

Feynman Integrals: From Mathematics to Experiment

Ben Page

University of Ghent

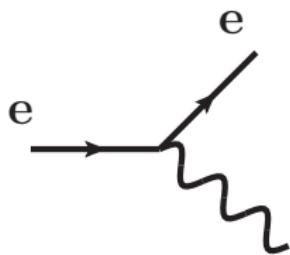
When the M meets the P (UCLouvain)

May 19th 2025

[based on work with Abreu, De Laurentis, Chicherin, Dormans, Febres Cordero, Figueiredo, Ita, Klinkert, Kraus, Monni, Moriello, Poegel, Reina, Sotnikov, Tschernow, Usovitsch, Zoia (many papers!)]

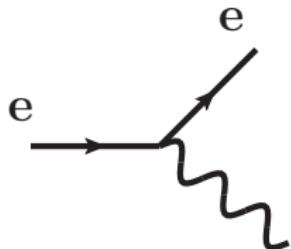
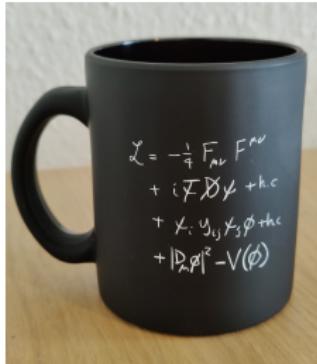
The Standard Model of Particle Physics

In Nature, Fundamental interactions described by Quantum Field Theory.



The Standard Model of Particle Physics

In Nature, Fundamental interactions described by Quantum Field Theory.

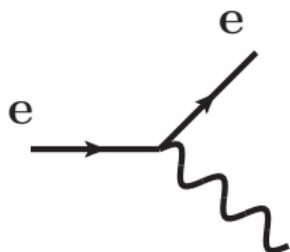
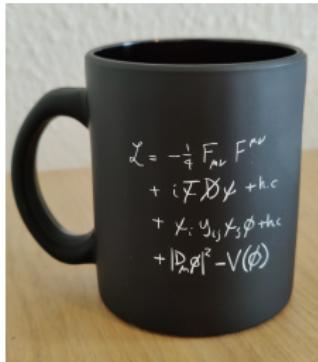


19 parameters ($m_\nu = 0$)

- 3 coupling strengths.
- 9 fermion masses m_f .
- 4 CKM parameters.
- 2 Higgs parameters.
- QCD vacuum angle.

The Standard Model of Particle Physics

In Nature, Fundamental interactions described by Quantum Field Theory.



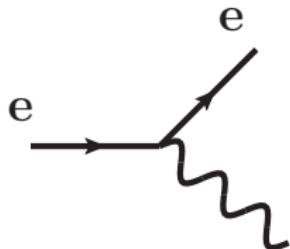
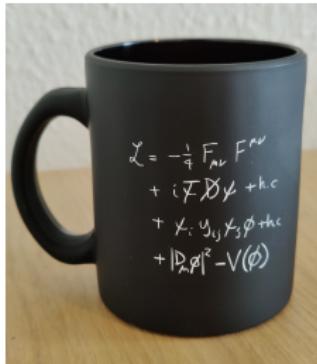
19 parameters ($m_\nu = 0$)

- 3 coupling strengths.
- 9 fermion masses m_f .
- 4 CKM parameters.
- 2 Higgs parameters.
- QCD vacuum angle.

- Model has non-trivial structure, e.g. $m_f \sim y_f$.

The Standard Model of Particle Physics

In Nature, Fundamental interactions described by Quantum Field Theory.



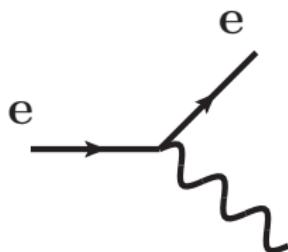
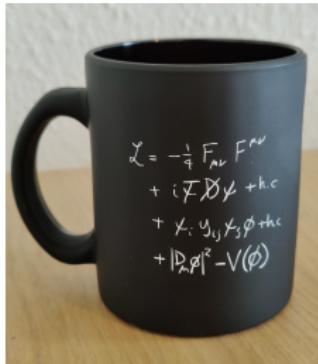
19 parameters ($m_\nu = 0$)

- 3 coupling strengths.
- 9 fermion masses m_f .
- 4 CKM parameters.
- 2 Higgs parameters.
- QCD vacuum angle.

- Model has non-trivial structure, e.g. $m_f \sim y_f$. Should be **tested!**

The Standard Model of Particle Physics

In Nature, Fundamental interactions described by Quantum Field Theory.



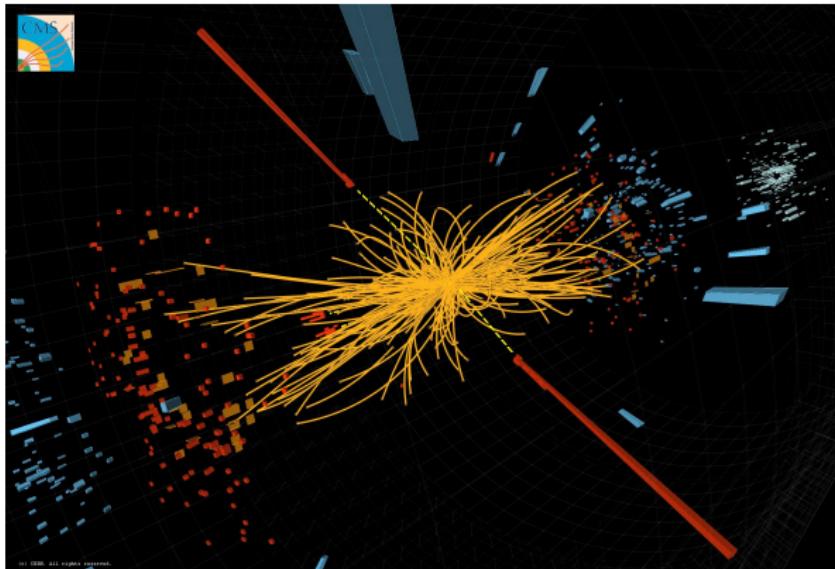
19 parameters ($m_\nu = 0$)

- 3 coupling strengths.
- 9 fermion masses m_f .
- 4 CKM parameters.
- 2 Higgs parameters.
- QCD vacuum angle.

