

Large random tilings of a hexagon with periodic weightings

Arno Kuijlaars

KU Leuven, Belgium

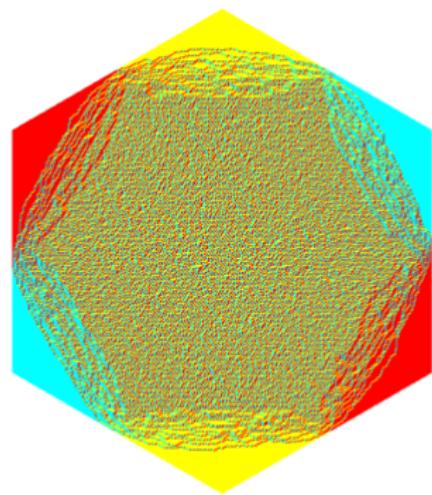
Workshop on Integrable Combinatorics

Louvain-la-Neuve, Belgium, 19 November 2025

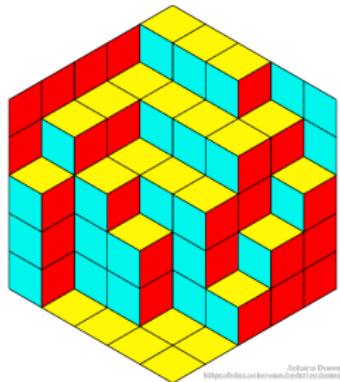
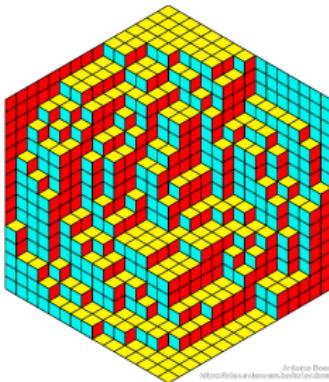
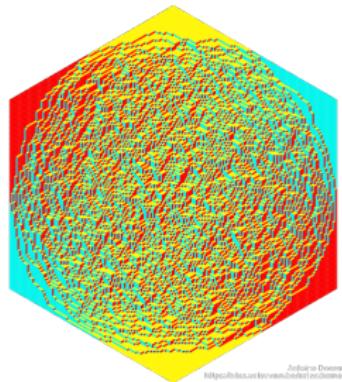
0 Outline

1. **Tilings of a hexagon**
2. **Exact formulas**
3. **Riemann Hilbert and MVOP**
4. **Asymptotic analysis (outline)**
5. **Spectral curve**
6. **Equilibrium measure**
7. **Further steps**

1. Tilings of a hexagon



1 Tilings of a hexagon: Arctic circle

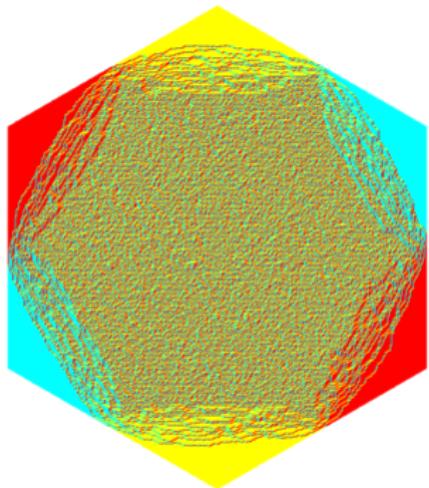
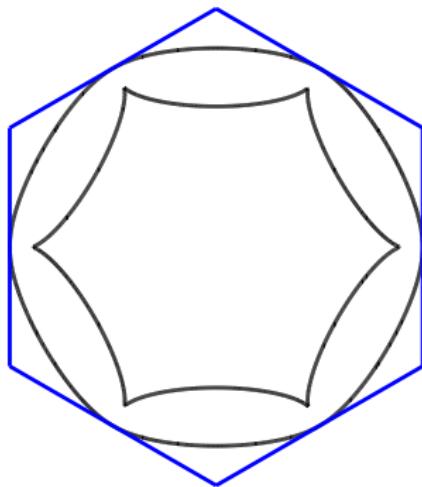


Large random tilings of regular hexagon have **Arctic Circle** phenomenon:

Rigid pattern near corners and disorder in the middle.

