ & \exp(\pm g_2(z)) & \\ & & \exp(\pm g_3(z)) \end{pmatrix}.$$

- After substitution:

$$(0_3 \quad I_3) X^{-1}(z_1) X(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} = G_+^N(z_1) (0_3 \quad I_3) T^{-1}(z_1) T(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} G_-^N(z_2),$$

Second transformation $X \mapsto T$

- Recall second transformation:

$$T(z) = \begin{pmatrix} e^{2N\ell} I_3 & 0_3 \\ 0_3 & I_3 \end{pmatrix} X(z) \begin{pmatrix} G_+^N(z) & 0_3 \\ 0_3 & G_-^N(z) \end{pmatrix} \begin{pmatrix} e^{-2N\ell} I_3 & 0_3 \\ 0_3 & I_3 \end{pmatrix},$$

with

$$G_{\pm}(z) = \begin{pmatrix} \exp(\pm g_1(z)) & & \\ & \exp(\pm g_2(z)) & \\ & & \exp(\pm g_3(z)) \end{pmatrix}.$$

- After substitution:

$$(0_3 \quad I_3) X^{-1}(z_1) X(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} = G_+^N(z_1) (0_3 \quad I_3) T^{-1}(z_1) T(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} G_-^N(z_2),$$

so that

$$\begin{aligned} [K(v_1, v_2)]_{k_1, k_2=0}^2 &= \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} E(z_1) G_+^N(z_1) \frac{\Lambda(z_1)^{2N-x}}{z_1^{2N-y}} (0_3 \quad I_3) T^{-1}(z_1) \\ &\quad \times \left(\oint_{\mathbb{T}_{1-\delta/2}} T(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} G_-^N(z_2) \frac{\Lambda(z_2)^{-(2N-x)}}{z_2^{-(2N-y)}} \frac{E^{-1}(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \right. \\ &\quad \left. - \oint_{\mathbb{T}_{1+\delta/2}} T(z_2) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} G_-^N(z_2) \frac{\Lambda(z_2)^{-(2N-x)}}{z_2^{-(2N-y)}} \frac{E^{-1}(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \right). \end{aligned}$$

Remaining transformations $T \mapsto S \mapsto M \mapsto R$

- Outside the lens, we have

$$T(z) = \begin{pmatrix} L^N & 0_3 \\ 0_3 & L^{-N} \end{pmatrix} S(z) = \begin{pmatrix} L^N & 0_3 \\ 0_3 & L^{-N} \end{pmatrix} R(z)M(z)$$

for some constant lower-triangular matrix L and

$$R(z) = I_6 + \mathcal{O}\left(\frac{e^{-cN}}{1+|z|}\right) \quad \text{for some } c > 0.$$

Remaining transformations $T \mapsto S \mapsto M \mapsto R$

- Outside the lens, we have

$$T(z) = \begin{pmatrix} L^N & 0_3 \\ 0_3 & L^{-N} \end{pmatrix} S(z) = \begin{pmatrix} L^N & 0_3 \\ 0_3 & L^{-N} \end{pmatrix} R(z) M(z)$$

for some constant lower-triangular matrix L and

$$R(z) = I_6 + \mathcal{O}\left(\frac{e^{-cN}}{1+|z|}\right) \quad \text{for some } c > 0.$$

- Therefore, for a small enough lens, we may take

$$T(z) = \begin{pmatrix} L^N & 0_3 \\ 0_3 & L^{-N} \end{pmatrix} M(z),$$

which only contributes an **exponentially small error** (in N).

Remaining transformations $T \mapsto S \mapsto R$

- Finally, we arrive at

$$\begin{aligned}[K(v_1, v_2)]_{k_1, k_2=0}^2 &= \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} \oint_{\mathbb{T}_{1-\delta/2}} \frac{A(z_1)B(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \\ &\quad - \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} \oint_{\mathbb{T}_{1+\delta/2}} \frac{A(z_1)B(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2},\end{aligned}$$

with

$$\begin{aligned}A(z) &= E(z) G_+^N(z) \frac{\Lambda(z)^{2N-x}}{z^{2N-y}} \begin{pmatrix} 0_3 & I_3 \end{pmatrix} M^{-1}(z) \\ B(z) &= M(z) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} G_-^N(z) \frac{\Lambda(z)^{-(2N-x)}}{z^{-(2N-y)}} E^{-1}(z).\end{aligned}$$

- Finally, we arrive at

$$\begin{aligned}[K(v_1, v_2)]_{k_1, k_2=0}^2 &= \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} \oint_{\mathbb{T}_{1-\delta/2}} \frac{A(z_1)B(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \\ &\quad - \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} \oint_{\mathbb{T}_{1+\delta/2}} \frac{A(z_1)B(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2},\end{aligned}$$

with

$$\begin{aligned}A(z) &= E(z) G_+^N(z) \frac{\Lambda(z)^{2N-x}}{z^{2N-y}} \begin{pmatrix} 0_3 & I_3 \end{pmatrix} M^{-1}(z) \\ B(z) &= M(z) \begin{pmatrix} 0_3 \\ I_3 \end{pmatrix} G_-^N(z) \frac{\Lambda(z)^{-(2N-x)}}{z^{-(2N-y)}} E^{-1}(z).\end{aligned}$$

- $A(z)$ and $B(z)$ only have a jump on \mathbb{T} .

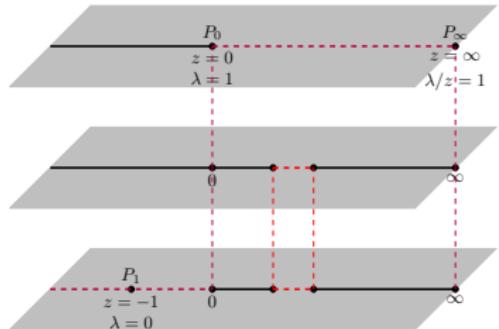
Functions on the Riemann surface

- Writing

$$\Lambda(z) = \begin{pmatrix} \lambda_1(z) & & \\ & \lambda_2(z) & \\ & & \lambda_3(z) \end{pmatrix},$$

we find a function λ on the Riemann surface by defining

$$\lambda(p) = \begin{cases} \lambda_1(z(p)) & \text{if } p \text{ lies on the first sheet;} \\ \lambda_2(z(p)) & \text{if } p \text{ lies on the second sheet;} \\ \lambda_3(z(p)) & \text{if } p \text{ lies on the third sheet.} \end{cases}$$



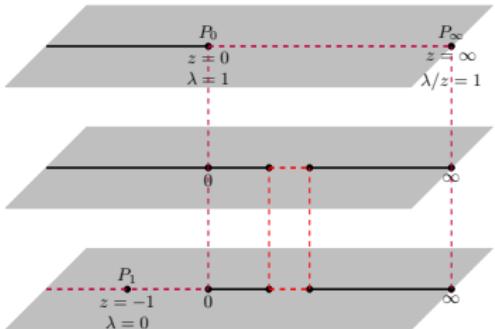
Functions on the Riemann surface

- Writing

$$\Lambda(z) = \begin{pmatrix} \lambda_1(z) & & \\ & \lambda_2(z) & \\ & & \lambda_3(z) \end{pmatrix},$$

we find a function λ on the Riemann surface by defining

$$\lambda(p) = \begin{cases} \lambda_1(z(p)) & \text{if } p \text{ lies on the first sheet;} \\ \lambda_2(z(p)) & \text{if } p \text{ lies on the second sheet;} \\ \lambda_3(z(p)) & \text{if } p \text{ lies on the third sheet.} \end{cases}$$



- Generically there are three points $p_0(z)$, $p_1(z)$, and $p_2(z)$ above z , i.e., $z(p_j(z)) = z$, so

$$\Lambda(z) = \sum_{j=0}^2 \lambda(p_j(z)) \text{Sh}(p_j(z)), \quad \text{Sh}(p) = \begin{cases} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} & \text{if } p \text{ lies on the first sheet;} \\ \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} & \text{if } p \text{ lies on the second sheet;} \\ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} & \text{if } p \text{ lies on the third sheet.} \end{cases}$$

Interpreting the integrals on the Riemann surface

- Similarly, we have

$$G_{\pm}(z) = \sum_{j=0}^2 \exp(\pm g(p_j(z))) \mathbf{Sh}(p_j(z)),$$

so that

$$A(z) = \sum_{j=0}^2 \mathcal{A}(p_j(z)), \quad B(z) = \sum_{j=0}^2 \mathcal{B}(p_j(z)).$$

Interpreting the integrals on the Riemann surface

- Similarly, we have

$$G_{\pm}(z) = \sum_{j=0}^2 \exp(\pm g(p_j(z))) \mathbf{Sh}(p_j(z)),$$

so that

$$A(z) = \sum_{j=0}^2 \mathcal{A}(p_j(z)), \quad B(z) = \sum_{j=0}^2 \mathcal{B}(p_j(z)).$$