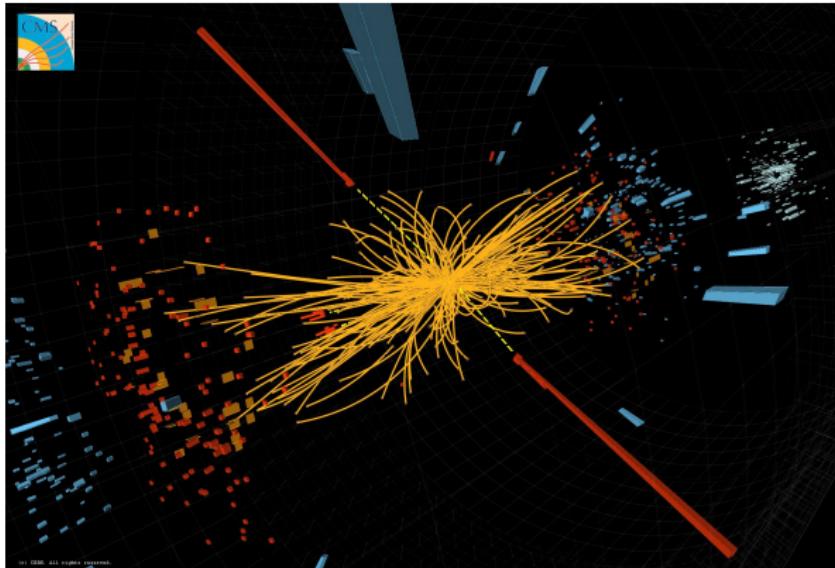
- Model has non-trivial structure, e.g. $m_f \sim y_f$. Should be **tested!**
- Do we need to modify the SM?

$$\mathcal{L}_{\text{true}} \stackrel{?}{=} \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots$$

A Collision at the LHC



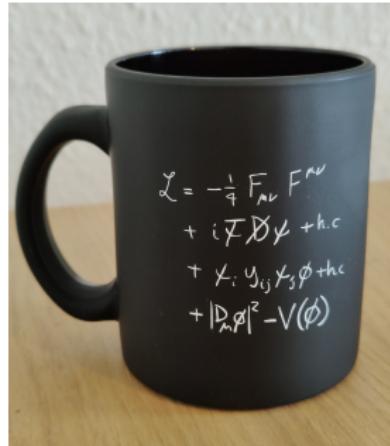
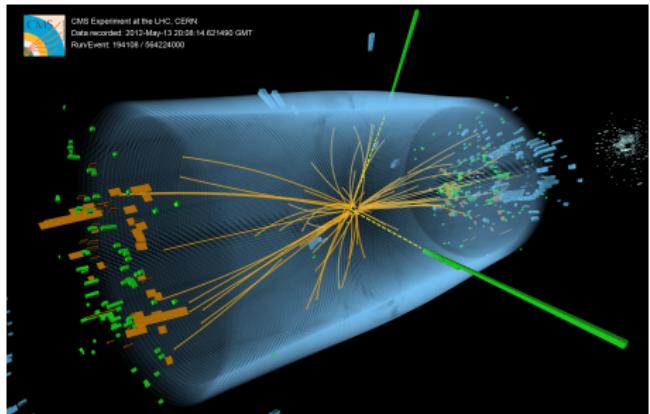
A Collision at the LHC



Experimentalists measure these “cross sections” by counting events:

$$\sigma \sim \sum_i \left[\text{[small image of a collision event]} \right]_i.$$

The Theorist's Task



- LHC experiments gather **enormous statistics** \Rightarrow precise measurements.
- Precise **theoretical predictions** needed to match experimental error.

Precise Perturbative Predictions

- So just compute the cross-section!

$$\sum_i \left[\begin{img alt="Feynman diagram of a particle interaction" data-bbox="315 235 415 335} \right]_i \sim \int \underbrace{d\phi_n}_{\text{phase space}} \left[\underbrace{|\mathcal{A}|^2}_{\text{amplitude}} \right].$$

Precise Perturbative Predictions

- So just compute the cross-section!

$$\sum_i \left[\begin{img alt="Feynman diagram of a particle interaction" data-bbox="315 235 415 335} \right]_i \sim \int \underbrace{d\phi_n}_{\text{phase space}} \left[\underbrace{|\mathcal{A}|^2}_{\text{amplitude}} \right].$$

- Perturbation theory is our major tool for making predictions.

$$\sigma \sim \sigma_{\text{LO}} + \alpha_S \delta \sigma_{\text{NLO}} + \alpha_S^2 \delta \sigma_{\text{NNLO}} + \mathcal{O}(\alpha_S^3).$$

Precise Perturbative Predictions

- So just compute the cross-section!

$$\sum_i \left[\begin{img alt="Feynman diagram of a particle interaction with multiple outgoing particles" data-bbox="300 230 400 350} \right]_i \sim \int \underbrace{d\phi_n}_{\text{phase space}} \left[\underbrace{|\mathcal{A}|^2}_{\text{amplitude}} \right].$$

- Perturbation theory is our major tool for making predictions.

$$\sigma \sim \sigma_{\text{LO}} + \alpha_S \delta \sigma_{\text{NLO}} + \alpha_S^2 \delta \sigma_{\text{NNLO}} + \mathcal{O}(\alpha_S^3).$$

- LHC precision requires high order amplitude calculations!

$$A_5 = \left[\begin{img alt="Feynman diagram of a 5-point vertex with 4 external lines" data-bbox="110 740 190 840} + \dots \right] + \alpha_S \left[\begin{img alt="Feynman diagram of a 5-point vertex with 4 external lines and one loop" data-bbox="360 740 440 840} + \dots \right] + \alpha_S^2 \left[\begin{img alt="Feynman diagram of a 5-point vertex with 4 external lines and two loops" data-bbox="630 740 710 840} + \dots \right] + \mathcal{O}(\alpha_S^3).$$

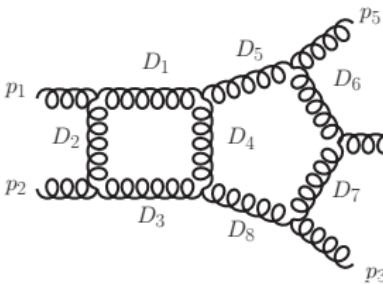
Feynman Diagrams for the LHC

Feynman Diagram Basics

- Textbook: A loop amplitude is the sum of Feynman diagrams.

$$A_{5g}^{(2)} = \text{Diagram} + \mathcal{O}(10000) \text{ diagrams.}$$

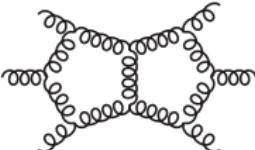
- Each diagram describes a collection of Feynman integrals:


$$= \int_{\mathbb{R}^{4 \times 2}} d^4 \ell_1 d^4 \ell_2 \frac{N(\ell_1, \ell_2)}{D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8}.$$

- Computation is demanding mathematical problem that hides physics.