1 Tilings of a hexagon: periodic weighting

Different pictures in case of **non-uniform probabilities**

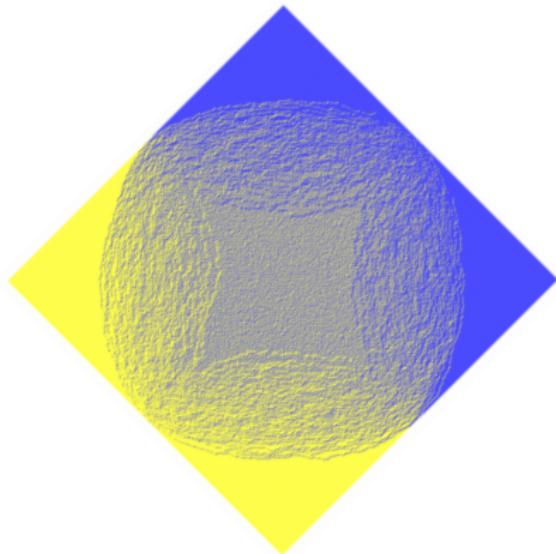


Three different regions: **frozen, rough and smooth**

1 Related tiling model

Domino tilings of an **Aztec diamond** with periodic weights

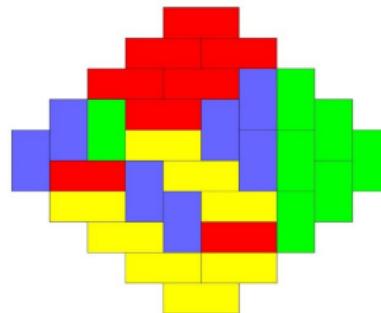
► Recent papers (selection)



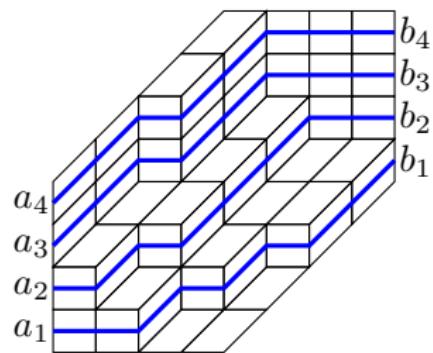
Chhita Johansson 2016

Duits Kuijlaars 2021

Berggren Borodin 2025

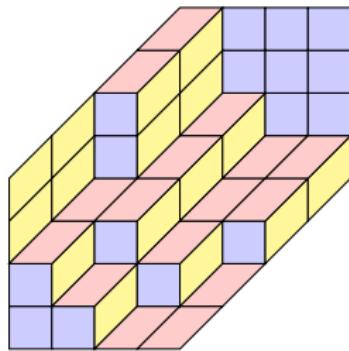
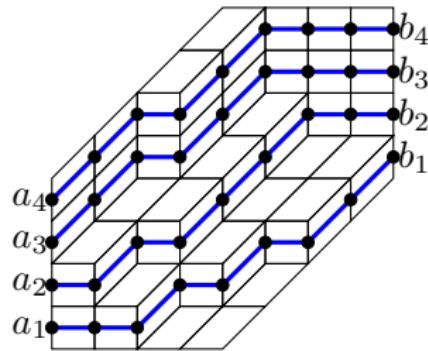


2. Exact formulas for finite size system



2 Non intersecting paths

Tiling of a hexagon is equivalent to a system of **non-intersecting paths** with prescribed starting and ending positions



Particles on the paths are **random particle system**
(in case of random tiling)

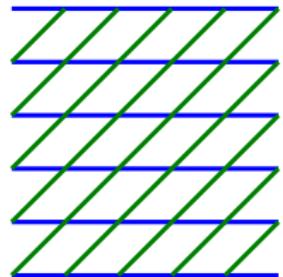
2 Non uniform probabilities

Paths are a graph $G = (\mathbb{Z}^2, E)$.

