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1. Tilings of a hexagon
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1 Tilings of a hexagon: Arctic circle

Large random tilings of regular hexagon have Arctic Circle
phenomenon:
Rigid pattern near corners and disorder in the middle.
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1 Tilings of a hexagon: periodic weighting

Different pictures in case of non-uniform probabilities

Three different regions: frozen, rough and smooth
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1 Related tiling model

Domino tilings of an Aztec diamond with periodic weights
▶ Recent papers (selection)

Chhita Johansson 2016
Duits Kuijlaars 2021

Berggren Borodin 2025
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2. Exact formulas for finite size system

a1

a2

a3

a4
b1

b2

b3

b4
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2 Non intersecting paths

Tiling of a hexagon is equivalent to a system of non-intersecting
paths with prescribed starting and ending positions

a1

a2

a3

a4
b1

b2

b3

b4

Particles on the paths are random particle system
(in case of random tiling)
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2 Non uniform probabilities

Paths are a graph G = (Z2, E).
Assign weights to the edges w : E → R+

Probability of non intersecting path system P�
�

�



1
Z

∏
e∈P

w(e)

Theorem (Eynard Mehta 1998)

Random particle system is determinantal. I.e., there exists
K : Z2 × Z2 → R such that for distinct vertices v1, . . . , vk,

Prob
[

there is particle at
each v1, . . . , vk

]
= det [K(vi, vj)]ki,j=1
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2 Determinantal point process

Theorem (Eynard Mehta 1998)

Random particle system is determinantal. I.e., there exists
K : V × V → R such that for distinct vertices v1, . . . , vk,

Prob
[

there is particle at
each v1, . . . , vk

]
= det [K(vi, vj)]ki,j=1

▶ All information is in the correlation kernel K.
▶ Eynard Mehta have a double sum formula for K.
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2 Periodic weights

Weights are periodic with period p
if for every i, j,

ai,j = ai+p,j = ai,j+p

bi,j = bi+p,j = bi,j+p

Assign weights in fundamental do-
main, and extend periodically.

a00

a01

a02

a10

a11

a12

a20

a21

a22

b00

b01

b02

b10

b11

b12

b20

b21

b22

Transition matrix Tj(z) =



aj0 bj0 0 · · · 0

0 aj1 bj1
. . . ...

... . . . . . . . . . ...

0 . . . . . . aj,p−2 bj,p−2
bj,p−1z 0 · · · 0 aj,p−1


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2 Transition matrices

Tj(z) =



aj0 bj0 0 · · · 0

0 aj1 bj1
. . . ...

... . . . . . . . . . ...

0 . . . . . . aj,p−2 bj,p−2
bj,p−1z 0 · · · 0 aj,p−1


Products of transition matrices�� ��W (z) = T0(z)T1(z) · · · Tp−1(z)

Partial products

T0,j = T0 · T1 · · · Tj−1, j = 0, . . . p − 1.
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2 Correlation kernel in case of periodic weights

Theorem (Duits K 2021 for hexagon of size pN × pBN × pCN)

KN (v1,v2)=
[

−
χpx2+j2<px1+j1

2πi

∮
T

T −1
0,j2

(z) W x1−x2 (z)
zy1−y2

T0,j1 (z) dz
z

+

1
(2πi)2

∮
T

∮
T

T −1
0,j2

(z1) W (B+C)N−x2 (z1)

z
CN−y2
1

RN (z1,z2) W x1 (z2)
z

y1
2

T0,j1 (z2) dz1dz2
z2

]
k1,k2

Coordinates

v1 = (px1 + j1, py1 + k1)
v2 = (px2 + j2, py2 + k2)

with j1, j2, k1, k2 ∈ {0, 1, . . . , p − 1}
pN

pBN

pCN

pN

pBN
pCN

x

y

v1

v2
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3. Riemann Hilbert problem and MVOP
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3 Riemann-Hilbert problem

Double integral contains�
�

�

RN (z1, z2) = 1

z2 − z1

(
0p Ip

)
Y−1(z1)Y(z2)

(
Ip

0p

)

where Y solves the Riemann Hilbert problem (RH problem)

▶ Y : C \ T → C2p×2p is analytic,

▶ Y+(z) = Y−(z)
(

Ip
W (z)(B+C)N

z(1+C)N

0p Ip

)
for z ∈ T,

▶ Y(z) = (I2p + O(z−1))
(

zN Ip 0p

0p z−N Ip

)
as z → ∞.

Y is given in terms of matrix valued orthogonal polynomials
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3 Matrix valued orthogonal polynomials

PN =
(
Ip 0p

)
Y
(

Ip

0p

)
is matrix valued polynomial of degree N satisfying

�
�

�

1

2πi

∮
T

PN (z)W (z)(B+C)N

z(1+C)N zkdz = 0p, k = 0, . . . , N − 1

▶ T can be replaced by any contour going once around the
origin.

▶ non-hermitian orthogonality with varying weight.
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3 Large N limit: two steps

1
(2πi)2

∮
T

∮
T

T −1
0,j2

(z1)W (B+C)N−x2(z1)
zCN−y2

1

× RN (z1, z2)W x1(z2)
zy1

2
T0,j1(z2)dz1dz2

z2

First step:
▶ Analyze the RH problem with the Deift-Zhou method of

steepest descent
Second step:
▶ Classical steepest descent analysis for the double integral.
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4. RH steepest descent analysis (outline)
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4 RH steepest descent

Deift-Zhou method of steepest descent is a sequence of
transformations

Y 7→ X 7→ T 7→ S 7→ R

leading to R that satisfies a small norm RH problem.