- Hence,

$$\begin{aligned} & \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} \oint_{\mathbb{T}_{1\mp\delta/2}} \frac{A(z_1)B(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \\ &= \frac{1}{(2\pi i)^2} \sum_{j,k=1}^2 \oint_{\mathbb{T}_{1-\delta}} \oint_{\mathbb{T}_{1\mp\delta/2}} \frac{\mathcal{A}(p_j(z_1))\mathcal{B}(p_k(z_2))}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \end{aligned}$$

Interpreting the integrals on the Riemann surface

- Similarly, we have

$$G_{\pm}(z) = \sum_{j=0}^2 \exp(\pm g(p_j(z))) \mathbf{Sh}(p_j(z)),$$

so that

$$A(z) = \sum_{j=0}^2 \mathcal{A}(p_j(z)), \quad B(z) = \sum_{j=0}^2 \mathcal{B}(p_j(z)).$$

- Hence,

$$\begin{aligned} & \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}_{1-\delta}} \oint_{\mathbb{T}_{1\mp\delta/2}} \frac{A(z_1)B(z_2)}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \\ &= \frac{1}{(2\pi i)^2} \sum_{j,k=1}^2 \oint_{\mathbb{T}_{1-\delta}} \oint_{\mathbb{T}_{1\mp\delta/2}} \frac{\mathcal{A}(p_j(z_1))\mathcal{B}(p_k(z_2))}{z_2 - z_1} \frac{dz_1 dz_2}{z_2} \\ &= \frac{1}{(2\pi i)^2} \oint_{\gamma_1} \oint_{\gamma_2, \mp} \frac{\mathcal{A}(p_1)\mathcal{B}(p_2)}{z(p_2) - z(p_1)} \frac{z(p_1)dz(p_2)}{z(p_2)}. \end{aligned}$$

Interpreting the integrals on the Riemann surface

- As promised, we arrive at

$$[K(v_1, v_2)]_{k_1, k_2=0}^2 = \oint_{\gamma_1} \oint_{\gamma_{2,+} \cup \bar{\gamma}_{2,-}} \frac{\exp(N(\Phi(p_1) - \Phi(p_2)))}{z(p_1) - z(p_2)} \left(\text{bounded in } N \right) \frac{dz(p_1) dz(p_2)}{z(p_2)}$$

with $\Phi(p) = g(p) + (1 - \xi_1) \log \lambda(p) - (1 - \xi_2) \log z(p)$.

Interpreting the integrals on the Riemann surface

- As promised, we arrive at

$$[K(v_1, v_2)]_{k_1, k_2=0}^2 = \oint_{\gamma_1} \oint_{\gamma_{2,+} \cup \bar{\gamma}_{2,-}} \frac{\exp(N(\Phi(p_1) - \Phi(p_2)))}{z(p_1) - z(p_2)} \left(\text{bounded in } N \right) \frac{dz(p_1) dz(p_2)}{z(p_2)}$$

with $\Phi(p) = g(p) + (1 - \xi_1) \log \lambda(p) - (1 - \xi_2) \log z(p)$.

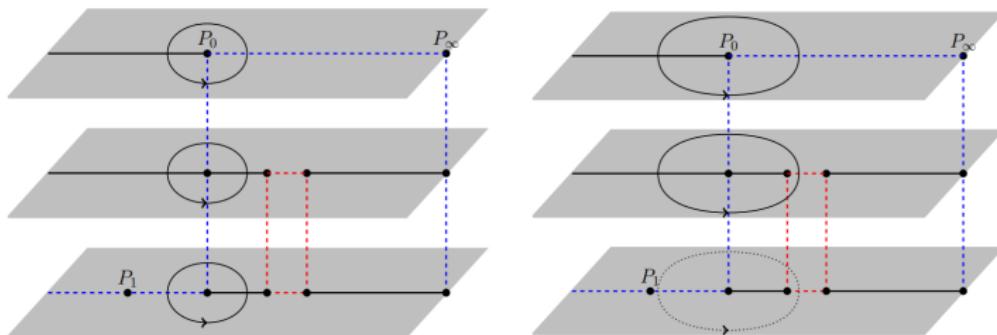


Figure: γ_1 (left) and $\gamma_{2,\pm}$ (right).

Curves on the amoeba

- The curve $P(z, \lambda) = 0$ has the **Harnack property**:

$$\log : (z, \lambda) \mapsto (\log |z|, \log |\lambda|)$$

is at most 2-to-1.

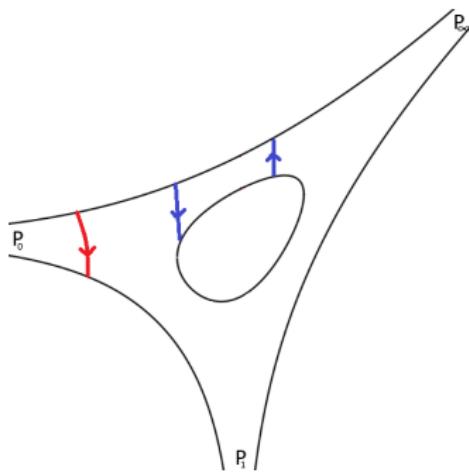
Curves on the amoeba

- The curve $P(z, \lambda) = 0$ has the **Harnack property**:

$$\log : (z, \lambda) \mapsto (\log |z|, \log |\lambda|)$$

is at most 2-to-1.

- The image is known as the **amoeba**:



Curves on the amoeba

- The function $\Phi(p)$ still has a jump on $\Gamma_1 \cup \Gamma_2$:

$$\Phi_+(p) = -\Phi_-(p), \quad z \in \Gamma_1 \cup \Gamma_2.$$

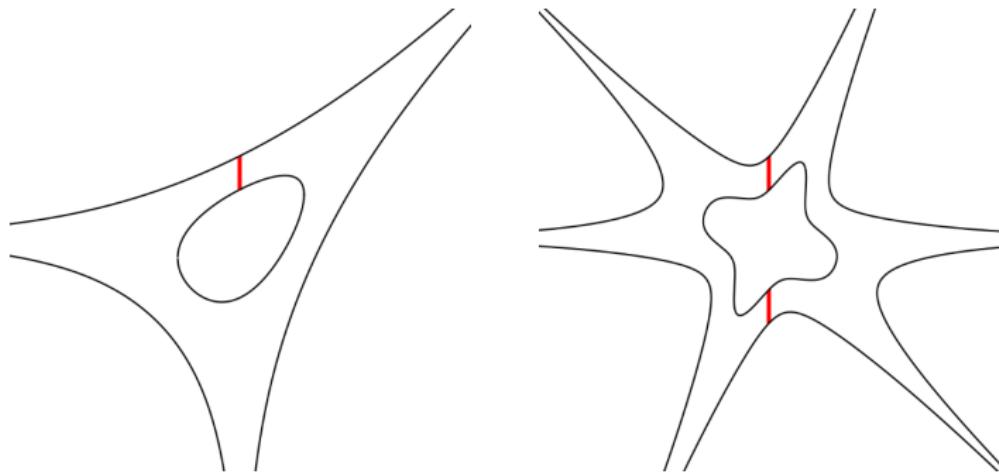
- It has an analytic continuation to the **double cover** of the Riemann surface.

Curves on the amoeba

- The function $\Phi(p)$ still has a jump on $\Gamma_1 \cup \Gamma_2$:

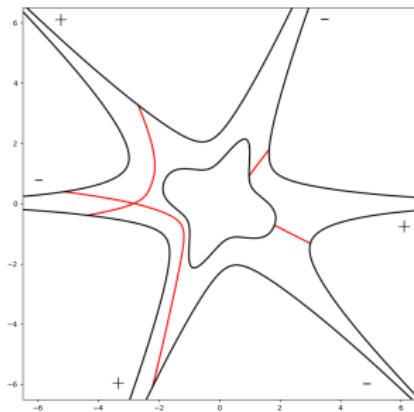
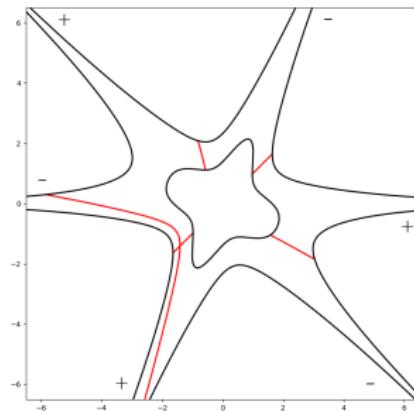
$$\Phi_+(p) = -\Phi_-(p), \quad z \in \Gamma_1 \cup \Gamma_2.$$

- It has an analytic continuation to the **double cover** of the Riemann surface.
- We represent the double cover by the **double amoeba**:

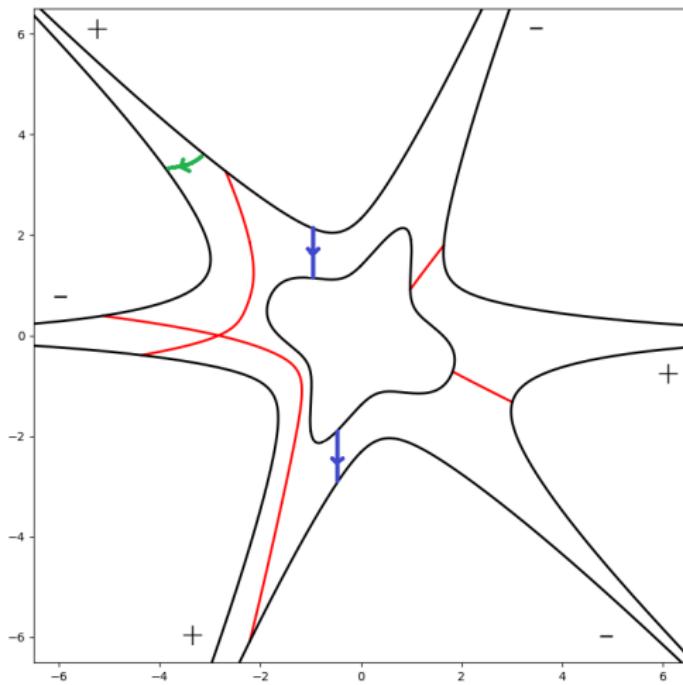


Level sets on the double amoeba

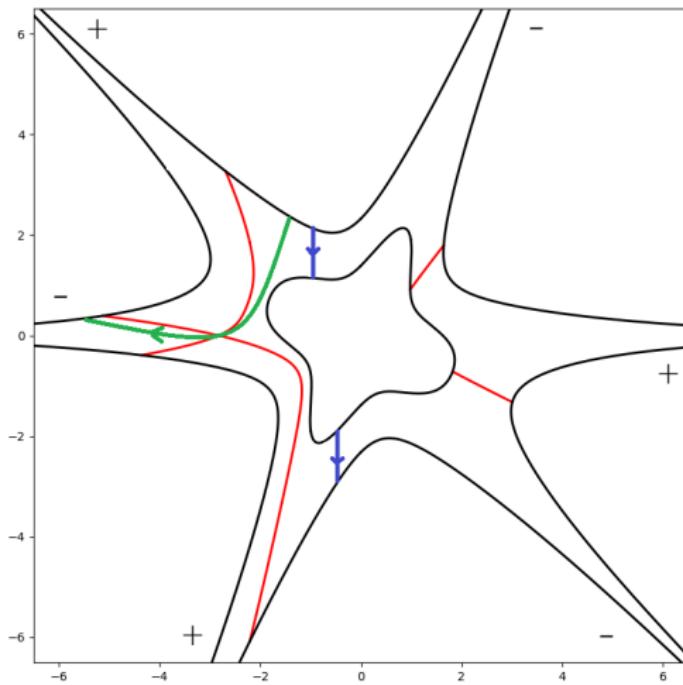
- Two possible configurations of the level set $\text{Re } \Phi(p) = \text{Re } \Phi(s)$ are:



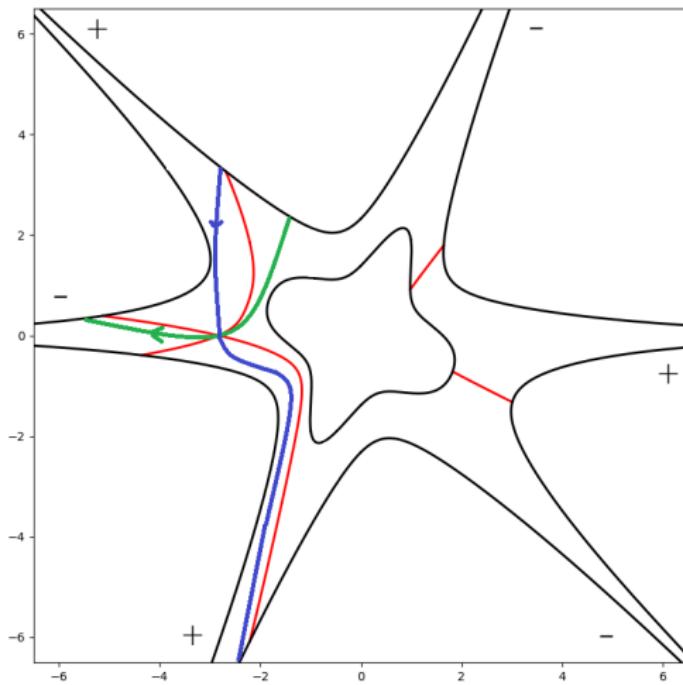
Contour deformations on the double amoeba



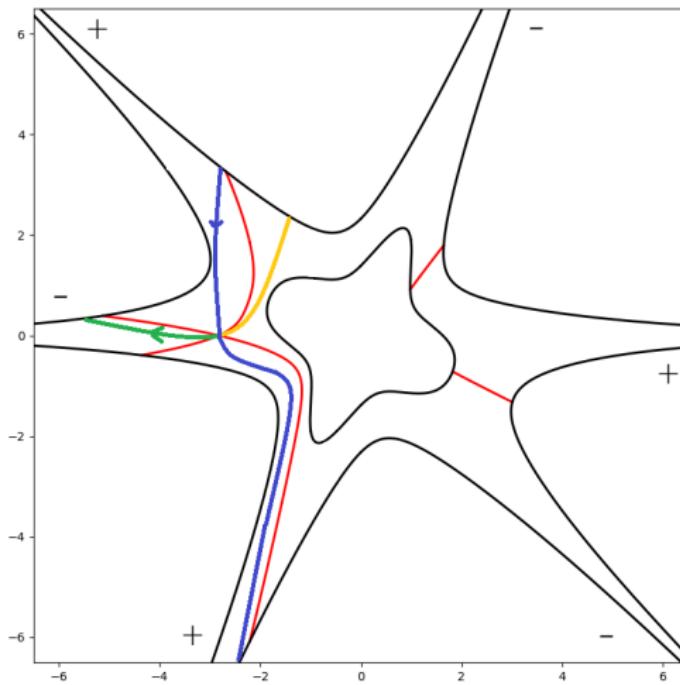
Contour deformations on the double amoeba



Contour deformations on the double amoeba



Contour deformations on the double amoeba



Steepest descent analysis

- As promised, we arrive at

$$\begin{aligned}[K(v_1, v_2)]_{k_1, k_2=0}^2 &= \frac{1}{(2\pi i)^2} \oint_{\tilde{\gamma}_1} \oint_{\tilde{\gamma}_2} \frac{\exp(N(\Phi(p_1) - \Phi(p_2)))}{z(p_1) - z(p_2)} \left(\text{bounded in } N \right) \frac{dz(p_1) dz(p_2)}{z(p_2)} \\ &+ \frac{1}{2\pi i} \oint_{\gamma(\xi_1, \xi_2)} E(z(p)) \mathsf{Sh}(p) E^{-1}(z(p)) \frac{dz(p)}{z(p)}\end{aligned}$$

Steepest descent analysis

- As promised, we arrive at

$$\begin{aligned}[K(v_1, v_2)]_{k_1, k_2=0}^2 &= \frac{1}{(2\pi i)^2} \oint_{\tilde{\gamma}_1} \oint_{\tilde{\gamma}_2} \frac{\exp(N(\Phi(p_1) - \Phi(p_2)))}{z(p_1) - z(p_2)} \left(\text{bounded in } N \right) \frac{dz(p_1) dz(p_2)}{z(p_2)} \\ &+ \frac{1}{2\pi i} \oint_{\gamma(\xi_1, \xi_2)} E(z(p)) \text{Sh}(p) E^{-1}(z(p)) \frac{dz(p)}{z(p)}\end{aligned}$$

where

$$\text{Re } \Phi(p_1) \leq \text{Re } \Phi(s)$$

$$\text{Re } \Phi(p_2) \geq \text{Re } \Phi(s)$$

$\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ follow the paths of steepest descent/ascent near s .

Steepest descent analysis

- As promised, we arrive at

$$\begin{aligned}[K(v_1, v_2)]_{k_1, k_2=0}^2 &= \frac{1}{(2\pi i)^2} \oint_{\tilde{\gamma}_1} \oint_{\tilde{\gamma}_2} \frac{\exp(N(\Phi(p_1) - \Phi(p_2)))}{z(p_1) - z(p_2)} \left(\text{bounded in } N \right) \frac{dz(p_1) dz(p_2)}{z(p_2)} \\ &+ \frac{1}{2\pi i} \oint_{\gamma(\xi_1, \xi_2)} E(z(p)) \text{Sh}(p) E^{-1}(z(p)) \frac{dz(p)}{z(p)}\end{aligned}$$

where

$$\text{Re } \Phi(p_1) \leq \text{Re } \Phi(s)$$

$$\text{Re } \Phi(p_2) \geq \text{Re } \Phi(s)$$

$\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ follow the paths of steepest descent/ascent near s .

- The double contour integral tends to 0 as $N \rightarrow \infty$ outside a small neighborhood of s .