Assign **weights** to the edges $w : E \rightarrow \mathbb{R}^+$

Probability of non intersecting path system \mathcal{P}

$$\frac{1}{Z} \prod_{e \in \mathcal{P}} w(e)$$



Theorem (Eynard Mehta 1998)

Random particle system is *determinantal*. I.e., there exists $K : \mathbb{Z}^2 \times \mathbb{Z}^2 \rightarrow \mathbb{R}$ such that for **distinct** vertices v_1, \dots, v_k ,

$$\text{Prob} \left[\begin{array}{l} \text{there is particle at} \\ \text{each } v_1, \dots, v_k \end{array} \right] = \det [K(v_i, v_j)]_{i,j=1}^k$$

2 Determinantal point process

Theorem (Eynard Mehta 1998)

*Random particle system is **determinantal**. I.e., there exists $K : V \times V \rightarrow \mathbb{R}$ such that for **distinct** vertices v_1, \dots, v_k ,*

$$\text{Prob} \left[\begin{array}{l} \text{there is particle at} \\ \text{each } v_1, \dots, v_k \end{array} \right] = \det [K(v_i, v_j)]_{i,j=1}^k$$

- ▶ All information is in the correlation kernel K .
- ▶ Eynard Mehta have a double sum formula for K .

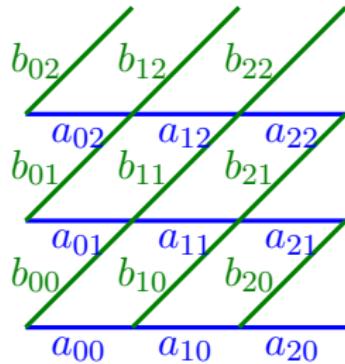
2 Periodic weights

Weights are **periodic** with period p if for every i, j ,

$$a_{i,j} = a_{i+p,j} = a_{i,j+p}$$

$$b_{i,j} = b_{i+p,j} = b_{i,j+p}$$

Assign weights in fundamental domain, and extend periodically.



Transition matrix

$$T_j(z) = \begin{pmatrix} a_{j0} & b_{j0} & 0 & \cdots & 0 \\ 0 & a_{j1} & b_{j1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & a_{j,p-2} & b_{j,p-2} \\ b_{j,p-1}z & 0 & \cdots & 0 & a_{j,p-1} \end{pmatrix}$$

2 Transition matrices

$$T_j(z) = \begin{pmatrix} a_{j0} & b_{j0} & 0 & \cdots & 0 \\ 0 & a_{j1} & b_{j1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & a_{j,p-2} & b_{j,p-2} \\ b_{j,p-1}z & 0 & \cdots & 0 & a_{j,p-1} \end{pmatrix}$$

Products of transition matrices

$$W(z) = T_0(z)T_1(z) \cdots T_{p-1}(z)$$

Partial products

$$T_{0,j} = T_0 \cdot T_1 \cdots T_{j-1}, \quad j = 0, \dots, p-1.$$

2 Correlation kernel in case of periodic weights

Theorem (Duits K 2021 for hexagon of size $pN \times pBN \times pCN$)

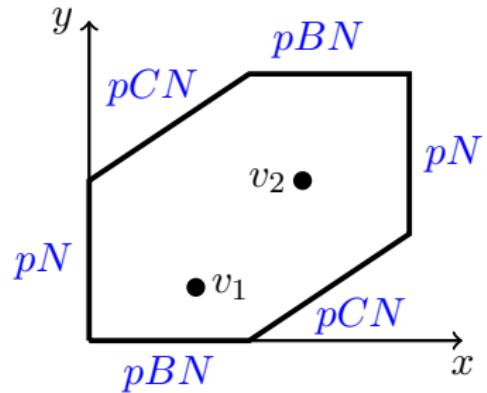
$$K_N(v_1, v_2) = \left[-\frac{\chi_{px_2+j_2 < px_1+j_1}}{2\pi i} \oint_{\mathbb{T}} T_{0,j_2}^{-1}(z) \frac{W^{x_1-x_2}(z)}{z^{y_1-y_2}} T_{0,j_1}(z) \frac{dz}{z} + \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}} \oint_{\mathbb{T}} T_{0,j_2}^{-1}(z_1) \frac{W^{(B+C)N-x_2}(z_1)}{z_1^{CN-y_2}} R_N(z_1, z_2) \frac{W^{x_1}(z_2)}{z_2^{y_1}} T_{0,j_1}(z_2) \frac{dz_1 dz_2}{z_2} \right]_{k_1, k_2}$$