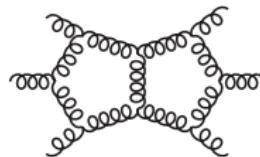
Algebra for Feynman Diagrams

- Consider the 6 gluon amplitude at two loops.


$$\sim 100\text{MB}, \quad \mathcal{A}_{gg \rightarrow gggg} \sim 3\text{TB}$$

Algebra for Feynman Diagrams

- Consider the 6 gluon amplitude at two loops.



$\sim 100\text{MB}$,

$\mathcal{A}_{gg \rightarrow gggg} \sim 3\text{TB}$

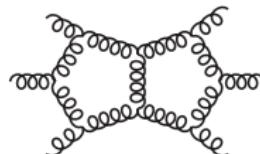
- Just the expressions for Feynman diagrams is a huge amount of data!

$$\mathcal{A}_{gg \rightarrow gggg} \sim 3\,000\,000 \times$$

$\sim 1\text{MB}$

Algebra for Feynman Diagrams

- Consider the 6 gluon amplitude at two loops.



$\sim 100\text{MB}$,

$\mathcal{A}_{gg \rightarrow gggg} \sim 3\text{TB}$

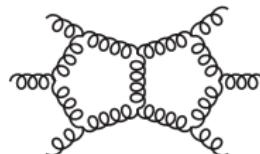
- Just the expressions for Feynman diagrams is a huge amount of data!

$\mathcal{A}_{gg \rightarrow gggg} \sim 10\,000 \times$

$\sim 300\text{MB}$

Algebra for Feynman Diagrams

- Consider the 6 gluon amplitude at two loops.



$\sim 100\text{MB}$,

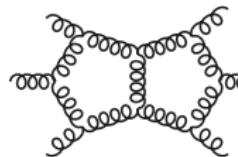
$\mathcal{A}_{gg \rightarrow gggg} \sim 3\text{TB}$

- Just the expressions for Feynman diagrams is a huge amount of data!

$$\mathcal{A}_{gg \rightarrow gggg} \sim \frac{1}{2}$$

Algebra for Feynman Diagrams

- Consider the 6 gluon amplitude at two loops.



$\sim 100\text{MB}$, $\mathcal{A}_{gg \rightarrow gggg} \sim 3\text{TB}$

- Just the expressions for Feynman diagrams is a huge amount of data!

$$\mathcal{A}_{gg \rightarrow gggg} \sim \frac{1}{2}$$

The two-loop six-gluon amplitude fills half of Royal Library of Belgium!

The Main Problems

- Problem 1: A 4-fold integral is a nasty calculus problem.

The Main Problems

- Problem 1: A 4-fold integral is a nasty calculus problem.

The Main Problems

- Problem 1: A 4/ I -fold integral is a nasty calculus problem.

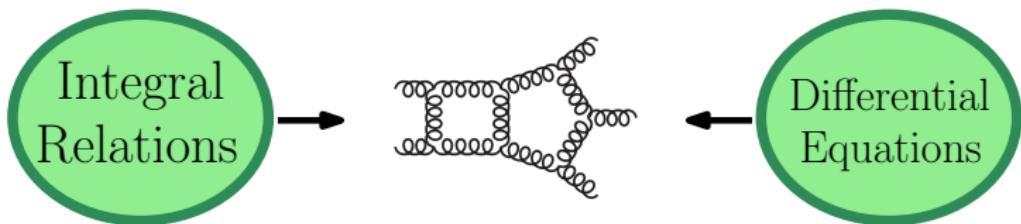
- Problem 2: We have lots of 4/ I -fold integrals to compute!

The Main Problems

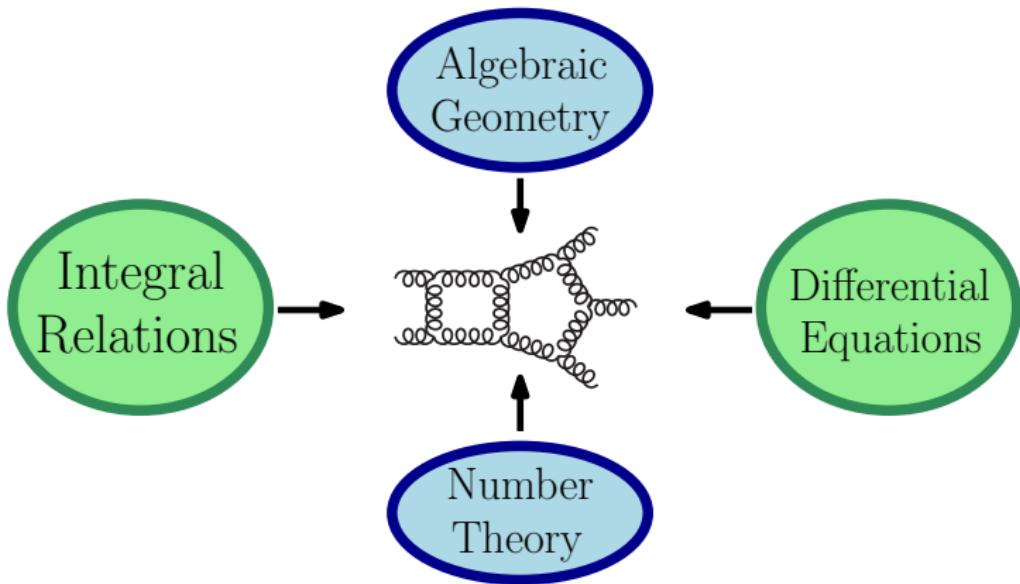
- Problem 1: A $4l$ -fold integral is a nasty calculus problem.

- Problem 2: We have lots of $4l$ -fold integrals to compute!