Steepest descent analysis

- As promised, we arrive at

$$\begin{aligned}[K(v_1, v_2)]_{k_1, k_2=0}^2 &= \frac{1}{(2\pi i)^2} \oint_{\tilde{\gamma}_1} \oint_{\tilde{\gamma}_2} \frac{\exp(N(\Phi(p_1) - \Phi(p_2)))}{z(p_1) - z(p_2)} \left(\text{bounded in } N \right) \frac{dz(p_1) dz(p_2)}{z(p_2)} \\ &\quad + \frac{1}{2\pi i} \oint_{\gamma(\xi_1, \xi_2)} E(z(p)) \text{Sh}(p) E^{-1}(z(p)) \frac{dz(p)}{z(p)}\end{aligned}$$

where

$$\text{Re } \Phi(p_1) \leq \text{Re } \Phi(s)$$

$$\text{Re } \Phi(p_2) \geq \text{Re } \Phi(s)$$

$\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ follow the paths of steepest descent/ascent near s .

- The double contour integral tends to 0 as $N \rightarrow \infty$ outside a small neighborhood of s .
- Local analysis shows that the remaining part also vanishes.

Main Theorem

Theorem

The large- N limit of the correlation kernel is given by

$$\lim_{N \rightarrow \infty} K(v_{1,N}, v_{2,N}) = K_{(\xi_1, \xi_2)}(v_1, v_2).$$

The 3×3 -periodic limit kernel $K_{(\xi_1, \xi_2)} : \mathbb{Z}^2 \times \mathbb{Z}^2 \rightarrow \mathbb{R}$ equals

$$\begin{aligned} [K_{(\xi_1, \xi_2)}(v_1, v_2)]_{k_1, k_2=0}^2 &= -\frac{\chi_{3x_1+j_1 > 3x_2+j_2}}{2\pi i} \oint_{\mathbb{T}} \frac{T_{0,j_2}^{-1}(z) W(z)^{x_1-x_2} T_{0,j_1}(z)}{z^{y_1-y_2}} \frac{dz}{z} \\ &\quad + \frac{1}{2\pi i} \int_{\gamma_{(\xi_1, \xi_2)}} \frac{\lambda(p)^{x_1-x_2}}{z(p)^{y_1-y_2}} T_{0,j_2}^{-1}(z(p)) \Xi(p) T_{0,j_1}(z(p)), \end{aligned}$$

with $v_1 = (3x_1 + j_1, 3y_1 + k_1)$ and $v_2 = (3x_2 + j_2, 3y_2 + k_2)$. Here $x_1, y_1, x_2, y_2 \in \mathbb{Z}$ and $j_1, k_1, j_2, k_2 \in \{0, 1, 2\}$.

Main Theorem

Theorem

The large- N limit of the correlation kernel is given by

$$\lim_{N \rightarrow \infty} K(v_{1,N}, v_{2,N}) = K_{(\xi_1, \xi_2)}(v_1, v_2).$$

The 3×3 -periodic limit kernel $K_{(\xi_1, \xi_2)} : \mathbb{Z}^2 \times \mathbb{Z}^2 \rightarrow \mathbb{R}$ equals

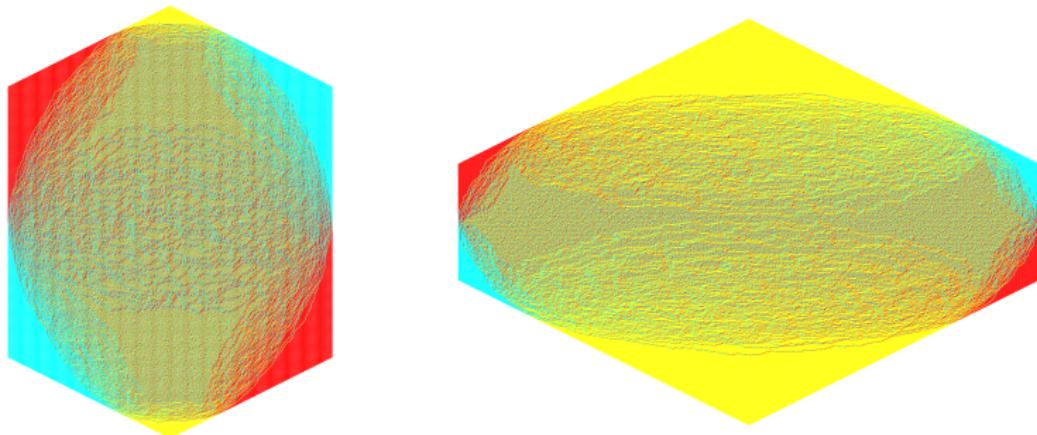
$$\begin{aligned} [K_{(\xi_1, \xi_2)}(v_1, v_2)]_{k_1, k_2=0}^2 &= -\frac{\chi_{3x_1+j_1 > 3x_2+j_2}}{2\pi i} \oint_{\mathbb{T}} \frac{T_{0,j_2}^{-1}(z) W(z)^{x_1-x_2} T_{0,j_1}(z)}{z^{y_1-y_2}} \frac{dz}{z} \\ &\quad + \frac{1}{2\pi i} \int_{\gamma_{(\xi_1, \xi_2)}} \frac{\lambda(p)^{x_1-x_2}}{z(p)^{y_1-y_2}} T_{0,j_2}^{-1}(z(p)) \Xi(p) T_{0,j_1}(z(p)), \end{aligned}$$

with $v_1 = (3x_1 + j_1, 3y_1 + k_1)$ and $v_2 = (3x_2 + j_2, 3y_2 + k_2)$. Here $x_1, y_1, x_2, y_2 \in \mathbb{Z}$ and $j_1, k_1, j_2, k_2 \in \{0, 1, 2\}$.

- $\Xi = (\eta_{j,k})_{j,k=0}^2$ is a matrix with meromorphic differentials on \mathcal{R} .
- $\gamma(\xi_1, \xi_2)$ is a contour on the double cover of \mathcal{R} that connects s to \bar{s} in a specific way.

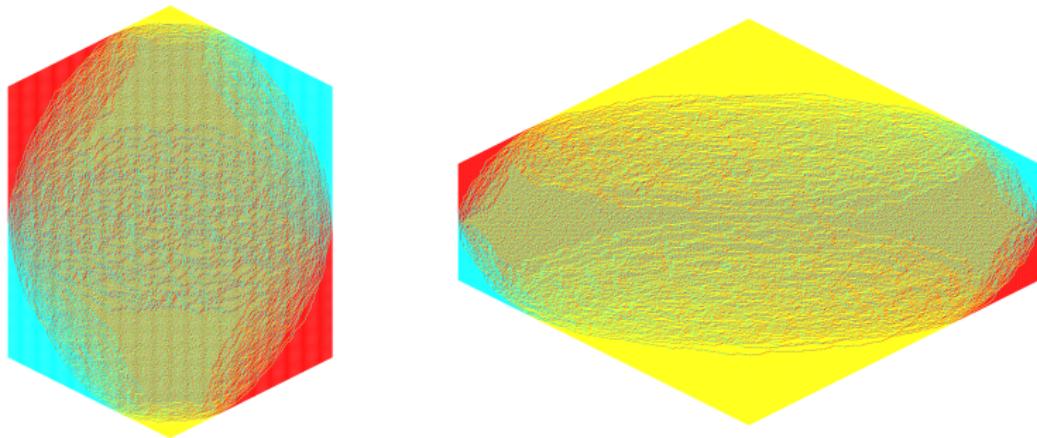
Outlook: non-regular random hexagon tilings

- The 3×3 -periodic tiling model is **very rich**; even for the specialized weights.
- Keeping $A = 1$ and varying $B = C \in (0, 1) \cup (1, \infty)$, we observe that the **gas phase splits** in two different ways.
- The inner arctic curve consists of **two curves** with **four cusp points** (cf. one curve with six cusp points).



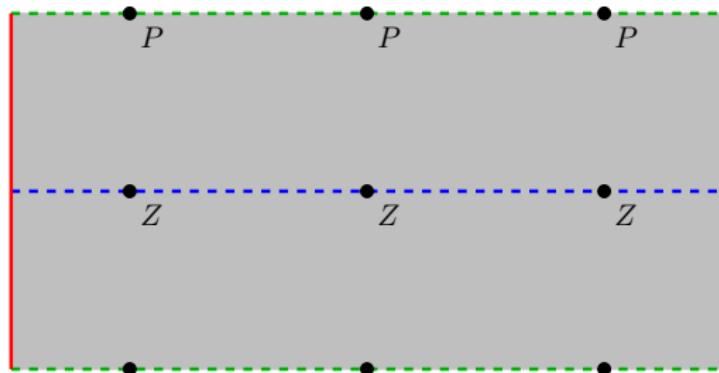
Outlook: non-regular random hexagon tilings

- The 3×3 -periodic tiling model is **very rich**; even for the specialized weights.
- Keeping $A = 1$ and varying $B = C \in (0, 1) \cup (1, \infty)$, we observe that the **gas phase splits** in two different ways.
- The inner arctic curve consists of **two curves** with **four cusp points** (cf. one curve with six cusp points).
- Merging occurs at either one or two cusp points.
- The geometry is captured by the **double cover**.



What happens to the equilibrium measure?

