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neural network

Neural networks are fitting functions,

e.g. regression/classification f,: R" - R

Deep neural networks:
® thrive with a lot of data:
® useful it data is hard to analyse, e.g correlations;

® high-dimensional structure.

When the M meets the P 19/05/25 - Louvain-la-Neuve Luigi Favaro
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® Accelerated the discovery of the Higgs boson.
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Equivariant

Equivariance:
flge-x)=g-f(x)forany g € G

Invariance:

g -f(x)=f(x)torany g € G
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Equivariant

Equivariance:
f(g-x)=g-f(x)torany g € G

Invariance:

g -f(x)=f(x)torany g € G

Equivariance is appealing:
® introduce physics bias in neural networks;
® reduce optimisation error;

® exploit symmetries in geometric inputs.
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Equivariance:
f(g-x)=g flx)forany g € G

Invariance:

g f(x)=f(x)forany g € G

Equivariance is appealing:

® introduce physics bias in neural networks;

® reduce optimisation error;

® exploit symmetries in geometric inputs.
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Equivariant

Equivariance:
flg-x)=g-f(x)foranyge G / AN
Invariance: argmin Z, \

A /
i

g f(x) =f(x)forany g € G 0

Equivariance is appealing:
® introduce physics bias in neural networks;
® reduce optimisation error;

® exploit symmetries in geometric inputs.
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Lorentz-Equivariant

® Particle physics data has a rich structure, typically we work with four-vectors x*

fl )
wN

e Lorentz group — O(1,3) but causality restricts our interest to SO™(1,3)
| J 1
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Lorentz-Equivariant

® Particle physics data has a rich structure, typically we work with four-vectors x*

e Lorentz group — O(1,3) but causality restricts our interest to SO™(1,3)

® Define the symmetric bilinear form, or “Minkwoski” product: —
— : | b
(X, ¥) = XY — X1V1 — X2 — X3)3 \( ),

or with the metric g = diag(1, = 1, =1, = 1) (%, y) = g, x"y" —L— -
)

\_

-
® Condition on the elements of the Lorentz group reads v \
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How to make Lorentz-Equivariant

® | ocal reference frames
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How to make Lorentz-Equivariant

® | ocal reference frames

- uég — — ugA;g —
— U] g — A — uy At g — B
L=|_ 37| 5 U=|_ k) | =1ah
s g Uy A G
— ul g — —uz Atg — Ex. verify that
Z ua'uubyg,ul/ — Yab -
® Particle features in the local frames are Lorentz-invariant: TR

fr = 1, = p(L)f" = p(LA™)p(A) f = p(LATA) f = p(L)f = fr.
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How to make Lorentz-Equivariant

® | ocal reference frames

- u§9 — — ugA;g —
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— ul g — —uz Atg — Ex. verify that
Z ua'uubyg,ul/ — Yab -
® Particle features in the local frames are Lorentz-invariant: TR

fr = 1, = p(L)f" = p(LA™)p(A) f = p(LATA) f = p(L)f = fr.

® Get Lorentz-equivariant output by applying a final transformation:

y >y =p(L'N)f1, = p(AL™Y) fr = p(M)p(L™1) f1 = p(A)y.
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How to make Lorentz-Equivariant

® | ocal reference frames
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L = Ty — — L'=  WTAT— = LA™,
— ul g — —uz Atg — Ex. verify that
Z ua'uubyg,ul/ — Yab -
® Particle features in the local frames are Lorentz-invariant: psV
A _ _
fr = [ =p(L) [ = p(LA™)p(A) f = p(LAT'A) f = p(L) f = [r.
L . . . zﬁ Q{ Pi L;
® Get Lorentz-equivariant output by applying a final transformation: .
A _ _ _ ¢ .
y =y =p(L' ) fr, = p(AL™Y) fr = p(A)p(L™) fr = p(A)y. I f

When the M meets the P 19/05/25 - Louvain-la-Neuve Luigi Favaro



How to make any neural network Lorentz-Equivariant

Lorentz Local Canonicalization, or LloCa
lloca (catalan)

clueca(es), broody hen (en
® Equivariantly Predict three vectors for each particle*; (e y hen e

® Apply Gram-Schmidt and predict the 4th vector;

e Construct the local reference frame L;

l Technical aspects:
® Better to use a polar decomposition, L = RB;
Applicable to any neural network which uses geometric input o Predictor can be a (small) neural network:
. N
Vi = Zsoftmax (gpk(si, Sj, <p7;,pj>)) (pi +p;) fork=0,1,2.
j=1
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How to make any neural network Lorentz-Equivariant

Regression of an “amplitude”,
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a Lorentz-invariant scalar
Transformer

DA-Transf. —&--

LLoCa-Transf. —+—

"Data augmentation” is
a valid alternative if
little data is available
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Thanks for your attention!