The method was applied first to orthogonal polynomials by
Deift Kriecherbauer McLaughlin Venakides Zhou 1999

▶ Y 7→ X is preliminary transformation
▶ X 7→ T uses equilibrium measure
▶ T 7→ S is deformation step (opening of lenses)
▶ S 7→ R is approximation step (parametrices)
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4 Equilibrium measure

OPs on the real line (with varying weight) satisfy∫
R

PN (x)e−NV (x)xkdx = 0, k = 0, 1, . . . , N − 1

Equilibrium measure µeq minimizes∫∫
log 1

|x − y|
dµ(x)dµ(y) +

∫
V (x)dµ(x)

among probability measures µ on R.
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5. Eigenvalues and spectral curve

P0
P∞

P0
P∞

P0λ = 0
z = −1

P∞
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5 Algebraic curve and amoeba�� ��det(λIp − W (z)) = 0 is a Harnack curve
Kenyon Okounkov Sheffield 2006

▶ The amoeba map (z, λ) 7→ (log |z|, log |λ|) is at most 2-to-1
on the algebraic curve.

▶ For z ∈ C \R the eigenvalues λj(z) can be ordered such that
|λ1(z)| > · · · > |λp(z)| > 0

0 ∞

0 ∞

0λ = 0 ∞
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5 Sheet structure of Riemann surface R

P
(1)
0 P

(1)
∞

P
(2)
0 P

(2)
∞

P
(3)
0

λ = 0 P
(3)
∞

Real locus has two parts
▶ The unbounded oval,

containing all points
where z or λ are 0 or
∞,

▶ The bounded oval
▶ Points at infinity P

(j)
∞ ,

j = 1, . . . , p

P
(j)
0

P
(j)
1 (with λ = 0)

P
(j)
∞
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5 First transformation Y 7→ X

E is the matrix of eigenvectors of W

W = EΛE−1, Λ = diag(λ1, . . . , λp)

Definition

X = Y
(

E 0p

0p E

)

New jumps

▶ X+ = X− ×



(
Ip

Λ(B+C)N

z(1+C)N

0p Ip

)
on T,(

JR 0p

0p JR

)
on R,

▶ JR is the permutation matrix that models the sheet
structure of the Riemann surface.
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6. Equilibrium measure on R
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6 Potential theory on R

▶ We do not have the logarithmic kernel log 1
|x−y| on R

Potential theory on R uses the bipolar Green’s kernel

GP (p, q) p, q, ∈ R, with singularity at P ∈ R,

▶ p 7→ GP (p, q) is harmonic on R \ {P, q}
▶ GP (p, q) = log |zP (p)| + O(1) as p → P ,

if zP is local coordinate at P ,
▶ GP (p, q) = − log |zq(p)| + O(1) as p → q,

if zq is local coordinate at q,
▶ GP (p, q) = GP (q, p)
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6 Max min problem

Equilibrium problem is Max-min problem�
�

�
�max

Γ
min

µ on Γ

∑
j

∫∫
G

P
(j)
∞

(p, q)dµ(p)dµ(q) +
∫

Re V dµ


V = (B + C) log z − (1 + C) log λ

▶ Maximize over closed contours Γ that go around z = 0 on
each sheet.

▶ Minimize over probability measures µ on Γ.
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6 Special case

Equilibrium problem can be solved in special case.
K 2025, arXiv:2412.03115

Assume p = 3, B = C = 1,�
�

�
�

det(λI3 − W (z)) =
(λ − 1 − z)3 − 27(1 + β)λz

for some β > 0

Special points P0, P1, P∞

P0 P∞

P1
λ = 0

z = −1
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6 Equilibrium measure

Optimal Γ = Γ1 ∪ Γ2 ∪ Γ3 is union of unit circles on all sheets

Support of equilibrium measure is on first two sheets

supp(µeq) = Γ1 ∪ Γ2

Explict formula

dµeq = 1
3πi

(
c0λ + z + 1
3(1 + β)λ

) 1
2 c1λ + z + 1

2λ + z + 1
dz

z

for certain c0, c1 > 0

As balayage measure

µeq = Bal (δP0 − δP1 + δP∞ , Γ1 ∪ Γ2)

P0

P1

P∞
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7. Further steps in RH analysis
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7 Second transformation X 7→ T

The g-function on the Riemann surface

g(p) = 3
∫

GP∞(p, q)dµeq(q)

Let gj be its restriction to the jth sheet.

Definition

T = LN X diag
(
e−Ng1 , e−Ng2 , e−Ng3 , eNg1 , eNg2 , eNg3

)
L−N

where L is some constant diagonal matrix.

Further steps T 7→ S 7→ R in the RH analysis. Outcome is that
T and T−1 remain uniformly bounded as N → ∞
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7 Zeros of det PN

Another outcome of the RH analysis is asymptotic formula for
PN as N → ∞. It implies in particular
Theorem (K 2025)

The weak limit of the zeros of det PN is equal to the
pushforward of the equilibrium measure under the projection
map (z, λ) 7→ z.

K K K K

K

K

K

K
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