Coordinates

$$v_1 = (px_1 + j_1, py_1 + k_1)$$

$$v_2 = (px_2 + j_2, py_2 + k_2)$$

with $j_1, j_2, k_1, k_2 \in \{0, 1, \dots, p-1\}$



3. Riemann Hilbert problem and MVOP

3 Riemann-Hilbert problem

Double integral contains

$$R_N(z_1, z_2) = \frac{1}{z_2 - z_1} \begin{pmatrix} 0_p & I_p \end{pmatrix} \mathbf{Y}^{-1}(z_1) \mathbf{Y}(z_2) \begin{pmatrix} I_p \\ 0_p \end{pmatrix}$$

where \mathbf{Y} solves the **Riemann Hilbert problem (RH problem)**

- ▶ $\mathbf{Y} : \mathbb{C} \setminus \mathbb{T} \rightarrow \mathbb{C}^{2p \times 2p}$ is analytic,
- ▶ $\mathbf{Y}_+(z) = \mathbf{Y}_-(z) \begin{pmatrix} I_p & \frac{W(z)^{(B+C)N}}{z^{(1+C)N}} \\ 0_p & I_p \end{pmatrix}$ for $z \in \mathbb{T}$,
- ▶ $\mathbf{Y}(z) = (I_{2p} + O(z^{-1})) \begin{pmatrix} z^N I_p & 0_p \\ 0_p & z^{-N} I_p \end{pmatrix}$ as $z \rightarrow \infty$.

\mathbf{Y} is given in terms of **matrix valued orthogonal polynomials**

3 Matrix valued orthogonal polynomials

$$\mathbf{P}_N = \begin{pmatrix} I_p & 0_p \end{pmatrix} \mathbf{Y} \begin{pmatrix} I_p \\ 0_p \end{pmatrix}$$

is **matrix valued polynomial** of degree N satisfying

$$\frac{1}{2\pi i} \oint_{\mathbb{T}} \mathbf{P}_N(z) \frac{W(z)^{(B+C)N}}{z^{(1+C)N}} z^k dz = 0_p, \quad k = 0, \dots, N-1$$

- ▶ \mathbb{T} can be replaced by any contour going once around the origin.
- ▶ non-hermitian orthogonality with varying weight.

3 Large N limit: two steps

$$\begin{aligned} & \frac{1}{(2\pi i)^2} \oint_{\mathbb{T}} \oint_{\mathbb{T}} T_{0,j_2}^{-1}(z_1) \frac{W^{(B+C)N-x_2}(z_1)}{z_1^{CN-y_2}} \\ & \quad \times R_N(z_1, z_2) \frac{W^{x_1}(z_2)}{z_2^{y_1}} T_{0,j_1}(z_2) \frac{dz_1 dz_2}{z_2} \end{aligned}$$

First step:

- ▶ Analyze the RH problem with the **Deift-Zhou method** of steepest descent

Second step:

- ▶ Classical steepest descent analysis for the double integral.

4. RH steepest descent analysis (outline)

4 RH steepest descent

Deift-Zhou method of steepest descent is a sequence of transformations

$$Y \mapsto X \mapsto T \mapsto S \mapsto R$$

leading to R that satisfies a small norm RH problem.

The method was applied first to orthogonal polynomials by
Deift Kriecherbauer McLaughlin Venakides Zhou 1999

- ▶ $Y \mapsto X$ is preliminary transformation
- ▶ $X \mapsto T$ uses equilibrium measure
- ▶ $T \mapsto S$ is deformation step (opening of lenses)
- ▶ $S \mapsto R$ is approximation step (parametrices)

