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The Standard Model of Particle Physics

In Nature, Fundamental interactions described by Quantum Field Theory.

e

e

19 parameters (mν = 0)

3 coupling strengths.

9 fermion masses mf .

4 CKM parameters.

2 Higgs parameters.

QCD vacuum angle.

Model has non-trivial structure, e.g. mf ∼ yf .

Should be tested!

Do we need to modify the SM?

Ltrue
?
= LSM +

1

Λ
L5 +

1

Λ2
L6 + · · · .
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A Collision at the LHC

Experimentalists measure these “cross sections” by counting events:

σ ∼
∑
i

[ ]
i

.
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The Theorist’s Task

−→

LHC experiments gather enormous statistics ⇒ precise measurements.

Precise theoretical predictions needed to match experimental error.
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Precise Perturbative Predictions

So just compute the cross-section!∑
i

[ ]
i

∼
∫

dϕn︸︷︷︸
phase space

[
|A|2︸︷︷︸

amplitude

]
.

Perturbation theory is our major tool for making predictions.

σ ∼ σLO + αSδσNLO + α2
SδσNNLO +O(α3

S).

LHC precision requires high order amplitude calculations!

A5 =

[
+ · · ·

]
+ αS

[
+ · · ·

]
+ α2

S

[
+ · · ·

]
+O(α3

s ).

Ben Page UGent

Feynman Integrals: From Mathematics to Experiment 5/23



Precise Perturbative Predictions

So just compute the cross-section!∑
i

[ ]
i

∼
∫

dϕn︸︷︷︸
phase space

[
|A|2︸︷︷︸

amplitude

]
.

Perturbation theory is our major tool for making predictions.

σ ∼ σLO + αSδσNLO + α2
SδσNNLO +O(α3

S).

LHC precision requires high order amplitude calculations!

A5 =

[
+ · · ·

]
+ αS

[
+ · · ·

]
+ α2

S

[
+ · · ·

]
+O(α3

s ).

Ben Page UGent

Feynman Integrals: From Mathematics to Experiment 5/23



Precise Perturbative Predictions

So just compute the cross-section!∑
i

[ ]
i

∼
∫

dϕn︸︷︷︸
phase space

[
|A|2︸︷︷︸

amplitude

]
.

Perturbation theory is our major tool for making predictions.

σ ∼ σLO + αSδσNLO + α2
SδσNNLO +O(α3

S).

LHC precision requires high order amplitude calculations!

A5 =

[
+ · · ·

]
+ αS

[
+ · · ·

]
+ α2

S

[
+ · · ·

]
+O(α3

s ).

Ben Page UGent

Feynman Integrals: From Mathematics to Experiment 5/23



Feynman Diagrams for the LHC
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Feynman Diagram Basics

Textbook: A loop amplitude is the sum of Feynman diagrams.

A
(2)
5g = +O(10000) diagrams.

Each diagram describes a collection of Feynman integrals:

D1

D2

D3

D4

D5

D6

D7

D8

p1

p2

p3

p4

p5

=

∫
R4×2

d4ℓ1d
4ℓ2

N(ℓ1, ℓ2)

D1D2D3D4D5D6D7D8
.

Computation is demanding mathematical problem that hides physics.
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Algebra for Feynman Diagrams

Consider the 6 gluon amplitude at two loops.

∼ 100MB, Agg→gggg ∼ 3TB

Just the expressions for Feynman diagrams is a huge amount of data!
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Algebra for Feynman Diagrams

Consider the 6 gluon amplitude at two loops.
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Just the expressions for Feynman diagrams is a huge amount of data!

Agg→gggg ∼ 10 000×
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Algebra for Feynman Diagrams

Consider the 6 gluon amplitude at two loops.

∼ 100MB, Agg→gggg ∼ 3TB

Just the expressions for Feynman diagrams is a huge amount of data!

Agg→gggg ∼
1

2

The two-loop six-gluon amplitude fills half of Royal Library of Belgium!
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The Main Problems

Problem 1: A 4l-fold integral is a nasty calculus problem.

?

Problem 2: We have lots of 4l-fold integrals to compute!

, , . . . , ? ? ?
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Calculational Tools

Number

Integral

Relations

Algebraic

Theory

Geometry

Differential

Equations

Mathematics tells us the important questions. Physics controls the answers.
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Reducing the Number of Integrals

Relations from “fundamental theorem of calculus”

(Stoke’s theorem).

,

∫
R
dω =

∫
∂R

ω.︸ ︷︷ ︸
multivariate generalization

For Feynman integrals R = R4l , ⇒ no boundary, i.e. ∂R = ∅.∫
R
dω = 0.

[Tkachov, Chetyrkin ’81]

Must only compute basis modulo relations. (Cohomology classes).{
I1, I2, . . .

}︸ ︷︷ ︸
100 000s of integrals

I i=RijIj−−−−−→ {I1, I2, . . .}︸ ︷︷ ︸
O(100) master integrals
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Differential equations: Integration “=” differentiation

Derivatives of Feynman integrals are again Feynman integrals!
[Kotikov ’91; Remiddi ’97; Gehrmann, Remiddi ’01]

d


...

 = M


...



Multiparticle physics all wrapped up into single object

d =
∑
i,µ

dpµi
∂

∂pµi
.

Algebraic matrix M.

Singularities at (generalized) thresholds.

m1

2 3

4

⇒ M ∼ M−1

s12 − 4m2
+O(s12 − 4m2)0.
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From Theory to Calculation
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The Philosophy

“Calculus is hard. Algebra is easy.”

— Unknown (heard from David Kosower)
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The Reality

“Algebra is also hard.”
— Your average high schooler/precision physicist

Practical Challenges:

Ludicrously large expressions.

