

UNIVERSITÉ CATHOLIQUE DE LOUVAIN
INSTITUT DE RECHERCHE EN MATHÉMATIQUE ET PHYSIQUE

When the M meets the P

MODELS OF A LAWVERE THEORY

Maria Bevilacqua

19 May 2025

What is a group?

A group is a set G with

- a binary operation

$$m_G: G \times G \longrightarrow G$$

$$(x, y) \longmapsto x \cdot y$$

- a 0-ary operation

$$e_G: \{\star\} \longrightarrow G$$

$$\star \longmapsto 1$$

- an unary operation

$$i_G: G \longrightarrow G$$

$$x \longmapsto x^{-1}$$

What is a group?

A group is a set G with

- a binary operation

$$m_G: G \times G \longrightarrow G$$

$$(x, y) \longmapsto x \cdot y$$

- a 0-ary operation

$$e_G: \{\star\} \longrightarrow G$$

$$\star \longmapsto 1$$

- an unary operation

$$i_G: G \longrightarrow G$$

$$x \longmapsto x^{-1}$$

satisfying the following axioms :

- associativity

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

- unity

$$x \cdot 1 = x = 1 \cdot x$$

- inverse

$$x \cdot x^{-1} = 1 = x^{-1} \cdot x$$

Axioms as commutative diagrams

Associativity :

Axioms as commutative diagrams

Associativity :

$$\begin{array}{ccc} G \times G \times G & \xrightarrow{m_G \times \text{id}_G} & G \times G \\ \text{id}_G \times m_G \downarrow & & \downarrow m_G \\ G \times G & \xrightarrow{m_G} & G \end{array}$$

Axioms as commutative diagrams

Associativity :

$$\begin{array}{ccc} (x, y, z) & \xrightarrow{\hspace{10cm}} & (x \cdot y, z) \\ \downarrow \text{id}_G \times m_G & \downarrow & \downarrow m_G \\ G \times G \times G & \xrightarrow{m_G \times \text{id}_G} & G \times G \\ \downarrow & & \downarrow \\ (x, y \cdot z) & \xrightarrow{\hspace{10cm}} & x \cdot (y \cdot z) = (x \cdot y) \cdot z \end{array}$$

Lawvere theory

What do I need to express the rules of a group ?

Lawvere theory

What do I need to express the rules of a group ?

Objects $T^0, T^1, \dots, T^n, \dots$

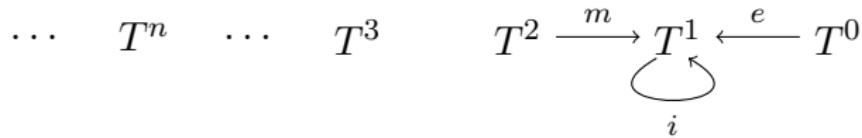
Arrows $m: T^2 \rightarrow T, e: T^0 \rightarrow T, i: T^1 \rightarrow T^1$

Lawvere theory

What do I need to express the rules of a group ?

Objects $T^0, T^1, \dots, T^n, \dots$

Arrows $m: T^2 \rightarrow T, e: T^0 \rightarrow T, i: T^1 \rightarrow T^1$

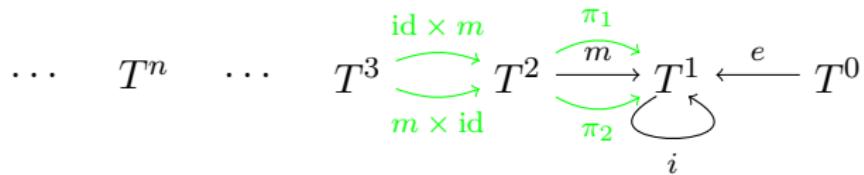


Lawvere theory

What do I need to express the rules of a group ?

Objects $T^0, T^1, \dots, T^n, \dots$

Arrows $m: T^2 \rightarrow T, e: T^0 \rightarrow T, i: T^1 \rightarrow T^1$

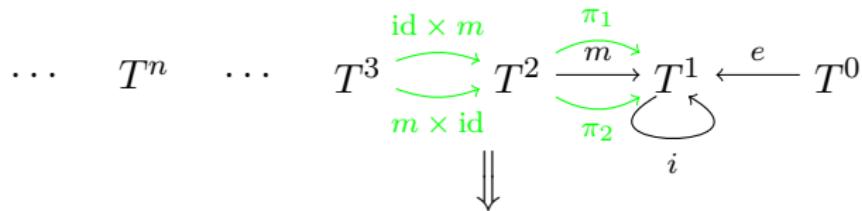


Lawvere theory

What do I need to express the rules of a group ?