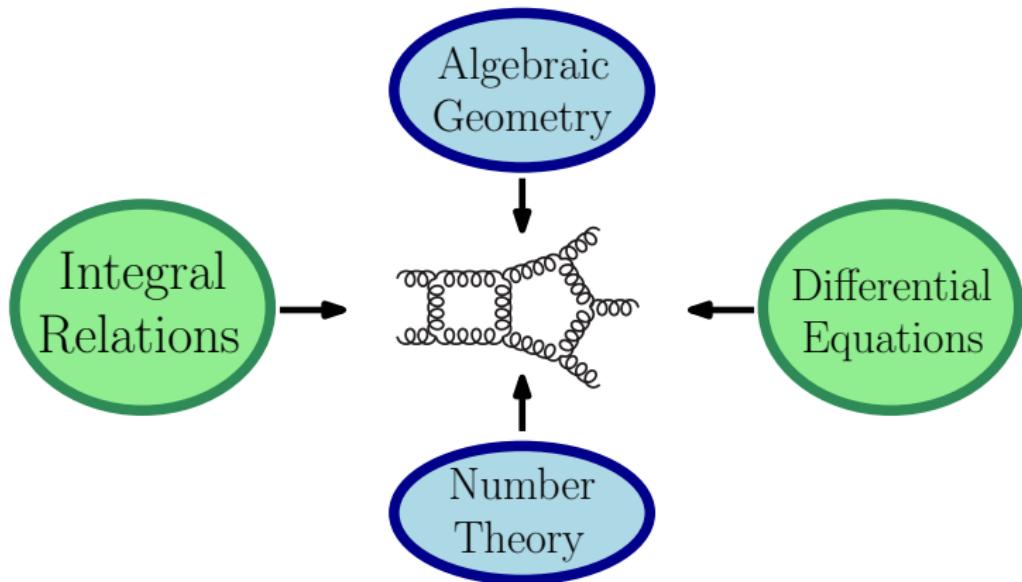
Calculational Tools



Calculational Tools



Calculational Tools



Mathematics tells us the important questions. Physics controls the answers.

Reducing the Number of Integrals

Reducing the Number of Integrals

- Relations from “fundamental theorem of calculus”

$$\int_a^b dx [F'(x)] = F(b) - F(a),$$

Reducing the Number of Integrals

- Relations from “fundamental theorem of calculus”

$$\underbrace{\int_a^b dx [F'(x)]}_{\text{univariate}} = F(b) - F(a),$$

Reducing the Number of Integrals

- Relations from “fundamental theorem of calculus” (Stoke’s theorem).

$$\underbrace{\int_a^b dx [F'(x)]}_{\text{univariate}} = F(b) - F(a),$$

$$\underbrace{\int_R d\omega}_{\text{multivariate}} = \int_{\partial R} \omega.$$

Reducing the Number of Integrals

- Relations from “fundamental theorem of calculus” (Stoke’s theorem).

$$\underbrace{\int_a^b dx [F'(x)]}_{\text{univariate}} = F(b) - F(a),$$

$$\underbrace{\int_R d\omega}_{\text{multivariate}} = \underbrace{\int_{\partial R} \omega}_{\text{generalization}}$$

- For Feynman integrals $R = \mathbb{R}^{4l}$, \Rightarrow no boundary, i.e. $\partial R = \emptyset$.

$$\int_R d\omega = 0.$$

[Tkachov, Chetyrkin '81]

Reducing the Number of Integrals

- Relations from “fundamental theorem of calculus” (Stoke’s theorem).

$$\underbrace{\int_a^b dx [F'(x)]}_{\text{univariate}} = F(b) - F(a),$$

$$\underbrace{\int_R d\omega}_{\text{multivariate generalization}} = \int_{\partial R} \omega.$$

- For Feynman integrals $R = \mathbb{R}^{4l}$, \Rightarrow no boundary, i.e. $\partial R = \emptyset$.

$$\int_R d\omega = 0.$$

[Tkachov, Chetyrkin '81]

- Must only compute **basis** modulo relations. (Cohomology classes).

$$\underbrace{\{\bar{\mathcal{I}}_1, \bar{\mathcal{I}}_2, \dots\}}_{100\,000s \text{ of integrals}} \xrightarrow{\bar{\mathcal{I}}_i = \mathcal{R}_{ij} \mathcal{I}_j} \underbrace{\{\mathcal{I}_1, \mathcal{I}_2, \dots\}}_{\mathcal{O}(100) \text{ master integrals}}$$

Differential equations: Integration “=” differentiation

- Derivatives of Feynman integrals are again Feynman integrals!

[Kotikov '91; Remiddi '97; Gehrmann, Remiddi '01]

$$d \begin{pmatrix} \text{Feynman Integral} \\ \vdots \end{pmatrix} = \mathbf{M} \begin{pmatrix} \text{Feynman Integral} \\ \vdots \end{pmatrix}$$

Differential equations: Integration “=” differentiation

- Derivatives of Feynman integrals are again Feynman integrals!

[Kotikov '91; Remiddi '97; Gehrmann, Remiddi '01]

$$d \begin{pmatrix} \text{Feynman Integral} \\ \vdots \end{pmatrix} = \mathbf{M} \begin{pmatrix} \text{Feynman Integral} \\ \vdots \end{pmatrix}$$

- Multiparticle physics all wrapped up into single object

$$d = \sum_{i,\mu} dp_i^\mu \frac{\partial}{\partial p_i^\mu}.$$

Differential equations: Integration “=” differentiation

- Derivatives of Feynman integrals are again Feynman integrals!

[Kotikov '91; Remiddi '97; Gehrmann, Remiddi '01]

$$d \begin{pmatrix} \text{Feynman Diagram} \\ \vdots \end{pmatrix} = \mathbf{M} \begin{pmatrix} \text{Feynman Diagram} \\ \vdots \end{pmatrix}$$

- Multiparticle physics all wrapped up into single object

$$d = \sum_{i,\mu} dp_i^\mu \frac{\partial}{\partial p_i^\mu}.$$

- Algebraic matrix \mathbf{M} .

Differential equations: Integration “=” differentiation

- Derivatives of Feynman integrals are again Feynman integrals!