- In the regular case, the support of the equilibrium measure equals $\Gamma_1 \cup \Gamma_2$.
- The support is also a **trajectory** of a quadratic differential $Q(z, \lambda)dz^2$.
- The “root of $Q(z, \lambda)dz^2$ ” extends to a **meromorphic differential** on the double cover.

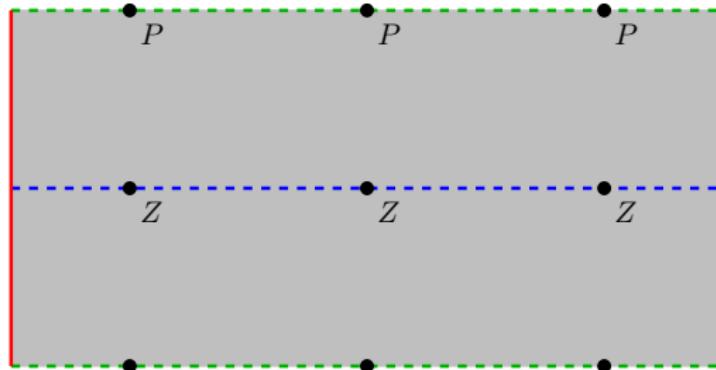


What happens to the equilibrium measure?

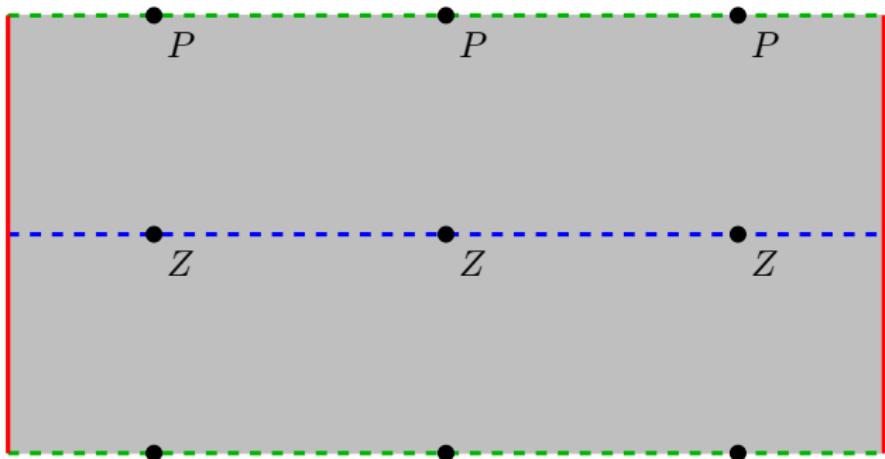
- In the regular case, the support of the equilibrium measure equals $\Gamma_1 \cup \Gamma_2$.
- The support is also a **trajectory** of a quadratic differential $Q(z, \lambda)dz^2$.
- The “root of $Q(z, \lambda)dz^2$ ” extends to a **meromorphic differential** on the double cover.
- Recall that:

$$\text{number of zeros} - \text{number of poles} = 2 \cdot \text{genus} - 2$$

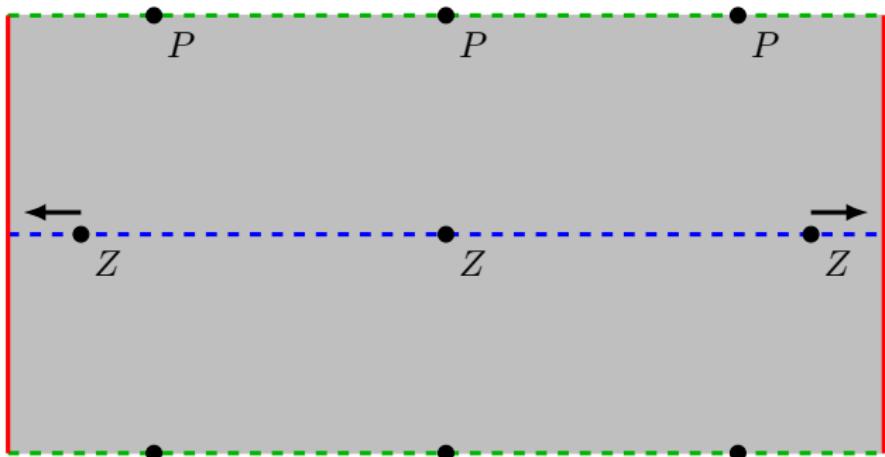
$$6 - 6 = 2 \cdot 1 - 2. \quad \checkmark$$



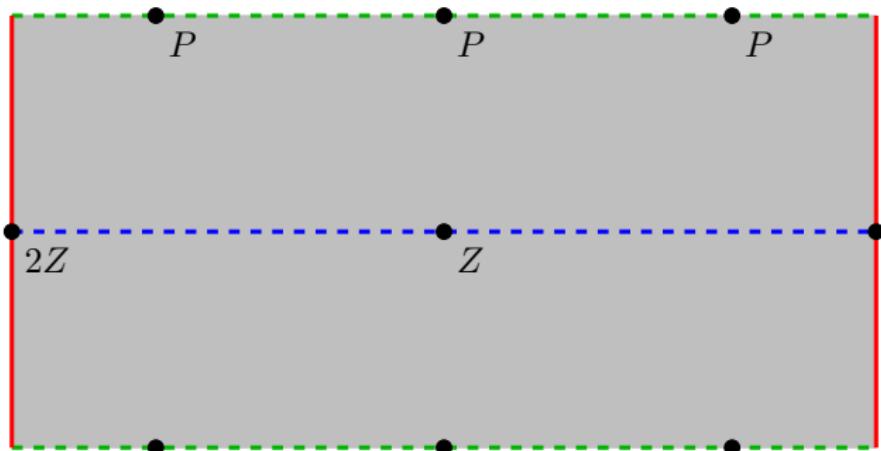
Moving zeros: track & trace ($B = C > 1$)



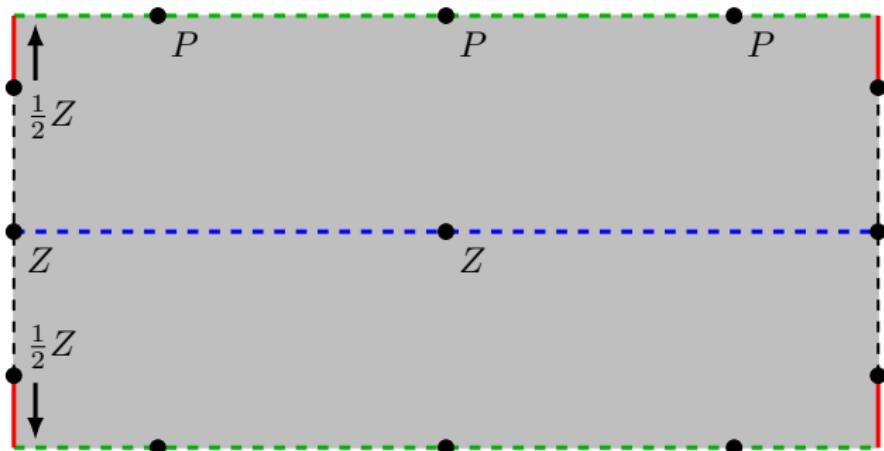
Moving zeros: track & trace ($B = C > 1$)



Moving zeros: track & trace ($B = C > 1$)

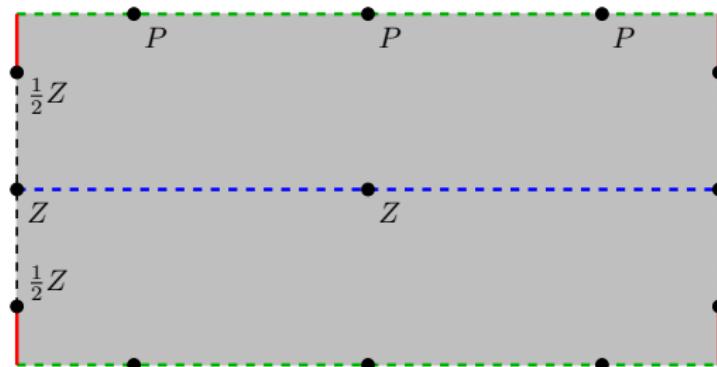


Moving zeros: track & trace ($B = C > 1$)



Ramified double cover

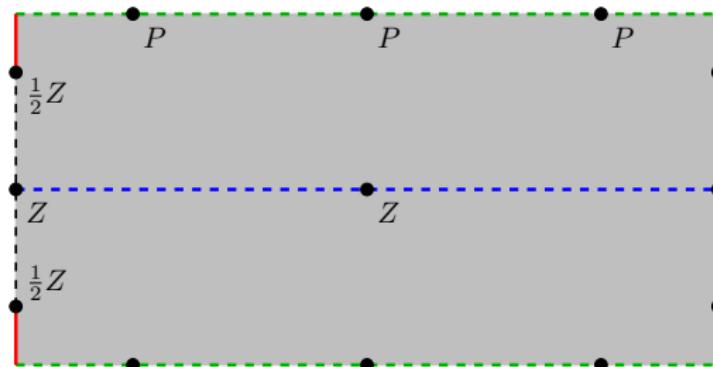
- For $B = C = c > 1$, the support is some subarc of $\Gamma_1 \cup \Gamma_2$.
- The support is a trajectory of an **explicit** quadratic differential $Q_c(z, \lambda)dz^2$.
- The double cover becomes **ramified** for large $c > 1$.