Objects $T^0, T^1, \dots, T^n, \dots$

Arrows $m: T^2 \rightarrow T, e: T^0 \rightarrow T, i: T^1 \rightarrow T^1$

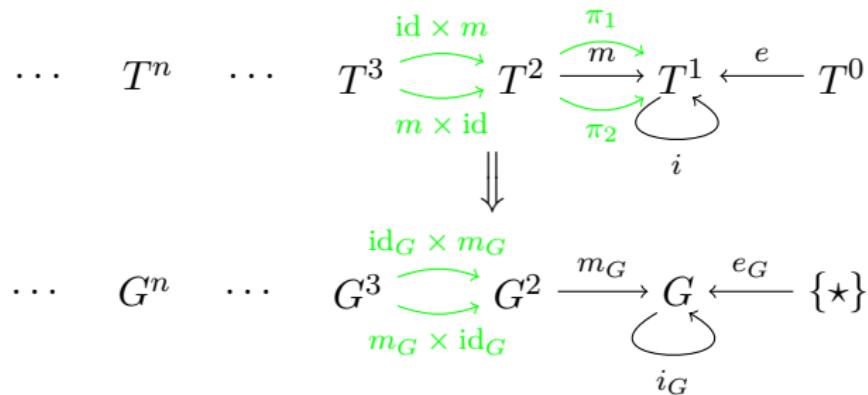


Lawvere theory

What do I need to express the rules of a group ?

Objects $T^0, T^1, \dots, T^n, \dots$

Arrows $m: T^2 \rightarrow T, e: T^0 \rightarrow T, i: T^1 \rightarrow T^1$



Models as functors

Models as functors

A **Lawvere theory** is a category \mathcal{T} with an object T and all its powers T^n for $N \in \mathbb{N}$.

Models as functors

A **Lawvere theory** is a category \mathcal{T} with an object T and all its powers T^n for $N \in \mathbb{N}$.

A **model** of a Lawvere theory \mathcal{T} is a product-preserving functor from the Lawvere theory to the category of sets

$$F: \mathcal{T} \longrightarrow \mathcal{S}et$$

$$T^0 \longmapsto \{\star\}$$

$$T^1 \longmapsto FT$$

$$T^n \longmapsto FT^n$$

$$(f: T^n \rightarrow T) \longmapsto Ff: (FT^n \rightarrow FT)$$

Back to the example of groups

Let \mathcal{T} be the Lawvere theory of groups.

Back to the example of groups

Let \mathcal{T} be the Lawvere theory of groups.

$$\mathbf{Grp} \cong \mathbf{Fun}_{\mathbf{prod}}[\mathcal{T}, \mathbf{Set}]$$

Back to the example of groups

Let \mathcal{T} be the Lawvere theory of groups.

$$\text{Grp} \cong \text{Fun}_{\text{prod}}[\mathcal{T}, \mathcal{S}et]$$

What if we replace $\mathcal{S}et$ with another category?

$$\cong \text{Fun}_{\text{prod}}[\mathcal{T}, \quad]$$

Back to the example of groups

Let \mathcal{T} be the Lawvere theory of groups.

$$\mathbf{Grp} \cong \mathbf{Fun}_{\mathbf{prod}}[\mathcal{T}, \mathbf{Set}]$$

What if we replace \mathbf{Set} with another category?

$$\mathbf{TopGrp} \cong \mathbf{Fun}_{\mathbf{prod}}[\mathcal{T}, \mathbf{Top}]$$

A functor from \mathcal{T} to the category \mathbf{Top} of topological spaces is a topological group.

Back to the example of groups

Let \mathcal{T} be the Lawvere theory of groups.

$$\mathbf{Grp} \cong \mathbf{Fun}_{\mathbf{prod}}[\mathcal{T}, \mathbf{Set}]$$

What if we replace \mathbf{Set} with another category?

$$\mathbf{LieGrp} \cong \mathbf{Fun}_{\mathbf{prod}}[\mathcal{T}, \mathbf{Diff}]$$

A functor from \mathcal{T} to the category \mathbf{Diff} of smooth manifolds is a Lie group.