4 Equilibrium measure

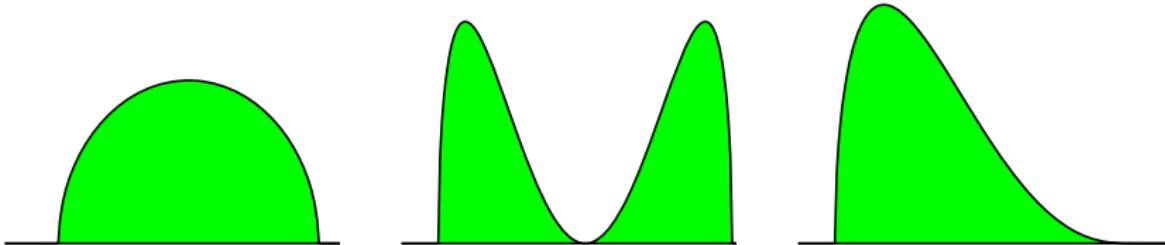
OPs on the real line (with varying weight) satisfy

$$\int_{\mathbb{R}} P_N(x) e^{-NV(x)} x^k dx = 0, \quad k = 0, 1, \dots, N-1$$

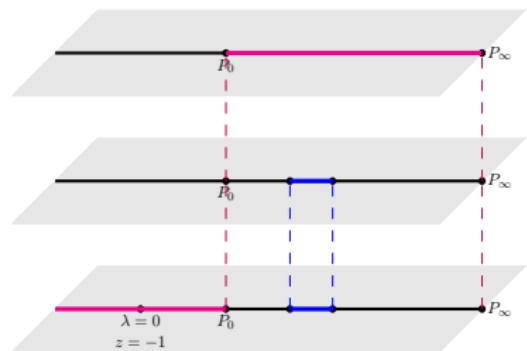
Equilibrium measure μ_{eq} minimizes

$$\iint \log \frac{1}{|x-y|} d\mu(x) d\mu(y) + \int V(x) d\mu(x)$$

among probability measures μ on \mathbb{R} .



5. Eigenvalues and spectral curve

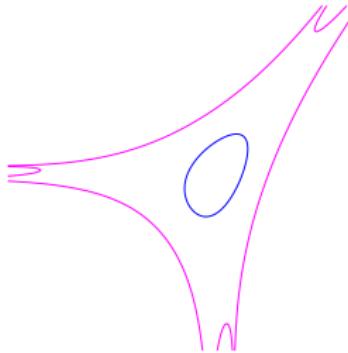
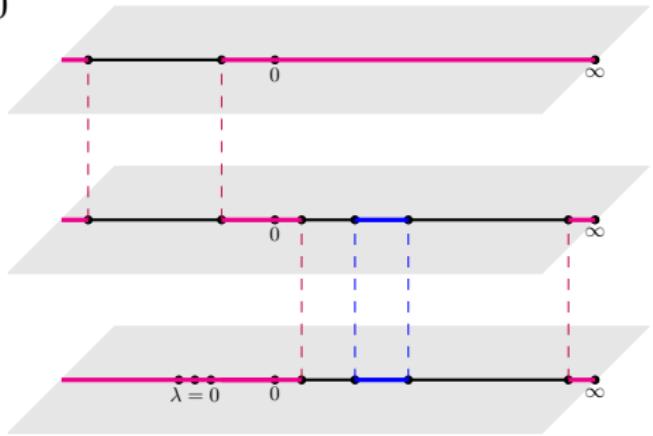


5 Algebraic curve and amoeba

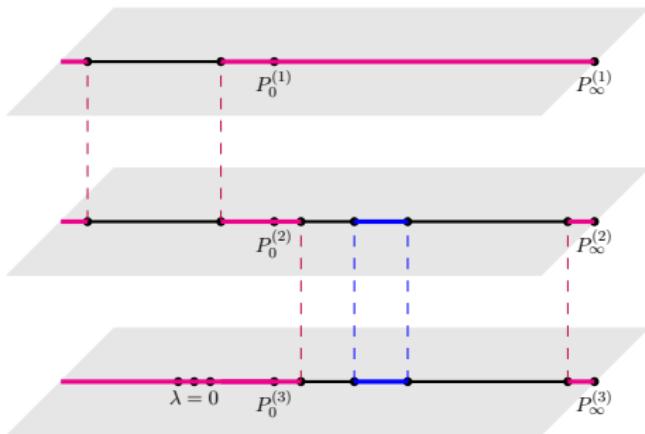
$\det(\lambda I_p - W(z)) = 0$ is a **Harnack curve**