Ramified double cover

- For $B = C = c > 1$, the support is some subarc of $\Gamma_1 \cup \Gamma_2$.
- The support is a trajectory of an **explicit** quadratic differential $Q_c(z, \lambda)dz^2$.
- The double cover becomes **ramified** for large $c > 1$.
- The “root of $Q_c(z, \lambda)dz^2$ ” satisfies:

$$\begin{aligned}\text{number of zeros} - \text{number of poles} &= 2 \cdot \text{genus} - 2 \\ \text{number of zeros} &= 6 + 2 \cdot 2 - 2 = 8.\end{aligned}$$



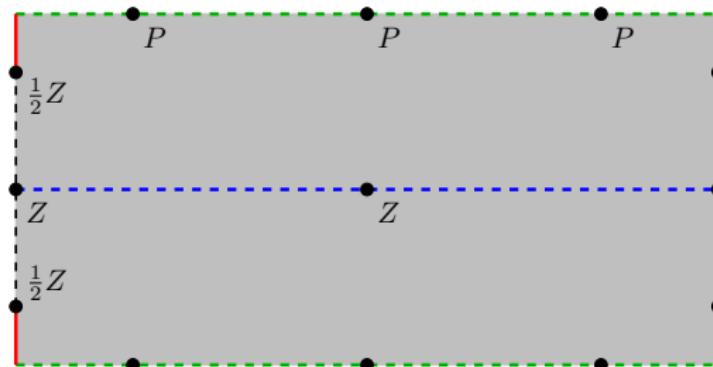
Ramified double cover

- For $B = C = c > 1$, the support is some subarc of $\Gamma_1 \cup \Gamma_2$.
- The support is a trajectory of an **explicit** quadratic differential $Q_c(z, \lambda)dz^2$.
- The double cover becomes **ramified** for large $c > 1$.
- The “root of $Q_c(z, \lambda)dz^2$ ” satisfies:

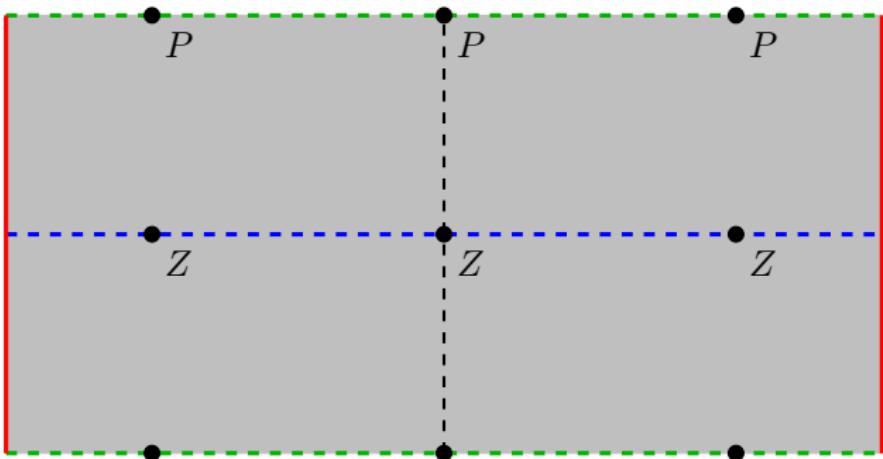
$$\begin{aligned}\text{number of zeros} - \text{number of poles} &= 2 \cdot \text{genus} - 2 \\ \text{number of zeros} &= 6 + 2 \cdot 2 - 2 = 8.\end{aligned}$$

- **2 extra zeros** are created by dz because of the ramification:

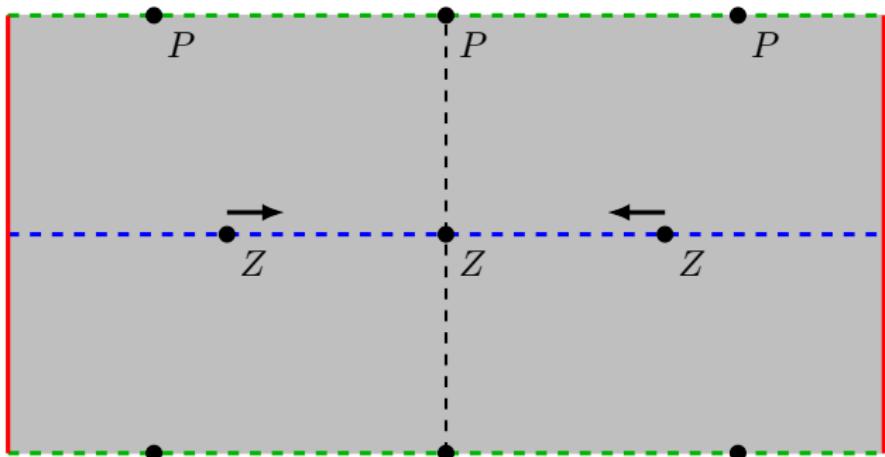
$$dz = d(z^{\frac{1}{2}})^2 = 2z^{\frac{1}{2}} dz^{\frac{1}{2}} \quad (z^{\frac{1}{2}} \text{ local coordinate}).$$



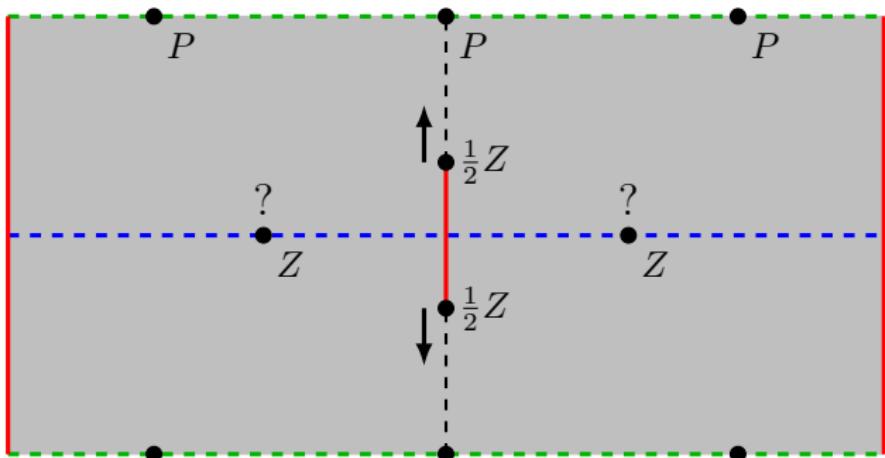
Moving zeros: unknown ($B = C < 1$)



Moving zeros: unknown ($B = C < 1$)



Moving zeros: unknown ($B = C < 1$)



Computing arctic curves

- For $(\xi_1, \xi_2) \in \mathcal{L}$, there is a unique zero $s_c(\xi_1, \xi_2)$ inside $\tilde{\mathcal{R}}_{c,+}$ of

$$Q_c^{\frac{1}{2}} dz + \xi_1 d \log \lambda - \xi_2 d \log z.$$

Computing arctic curves

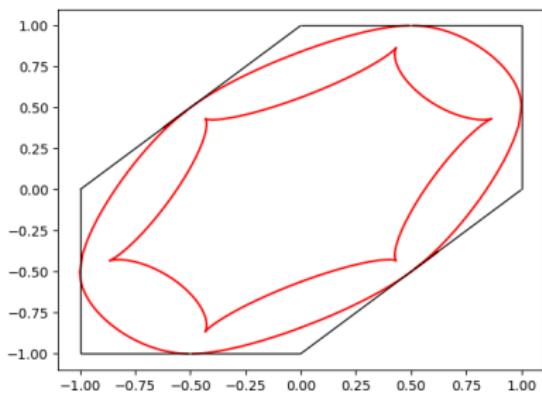
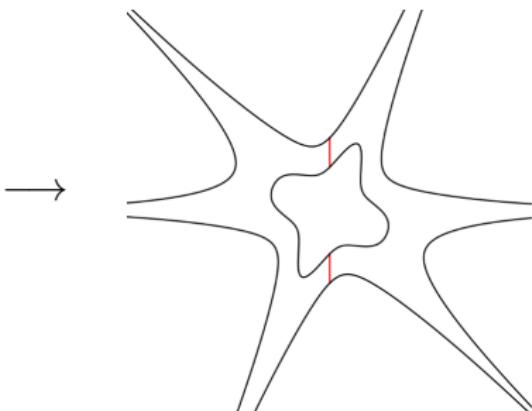
- For $(\xi_1, \xi_2) \in \mathcal{L}$, there is a unique zero $s_c(\xi_1, \xi_2)$ inside $\tilde{\mathcal{R}}_{c,+}$ of

$$Q_c^{\frac{1}{2}} dz + \xi_1 d \log \lambda - \xi_2 d \log z.$$

- The map

$$\mathcal{L} \rightarrow \tilde{\mathcal{R}}_{c,+}, (\xi_1, \xi_2) \mapsto s_c(\xi_1, \xi_2)$$

is a **homeomorphism** that extends continuously to the boundary: Ω_c .