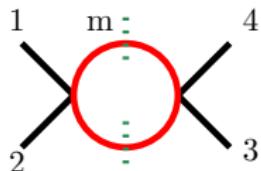
[Kotikov '91; Remiddi '97; Gehrmann, Remiddi '01]

$$d \begin{pmatrix} \text{Feynman Integral} \\ \vdots \end{pmatrix} = \mathbf{M} \begin{pmatrix} \text{Feynman Integral} \\ \vdots \end{pmatrix}$$

- Multiparticle physics all wrapped up into single object

$$d = \sum_{i,\mu} dp_i^\mu \frac{\partial}{\partial p_i^\mu}.$$

- Algebraic matrix \mathbf{M} . Singularities at (generalized) **thresholds**.



⇒

$$\mathbf{M} \sim \frac{\mathbf{M}_{-1}}{s_{12} - 4m^2} + \mathcal{O}(s_{12} - 4m^2)^0.$$

From Theory to Calculation

The Philosophy

“Calculus is hard. **Algebra** is easy.”

— Unknown (heard from David Kosower)

The Reality

“Algebra is also hard.”

— Your average high schooler/precision physicist

The Reality

“Algebra is also hard.”

— Your average high schooler/precision physicist

Practical Challenges:

- Ludicrously large expressions.
- Many variables to manipulate.

The Finite Field Ansatz Approach

- Consider an Ansatz for a function/form ω , that we can evaluate.

$$\omega(\phi_n) = \sum_{i=1}^N w_i \alpha_i(\phi_n).$$

The Finite Field Ansatz Approach

- Consider an Ansatz for a function/form ω , that we can evaluate.

$$\omega(\phi_n) = \sum_{i=1}^N w_i \alpha_i(\phi_n).$$

- Phase-space sample $\{\phi_n^{(1)}, \dots, \phi_n^{(N)}\}$ gives constraining linear system.

The Finite Field Ansatz Approach

- Consider an Ansatz for a function/form ω , that we can evaluate.

$$\omega(\phi_n) = \sum_{i=1}^N w_i \mathfrak{a}_i(\phi_n).$$

- Phase-space sample $\{\phi_n^{(1)}, \dots, \phi_n^{(N)}\}$ gives constraining linear system.

$$\omega(\phi_n^{(1)}) = \begin{pmatrix} \mathfrak{a}_1(\phi_n^{(1)}) & \dots & \mathfrak{a}_N(\phi_n^{(1)}) \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix}.$$

The Finite Field Ansatz Approach

- Consider an Ansatz for a function/form ω , that we can evaluate.

$$\omega(\phi_n) = \sum_{i=1}^N w_i \alpha_i(\phi_n).$$

- Phase-space sample $\{\phi_n^{(1)}, \dots, \phi_n^{(N)}\}$ gives constraining linear system.

$$\begin{pmatrix} \omega(\phi_n^{(1)}) \\ \omega(\phi_n^{(2)}) \end{pmatrix} = \begin{pmatrix} \alpha_1(\phi_n^{(1)}) & \dots & \alpha_N(\phi_n^{(1)}) \\ \alpha_1(\phi_n^{(2)}) & \dots & \alpha_N(\phi_n^{(2)}) \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix}.$$

The Finite Field Ansatz Approach

- Consider an Ansatz for a function/form ω , that we can evaluate.

$$\omega(\phi_n) = \sum_{i=1}^N w_i \alpha_i(\phi_n).$$

- Phase-space sample $\{\phi_n^{(1)}, \dots, \phi_n^{(N)}\}$ gives constraining linear system.

$$\begin{pmatrix} \omega(\phi_n^{(1)}) \\ \vdots \\ \omega(\phi_n^{(N)}) \end{pmatrix} = \begin{pmatrix} \alpha_1(\phi_n^{(1)}) & \dots & \alpha_N(\phi_n^{(1)}) \\ \vdots & \dots & \vdots \\ \alpha_1(\phi_n^{(N)}) & \dots & \alpha_N(\phi_n^{(N)}) \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix}.$$

The Finite Field Ansatz Approach

- Consider an Ansatz for a function/form ω , that we can evaluate.

$$\omega(\phi_n) = \sum_{i=1}^N w_i \alpha_i(\phi_n).$$

- Phase-space sample $\{\phi_n^{(1)}, \dots, \phi_n^{(N)}\}$ gives constraining linear system.

$$\begin{pmatrix} 0.680327 \\ \vdots \\ 0.0901156 \end{pmatrix} = \begin{pmatrix} 0.453731 & \cdots & 0.757166 \\ \vdots & \cdots & \vdots \\ 0.419842 & \cdots & 0.122505 \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix}.$$

The Finite Field Ansatz Approach

- Consider an Ansatz for a function/form ω , that we can evaluate.

$$\omega(\phi_n) = \sum_{i=1}^N w_i \alpha_i(\phi_n).$$

- Phase-space sample $\{\phi_n^{(1)}, \dots, \phi_n^{(N)}\}$ gives constraining linear system.

$$\begin{pmatrix} 8265479 \\ \vdots \\ 7528270 \end{pmatrix} = \begin{pmatrix} 236109 & \dots & 6818109 \\ \vdots & \dots & \vdots \\ 50305 & \dots & 9750564 \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix} \pmod{9999991}.$$

- Precision/arithmetic issues avoided by working **modulo a large prime**.

$$c_i \longleftrightarrow c_i \pmod{p} \qquad \mathbb{Q} \longleftrightarrow \mathbb{F}_p.$$

[Schabinger, von Manteuffel '14; Peraro '16]

The Finite Field Ansatz Approach

- Consider an Ansatz for a function/form ω , that we can evaluate.

$$\omega(\phi_n) = \sum_{i=1}^N w_i \alpha_i(\phi_n).$$

- Phase-space sample $\{\phi_n^{(1)}, \dots, \phi_n^{(N)}\}$ gives constraining linear system.

$$\begin{pmatrix} 8265479 \\ \vdots \\ 7528270 \end{pmatrix} = \begin{pmatrix} 236109 & \dots & 6818109 \\ \vdots & \dots & \vdots \\ 50305 & \dots & 9750564 \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_N \end{pmatrix} \pmod{9999991}.$$

- Precision/arithmetic issues avoided by working **modulo a large prime**.