Kenyon Okounkov Sheffield 2006

- ▶ The **amoeba map** $(z, \lambda) \mapsto (\log |z|, \log |\lambda|)$ is at most 2-to-1 on the algebraic curve.
- ▶ For $z \in \mathbb{C} \setminus \mathbb{R}$ the eigenvalues $\lambda_j(z)$ can be ordered such that $|\lambda_1(z)| > \dots > |\lambda_p(z)| > 0$

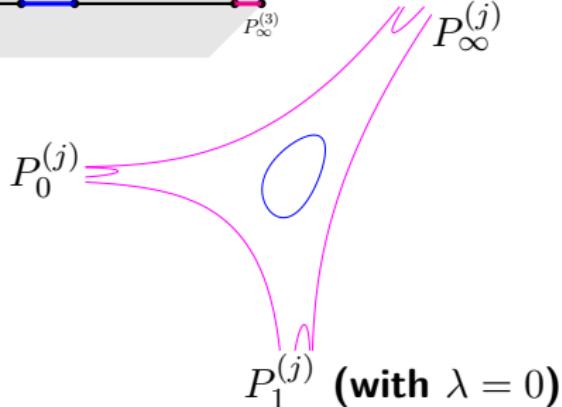


5 Sheet structure of Riemann surface \mathcal{R}



Real locus has two parts

- ▶ The **unbounded oval**, containing all points where z or λ are 0 or ∞ ,
- ▶ The **bounded oval**
- ▶ Points at infinity $P_\infty^{(j)}$,
 $P_\infty^{(j)}$ $j = 1, \dots, p$



5 First transformation $\mathbf{Y} \mapsto \mathbf{X}$

E is the matrix of **eigenvectors** of W

$$W = E\Lambda E^{-1}, \quad \Lambda = \text{diag}(\lambda_1, \dots, \lambda_p)$$

Definition

$$\mathbf{X} = \mathbf{Y} \begin{pmatrix} E & 0_p \\ 0_p & E \end{pmatrix}$$

New jumps

$$\blacktriangleright \mathbf{X}_+ = \mathbf{X}_- \times \begin{cases} \begin{pmatrix} I_p & \frac{\Lambda^{(B+C)N}}{z^{(1+C)N}} \\ 0_p & I_p \end{pmatrix} & \text{on } \mathbb{T}, \\ \begin{pmatrix} J_{\mathcal{R}} & 0_p \\ 0_p & J_{\mathcal{R}} \end{pmatrix} & \text{on } \mathbb{R}, \end{cases}$$

$\blacktriangleright J_{\mathcal{R}}$ is the **permutation matrix** that models the sheet structure of the Riemann surface.

6. Equilibrium measure on \mathcal{R}

6 Potential theory on \mathcal{R}

- We do not have the logarithmic kernel $\log \frac{1}{|x-y|}$ on \mathcal{R}

Potential theory on \mathcal{R} uses the **bipolar Green's kernel**

$$G_P(p, q) \quad p, q, \in \mathcal{R}, \quad \text{with singularity at } P \in \mathcal{R},$$

- $p \mapsto G_P(p, q)$ is **harmonic on $\mathcal{R} \setminus \{P, q\}$**
- $G_P(p, q) = \log |z_P(p)| + \mathcal{O}(1)$ as $p \rightarrow P$,
if z_P is **local coordinate at P** ,
- $G_P(p, q) = -\log |z_q(p)| + \mathcal{O}(1)$ as $p \rightarrow q$,
if z_q is **local coordinate at q** ,
- $G_P(p, q) = G_P(q, p)$

6 Max min problem

Equilibrium problem is **Max-min problem**

$$\max_{\Gamma} \min_{\mu \text{ on } \Gamma} \left[\sum_j \iint G_{P_{\infty}^{(j)}}(p, q) d\mu(p) d\mu(q) + \int \operatorname{Re} V d\mu \right]$$

$$V = (B + C) \log z - (1 + C) \log \lambda$$

- ▶ Maximize over closed contours Γ that go around $z = 0$ on each sheet.
- ▶ Minimize over probability measures μ on Γ .

6 Special case

Equilibrium problem can be solved in special case.