Computing arctic curves

- For $(\xi_1, \xi_2) \in \mathcal{L}$, there is a unique zero $s_c(\xi_1, \xi_2)$ inside $\tilde{\mathcal{R}}_{c,+}$ of

$$Q_c^{\frac{1}{2}} dz + \xi_1 d \log \lambda - \xi_2 d \log z.$$

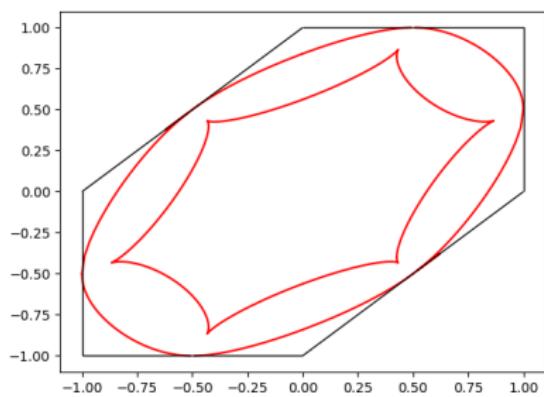
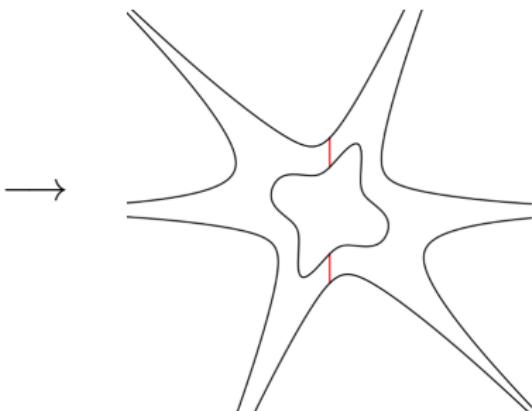
- The map

$$\mathcal{L} \rightarrow \tilde{\mathcal{R}}_{c,+}, (\xi_1, \xi_2) \mapsto s_c(\xi_1, \xi_2)$$

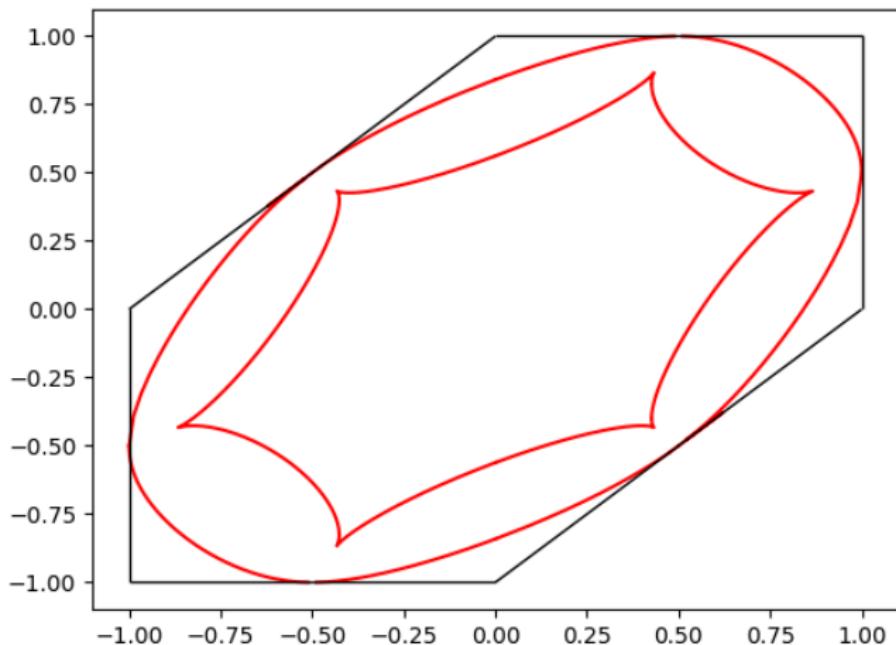
is a **homeomorphism** that extends continuously to the boundary: Ω_c .

- The arctic curves are given by

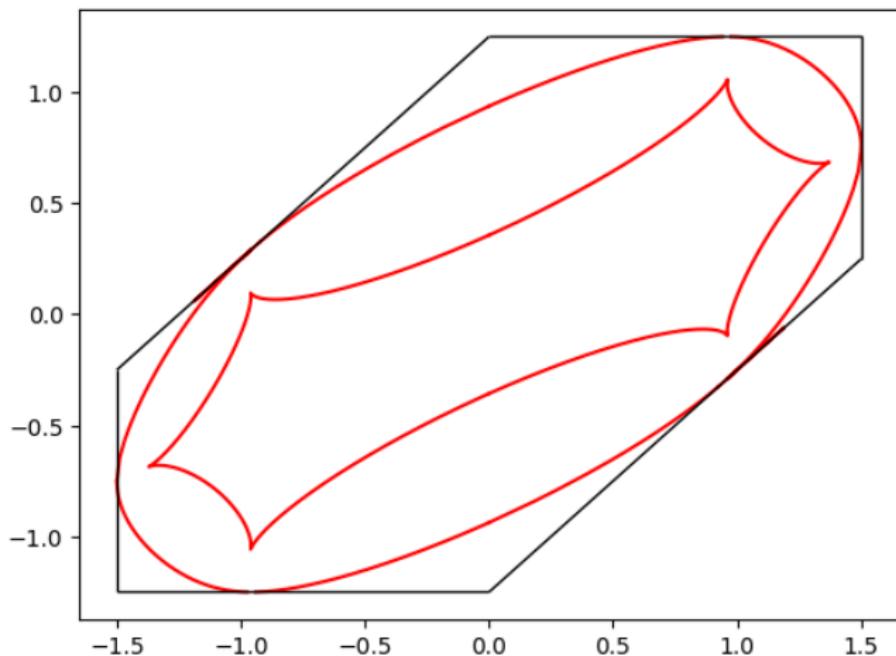
$$\Omega_c^{-1}((\text{un})\text{bounded ovals}).$$



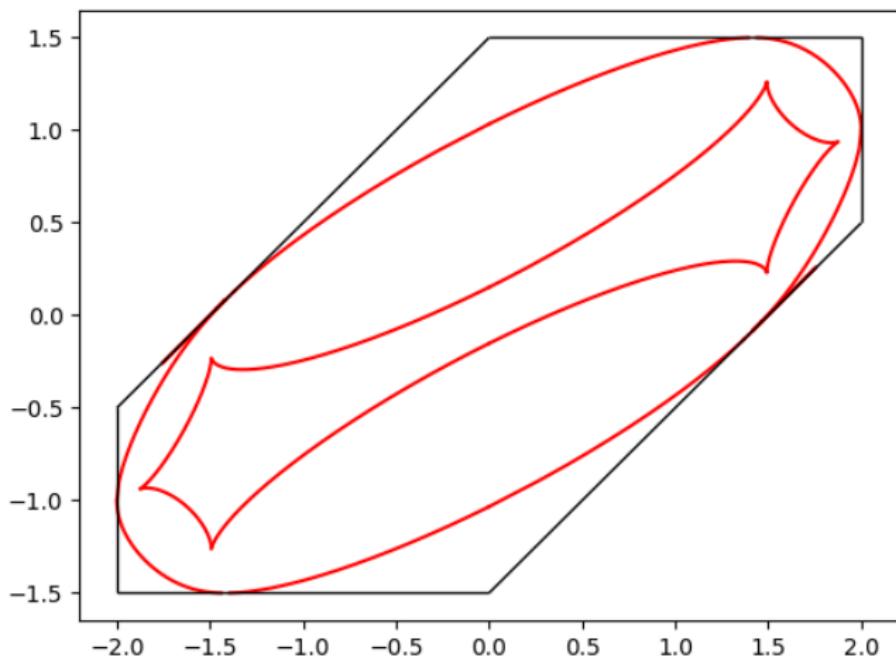
Splitting of the gas phase ($B = C > 1$)