Many variables to manipulate.

−→

Ben Page UGent

Feynman Integrals: From Mathematics to Experiment 15/23



The Reality

“Algebra is also hard.”
— Your average high schooler/precision physicist

Practical Challenges:

Ludicrously large expressions.

Many variables to manipulate.

−→

Ben Page UGent

Feynman Integrals: From Mathematics to Experiment 15/23



The Finite Field Ansatz Approach

Consider an Ansatz for a function/form ω, that we can evaluate.

ω(ϕn) =
N∑
i=1

wiai (ϕn).

Phase-space sample {ϕ(1)
n , . . . , ϕ

(N)
n } gives constraining linear system.

Precision/arithmetic issues avoided by working modulo a large prime.

ci ←→ ci mod p Q ←→ Fp.

[Schabinger, von Manteuffel ’14; Peraro ’16]

We reconstruct ω from evaluations, bypassing computer algebra!
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The Finite Field/Ansatz Revolution

Now multiple public tools implementing this approach

Approach powering many computations of frontier amplitudes.

3 jet

,

1q̄

5γ

2q
3g

4g 4g

3g

1q̄

2q

5γ

4g

3g

1q̄

2q

5γ

A
(2),N2

c
34;q , A

(2),Nc
δ;q A

(2),1
34;q , A

(2),Nc
δ;q , A

(2),1/Nc
δ;q A

(2),Nc
34;l , A

(2),1/Nc
34;l , A

(2),1/N2
c

δ;lγγ + jet

,
g

g

q

q̄

ℓ

ℓ̄V

V+2 jets

,
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The Finite Field/Ansatz Revolution

Now multiple public tools implementing this approach

Approach powering many computations of frontier amplitudes.
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New Frontiers
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Phase Space at Higher Multiplicity

Amplitudes are functions defined on momentum space:
p2p1

p3

pn−1

pn

→
n∑

i=1

pµi = 0, p2i = m2
i .

Feynman integrals are Lorentz-invariant. Use Mandelstam variables:

sij = (pi + pj)
2, d = ds12

∂

∂s12
+ · · · .

Space-time is 4 dimensional ⇒ Mandelstams constrained for n ≥ 6.

+ ⇒
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Algebraic Functions on Phase-Space

Mandelstam polynomials live in “coordinate ring” of this surface.

p(s⃗) ∈ C

  . p1 ∼ p2 ⇔ p1| = p2| .

[De Laurentis, BP ’22; Maazouz, Pfister, Sturmfels ’24]

When introducing
√
G (p1, p2, p3, p4), functions can be “weird”:

d

[
N
D

]
̸∼ 1

D2
. ←− d may not double poles.

[Abreu, Monni, BP, Usovitsch ’24]

: ‘’You’re working with C[ ][
√

G (p1, p2, p3, p4)]

and you don’t understand its algebra!”
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Algebraic Geometry of the Square Root

Introducing root gave us new variable defining self-intersecting variety

⊗ (r2 = G [p1, p2, p3, p4]) ∼

“Large” singularity ⇒ transition to bigger ring: the “integral closure”.

C[ ][
√
G (p1, p2, p3, p4)] −→ C[ ][r1234, . . . , r3456].

[BP, Poegel ’25]

New elements square to a Gram determinant. Levi-civita analogues!

r2i ,j ,k,l = G (pi , pj , pk , pl).

Computation controlled by physics!
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Towards Six-Point Scattering at Two Loops

Algebraic geometry of phase space key for 6-point computations.

4

5

61

2

3

,

5

6
1

2

3
4

,

4
5

61

2

3

, . . .

[Abreu, Monni, BP, Usovitsch ’24; Henn, Matijasic, Miczajka, Peraro, Xu, Zhang ’24, ’25]

Allowed to write very compact Ansätze for Mij .

O(1 million) terms → O(10 thousand) terms.

First steps towards era of precise predictions for six-point processes:

pp → 4j

pp → ttbb

pp → tttt

. . . .
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Summary

Precise understanding of fundamental physics at colliders leads to the
challenging problem of computing Feynman integrals.

Mathematical insights from algebraic geometry and number theory
power cutting edge computations, physics makes them possible.

As we push towards precise high-multiplicity scattering at the LHC,
we uncover new computational and mathematical challenges.
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Feynman Integrals: Complex Analytic Functions

[s∗] ∼

Re(s12)

Im(s12)

4m2s∗

Logarithmic and algebraic branch points, e.g.

when intermediate particles go “on-shell”.

when momenta become co-planar, G (p1, p2, p3, p4)→ 0.

Highly complicated analytic functions.
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Ansätze = Analytic Structure

Let f be Ck or Mjk . Typically algebraic and Lorentz invariant.

ϕn −→ s⃗ = {pi · pj , m2
k}.

Singularities of f (ϕn) are those of Feynman integrals. E.g. by Landau:

ℓ
ℓ∗(ϕ)

ℓ∗(ϕ)

ℓ∗(ϕ|W=0) =⇒ f =
f0
Wk/2

+O
(

1

W(k−1)/2

)
.

Problem reduced to understanding numerator polynomial.

f (s⃗) =
N (s⃗,

√
Wroot, . . .)∏

kWk(s⃗)qk
.
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Solving the Differential Equation

Conjecture: exists “special” basis in dim reg.

I⃗ = UJ⃗ : dJ⃗ = ϵM(s⃗)J⃗.

Solve J⃗ as series expansion in dim-reg ϵ

J⃗ = P exp

[
ϵ

∫
γ
M

]
J⃗0

Entries of M determine special functions, e.g.

d log(x − a) ∼
i

0

−1 1−i

∞
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