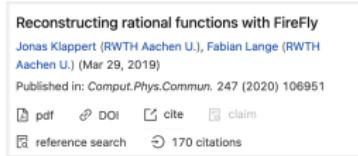
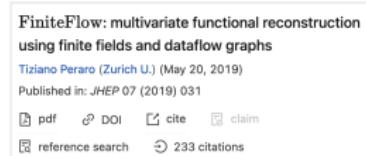
$$c_i \longleftrightarrow c_i \pmod{p} \qquad \mathbb{Q} \longleftrightarrow \mathbb{F}_p.$$

[Schabinger, von Manteuffel '14; Peraro '16]

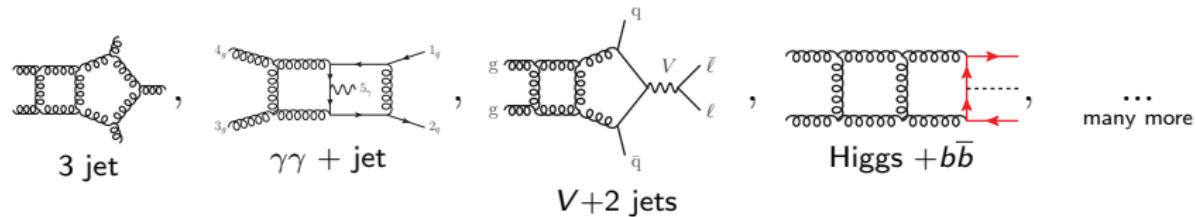
We **reconstruct** ω from evaluations, bypassing computer algebra!

The Finite Field/Ansatz Revolution

- Now multiple public tools implementing this approach

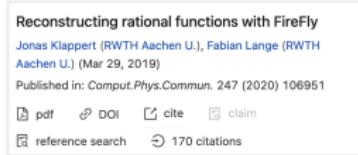
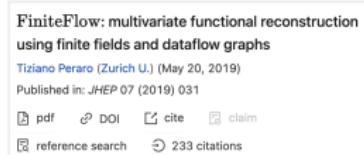


- Approach powering many computations of frontier **amplitudes**.

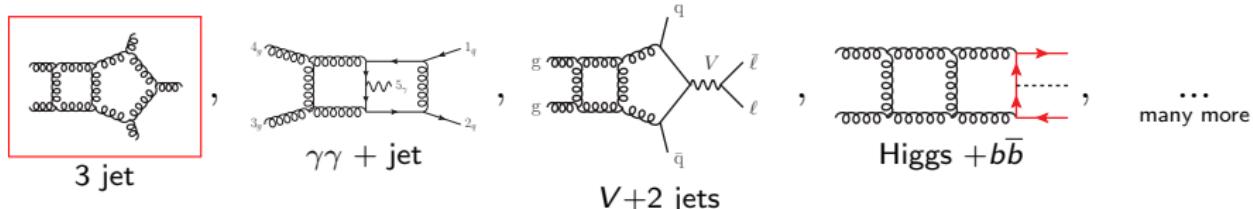


The Finite Field/Ansatz Revolution

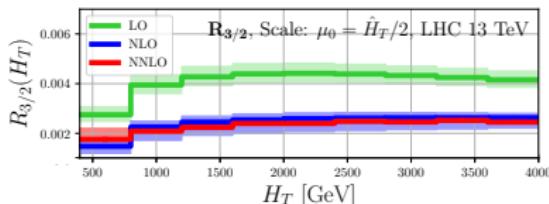
- Now multiple public tools implementing this approach



- Approach powering many computations of frontier **amplitudes**.

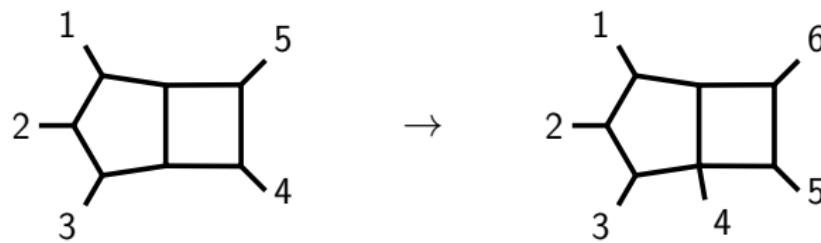


- Highlight: three-jets. Allowed for precise 3-jet/ α_S measurements.



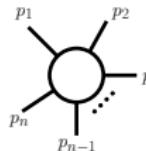
[Abreu, BP, Febres Cordero, Ita, Sotnikov '21; Czakon, Mitov, Poncelet '21; ATLAS '23; ATLAS '24]

New Frontiers



Phase Space at Higher Multiplicity

- Amplitudes are functions defined on momentum space:

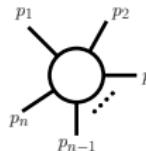

$$\sum_{i=1}^n p_i^\mu = 0, \quad p_i^2 = m_i^2.$$

- Feynman integrals are **Lorentz-invariant**. Use Mandelstam variables:

$$s_{ij} = (p_i + p_j)^2, \quad d = ds_{12} \frac{\partial}{\partial s_{12}} + \dots$$

Phase Space at Higher Multiplicity

- Amplitudes are functions defined on momentum space:



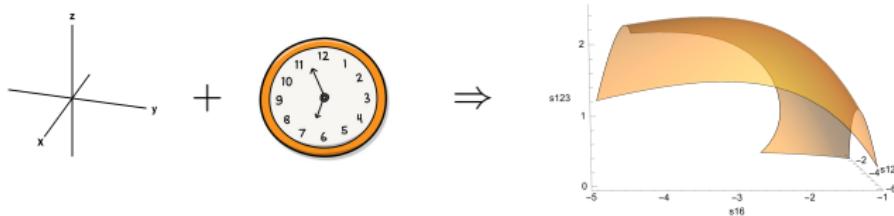
A Feynman diagram showing a central circular vertex from which n external lines extend. The lines are labeled $p_1, p_2, p_3, \dots, p_n$ at their ends. The lines are represented by black arcs, with the last line p_n ending in a dotted arc.

$$\rightarrow \sum_{i=1}^n p_i^\mu = 0, \quad p_i^2 = m_i^2.$$

- Feynman integrals are **Lorentz-invariant**. Use Mandelstam variables:

$$s_{ij} = (p_i + p_j)^2, \quad d = ds_{12} \frac{\partial}{\partial s_{12}} + \dots$$

- Space-time is 4 dimensional \Rightarrow Mandelstams constrained for $n \geq 6$.