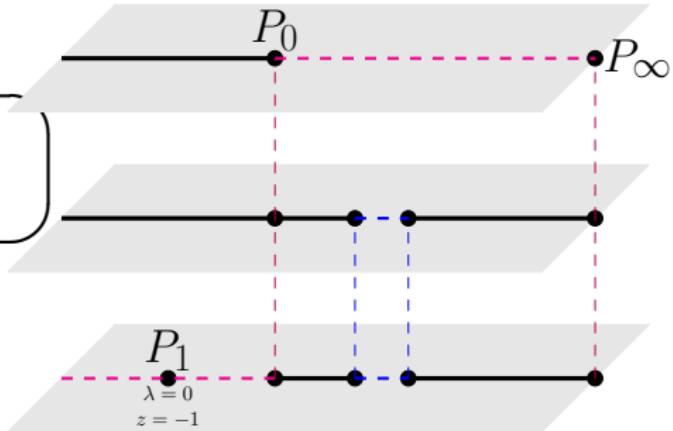
K 2025, arXiv:2412.03115

Assume $p = 3$, $B = C = 1$,

$$\det(\lambda I_3 - W(z)) =$$
$$(\lambda - 1 - z)^3 - 27(1 + \beta)\lambda z$$

for some $\beta > 0$

Special points P_0, P_1, P_∞



6 Equilibrium measure

Optimal $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$ **is union of unit circles on all sheets**

Support of equilibrium measure is on first two sheets

$$\text{supp}(\mu_{eq}) = \Gamma_1 \cup \Gamma_2$$

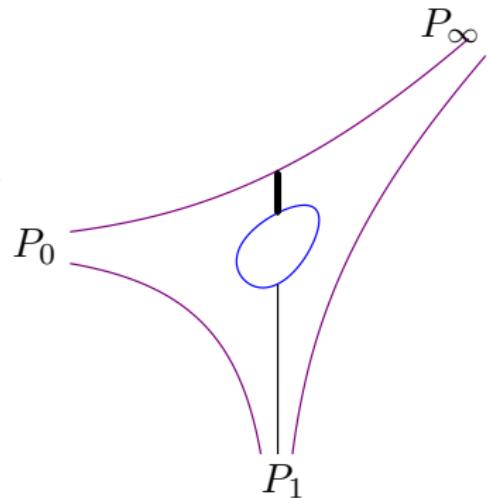
Explicit formula

$$d\mu_{eq} = \frac{1}{3\pi i} \left(\frac{c_0\lambda + z + 1}{3(1 + \beta)\lambda} \right)^{\frac{1}{2}} \frac{c_1\lambda + z + 1}{2\lambda + z + 1} \frac{dz}{z}$$

for certain $c_0, c_1 > 0$

As balayage measure

$$\mu_{eq} = \text{Bal}(\delta_{P_0} - \delta_{P_1} + \delta_{P_\infty}, \Gamma_1 \cup \Gamma_2)$$



7. Further steps in RH analysis

7 Second transformation $\mathbf{X} \mapsto \mathbf{T}$

The g -function on the Riemann surface

$$g(p) = 3 \int G_{P_\infty}(p, q) d\mu_{eq}(q)$$

Let g_j be its restriction to the j th sheet.

Definition

$$\mathbf{T} = L^N \mathbf{X} \operatorname{diag} \left(e^{-Ng_1}, e^{-Ng_2}, e^{-Ng_3}, e^{Ng_1}, e^{Ng_2}, e^{Ng_3} \right) L^{-N}$$

where L is some constant diagonal matrix.

Further steps $\mathbf{T} \mapsto \mathbf{S} \mapsto \mathbf{R}$ in the RH analysis. Outcome is that \mathbf{T} and \mathbf{T}^{-1} remain uniformly bounded as $N \rightarrow \infty$

7 Zeros of $\det \mathbf{P}_N$

Another outcome of the RH analysis is asymptotic formula for \mathbf{P}_N as $N \rightarrow \infty$. It implies in particular

Theorem (K 2025)

The weak limit of the zeros of $\det \mathbf{P}_N$ is equal to the pushforward of the equilibrium measure under the projection map $(z, \lambda) \mapsto z$.