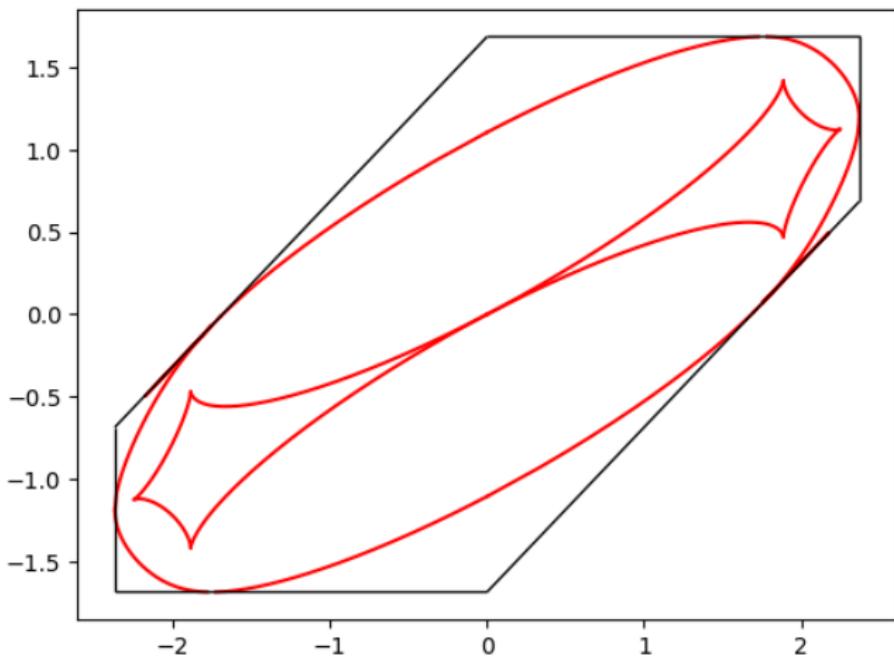
Splitting of the gas phase ($B = C > 1$)



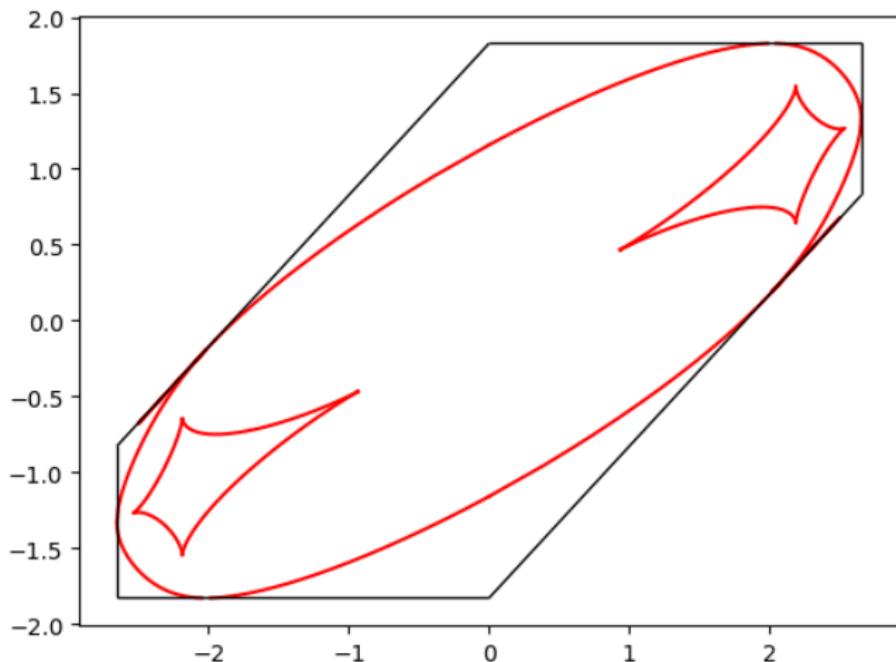
Splitting of the gas phase ($B = C > 1$)



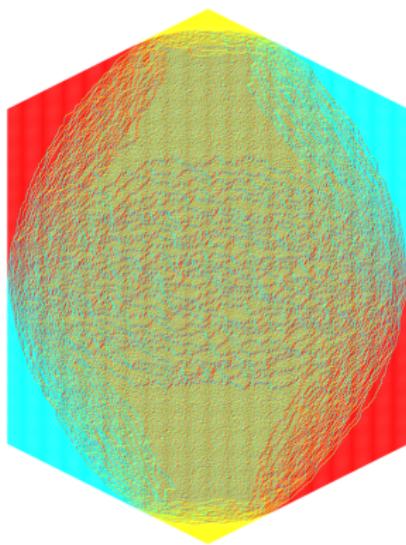
Splitting of the gas phase ($B = C > 1$)



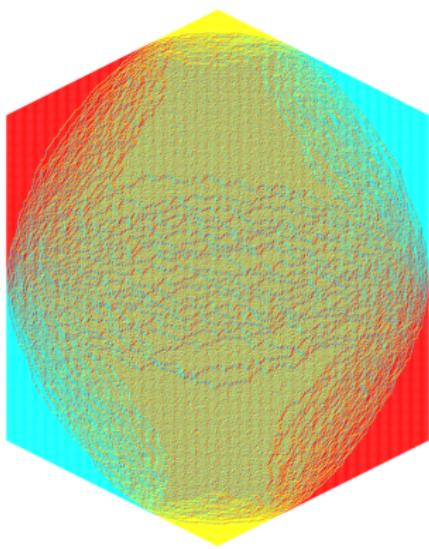
Splitting of the gas phase ($B = C > 1$)



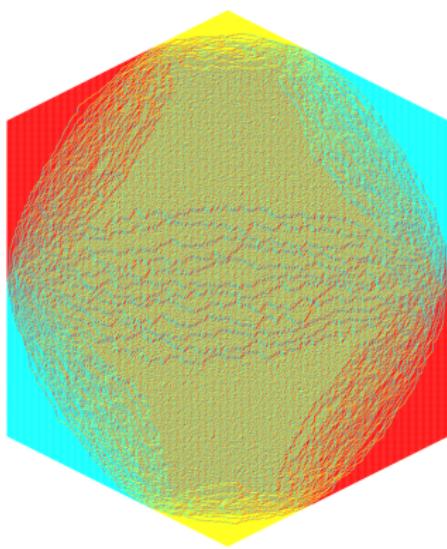
Splitting of the gas phase ($B = C < 1$)



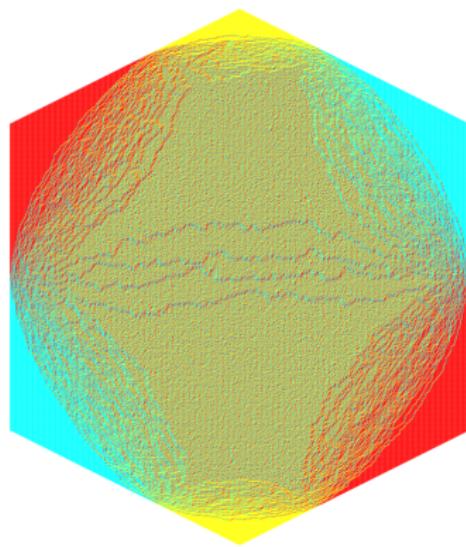
Splitting of the gas phase ($B = C < 1$)



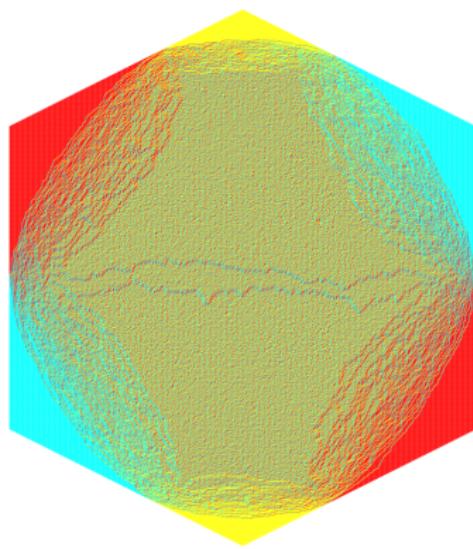
Splitting of the gas phase ($B = C < 1$)



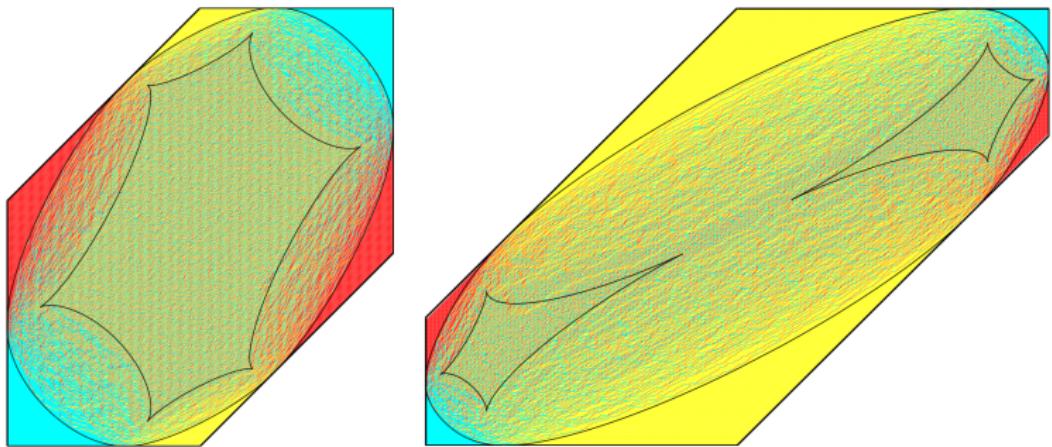
Splitting of the gas phase ($B = C < 1$)



Splitting of the gas phase ($B = C < 1$)



Final gallery



Thank you for your attention!