Algebraic Functions on Phase-Space

- Mandelstam polynomials live in “coordinate ring” of this surface.

$$p(\vec{s}) \in \mathbb{C} \left[\begin{array}{c} \text{Diagram of a curved surface} \\ \text{A curved surface, likely a Riemann surface, represented by a yellow and orange shaded region.} \end{array} \right]. \quad p_1 \sim p_2 \Leftrightarrow p_1|_{\text{Diagram}} = p_2|_{\text{Diagram}}.$$

[De Laurentis, BP '22; Maazouz, Pfister, Sturmfels '24]

[Abreu, Monni, BP, Usovitsch '24]

Algebraic Functions on Phase-Space

- Mandelstam polynomials live in “coordinate ring” of this surface.

$$p(\vec{s}) \in \mathbb{C} \left[\begin{array}{c} \text{Diagram of a surface: a curved surface with a central cusp-like feature, colored in shades of orange and yellow.} \end{array} \right]. \quad p_1 \sim p_2 \Leftrightarrow p_1|_{\text{Diagram}} = p_2|_{\text{Diagram}}.$$

[De Laurentis, BP '22; Maazouz, Pfister, Sturmfels '24]

- When introducing $\sqrt{G(p_1, p_2, p_3, p_4)}$, functions can be “weird”:

$$d \left[\frac{\mathcal{N}}{\mathcal{D}} \right] \not\propto \frac{1}{\mathcal{D}^2}. \quad \leftarrow d \text{ may not double poles.}$$

[Abreu, Monni, BP, Usovitsch '24]

Algebraic Functions on Phase-Space

- Mandelstam polynomials live in “coordinate ring” of this surface.

$$p(\vec{s}) \in \mathbb{C} \left[\begin{array}{c} \text{Diagram of a curved surface} \\ \text{A curved surface, likely a Riemann surface, represented by a yellow and orange shaded region.} \end{array} \right]. \quad p_1 \sim p_2 \Leftrightarrow p_1|_{\text{surface}} = p_2|_{\text{surface}}.$$

[De Laurentis, BP '22; Maazouz, Pfister, Sturmfels '24]

- When introducing $\sqrt{G(p_1, p_2, p_3, p_4)}$, functions can be “weird”:

$$d \left[\frac{\mathcal{N}}{\mathcal{D}} \right] \not\propto \frac{1}{\mathcal{D}^2}. \quad \leftarrow d \text{ may not double poles.}$$

[Abreu, Monni, BP, Usovitsch '24]

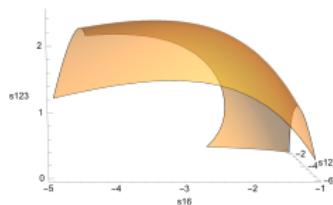
Graduate Texts
in Mathematics

David Eisenbud
Commutative
Algebra with a View
Toward Algebraic
Geometry

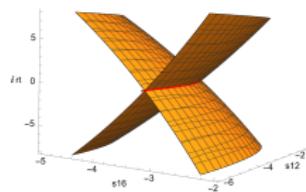
“You’re working with $\mathbb{C}[\text{surface}][\sqrt{G(p_1, p_2, p_3, p_4)}]$
and you don’t understand its algebra!”

Algebraic Geometry of the Square Root

- Introducing root gave us **new variable** defining self-intersecting variety

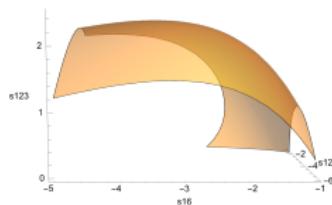


$$\otimes (r^2 = G[p_1, p_2, p_3, p_4]) \sim$$

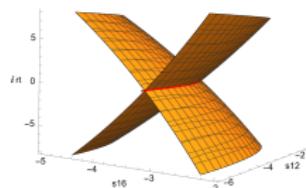


Algebraic Geometry of the Square Root

- Introducing root gave us **new variable** defining self-intersecting variety



$$\otimes (r^2 = G[p_1, p_2, p_3, p_4]) \sim$$



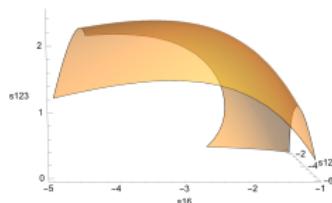
- “Large” singularity \Rightarrow transition to bigger ring: the “integral closure”.

$$\mathbb{C}[\text{curved surface}][\sqrt{G(p_1, p_2, p_3, p_4)}] \longrightarrow \mathbb{C}[\text{curved surface}][r_{1234}, \dots, r_{3456}].$$

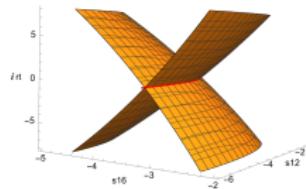
[BP, Poegel '25]

Algebraic Geometry of the Square Root

- Introducing root gave us **new variable** defining self-intersecting variety



$$\otimes (r^2 = G[p_1, p_2, p_3, p_4]) \sim$$



- “Large” singularity \Rightarrow transition to bigger ring: the “integral closure”.

$$\mathbb{C}[\text{arc}] [\sqrt{G(p_1, p_2, p_3, p_4)}] \longrightarrow \mathbb{C}[\text{arc}] [r_{1234}, \dots, r_{3456}].$$

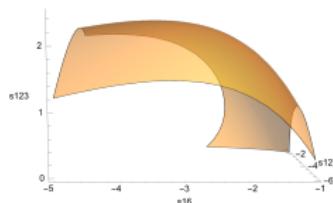
[BP, Poegel '25]

- New elements **square** to a Gram determinant. Levi-civita analogues!