Hopf algebras

A Hopf algebra over a field \mathcal{K} is a functor from the Lawvere theory of groups to the category Coalg of cocommutative coalgebras over \mathcal{K} .

Hopf algebras

A Hopf algebra over a field \mathcal{K} is a functor from the Lawvere theory of groups to the category Coalg of cocommutative coalgebras over \mathcal{K} .

$$\mathcal{H}: \mathcal{T} \longrightarrow \text{Coalg}$$

$$T \longmapsto H$$

$$m: T^2 \rightarrow T \longmapsto m_H: H \otimes H \rightarrow H$$

$$e: T^0 \rightarrow T \longmapsto u_H: \mathcal{K} \rightarrow H$$

$$i: T \rightarrow T \longmapsto S_H: H \rightarrow H$$

Hopf algebras

A **Hopf algebra** over a field \mathcal{K} is a functor from the Lawvere theory of groups to the category Coalg of cocommutative coalgebras over \mathcal{K} .

$$\mathcal{H}: \mathcal{T} \longrightarrow \text{Coalg}$$

$$T \longmapsto H$$

$$m: T^2 \rightarrow T \longmapsto m_H: H \otimes H \rightarrow H$$

$$e: T^0 \rightarrow T \longmapsto u_H: \mathcal{K} \rightarrow H$$

$$i: T \rightarrow T \longmapsto S_H: H \rightarrow H$$

$$\begin{array}{ccc} T \times T & \xrightarrow{\text{id} \times i} & T \times T \\ \Delta \nearrow & & \searrow m \\ T & \xrightarrow{!} & T^0 \xrightarrow{e} T \end{array}$$

$$x \cdot x^{-1} = 1$$

Hopf algebras

A **Hopf algebra** over a field \mathcal{K} is a functor from the Lawvere theory of groups to the category Coalg of cocommutative coalgebras over \mathcal{K} .

$$\mathcal{H}: \mathcal{T} \longrightarrow \text{Coalg}$$

$$T \longmapsto H$$

$$m: T^2 \rightarrow T \longmapsto m_H: H \otimes H \rightarrow H$$

$$e: T^0 \rightarrow T \longmapsto u_H: \mathcal{K} \rightarrow H$$

$$i: T \rightarrow T \longmapsto S_H: H \rightarrow H$$

$$\begin{array}{ccc} T \times T & \xrightarrow{\text{id} \times i} & T \times T \\ \Delta \nearrow & & \searrow m \\ T & \xrightarrow{!} & T^0 \xrightarrow{e} T \end{array}$$

$$x \cdot x^{-1} = 1$$

$$\begin{array}{ccc} H \otimes H & \xrightarrow{\text{id} \otimes S_H} & H \otimes H \\ \Delta_H \nearrow & & \searrow m_H \\ H & \xrightarrow{!} & \mathcal{K} \xrightarrow{u_H} H \end{array}$$

$$m_H(a_1 \otimes S_H(a_2)) = u_H(\epsilon_H(a))$$

My research

I study models of an arbitrary Lawvere theory in the category of coalgebras and their categorical properties (e.g. protomodularity, semi-abelianess,...).

My research

I study models of an arbitrary Lawvere theory in the category of coalgebras and their categorical properties (e.g. protomodularity, semi-abelianess,...).

$$\mathbf{Hopf_{coc}} \cong \mathbf{Fun}_{\mathbf{prod}}(\mathcal{T}_{\mathbf{Grp}}, \mathbf{Coalg})$$

My research

I study models of an arbitrary Lawvere theory in the category of coalgebras and their categorical properties (e.g. protomodularity, semi-abelianess,...).

$$\text{Hopf}_{\text{coc}} \cong \text{Fun}_{\text{prod}}(\mathcal{T}_{\text{Grp}}, \text{Coalg})$$

$$\text{HBr} \cong \text{Fun}_{\text{prod}}(\mathcal{T}_{\text{SKB}}, \text{Coalg})$$

$$\text{HRadRng} \cong \text{Fun}_{\text{prod}}(\mathcal{T}_{\text{RadRng}}, \text{Coalg})$$

$$\text{HDiGrp} \cong \text{Fun}_{\text{prod}}(\mathcal{T}_{\text{DiGrp}}, \text{Coalg})$$