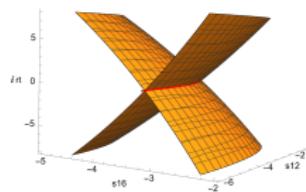
$$r_{i,j,k,l}^2 = G(p_i, p_j, p_k, p_l).$$

Algebraic Geometry of the Square Root

- Introducing root gave us **new variable** defining self-intersecting variety



$$\otimes (r^2 = G[p_1, p_2, p_3, p_4]) \sim$$



- “Large” singularity \Rightarrow transition to bigger ring: the “integral closure”.

$$\mathbb{C}[\text{arc}] [\sqrt{G(p_1, p_2, p_3, p_4)}] \longrightarrow \mathbb{C}[\text{arc}] [r_{1234}, \dots, r_{3456}].$$

[BP, Poegel '25]

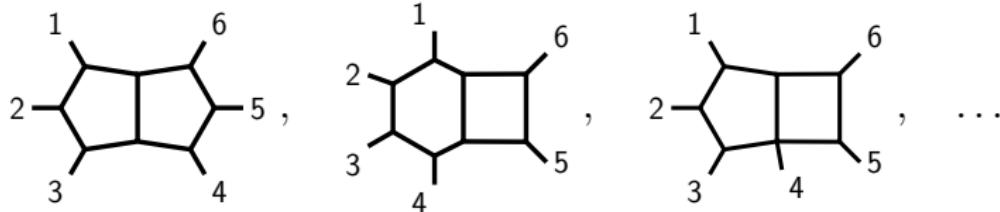
- New elements **square** to a Gram determinant. Levi-civita analogues!

$$r_{i,j,k,l}^2 = G(p_i, p_j, p_k, p_l).$$

Computation controlled by physics!

Towards Six-Point Scattering at Two Loops

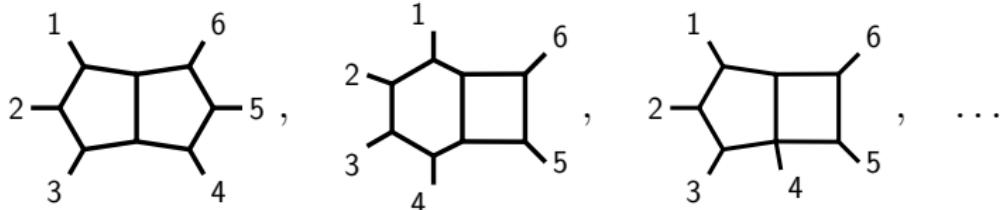
- Algebraic geometry of phase space key for 6-point computations.



[Abreu, Monni, BP, Usovitsch '24; Henn, Matijasic, Miczajka, Peraro, Xu, Zhang '24, '25]

Towards Six-Point Scattering at Two Loops

- Algebraic geometry of phase space key for 6-point computations.



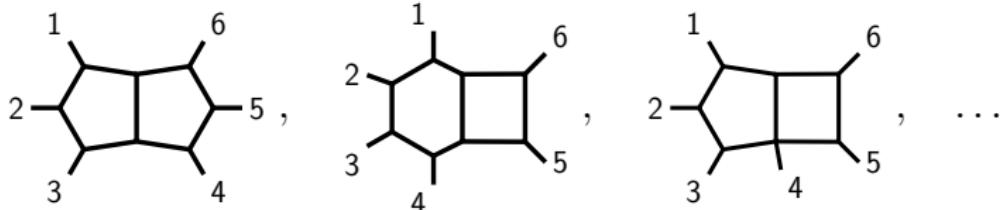
[Abreu, Monni, BP, Usovitsch '24; Henn, Matijasic, Miczajka, Peraro, Xu, Zhang '24, '25]

- Allowed to write very **compact Ansätze** for \mathbf{M}_{ij} .

$\mathcal{O}(1 \text{ million})$ terms \rightarrow $\mathcal{O}(10 \text{ thousand})$ terms.

Towards Six-Point Scattering at Two Loops

- Algebraic geometry of phase space key for 6-point computations.



[Abreu, Monni, BP, Usovitsch '24; Henn, Matijasic, Miczajka, Peraro, Xu, Zhang '24, '25]

- Allowed to write very **compact Ansätze** for \mathbf{M}_{ij} .

$\mathcal{O}(1 \text{ million})$ terms \rightarrow $\mathcal{O}(10 \text{ thousand})$ terms.

- First steps towards era of precise predictions for six-point processes:

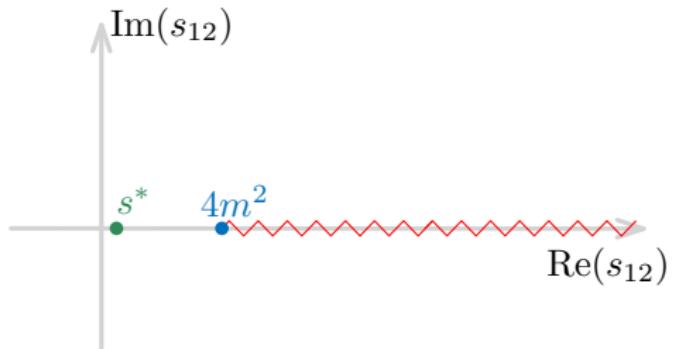
- $pp \rightarrow 4j$
- $pp \rightarrow t\bar{t}b\bar{b}$

- $pp \rightarrow t\bar{t}t\bar{t}$
- ...

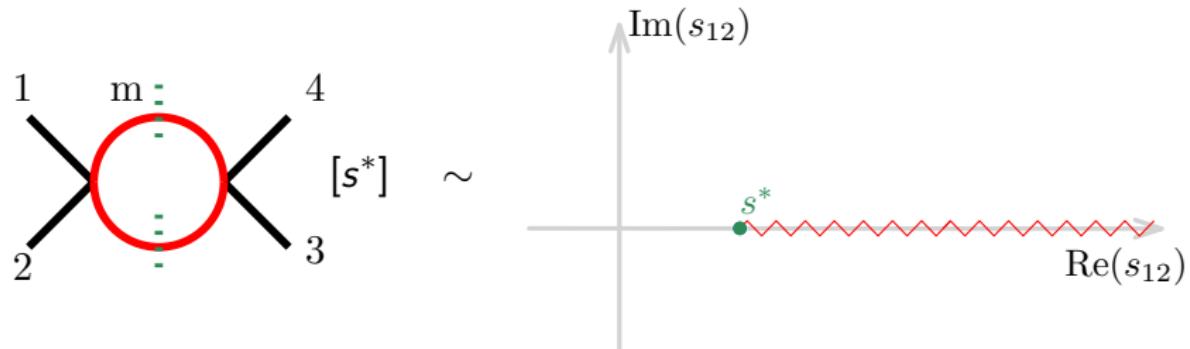
Summary

- Precise understanding of fundamental physics at colliders leads to the challenging problem of computing **Feynman integrals**.
- Mathematical insights from **algebraic geometry and number theory** power cutting edge computations, **physics** makes them possible.
- As we push towards **precise high-multiplicity scattering** at the LHC, we uncover new computational and mathematical challenges.

Feynman Integrals: Complex Analytic Functions

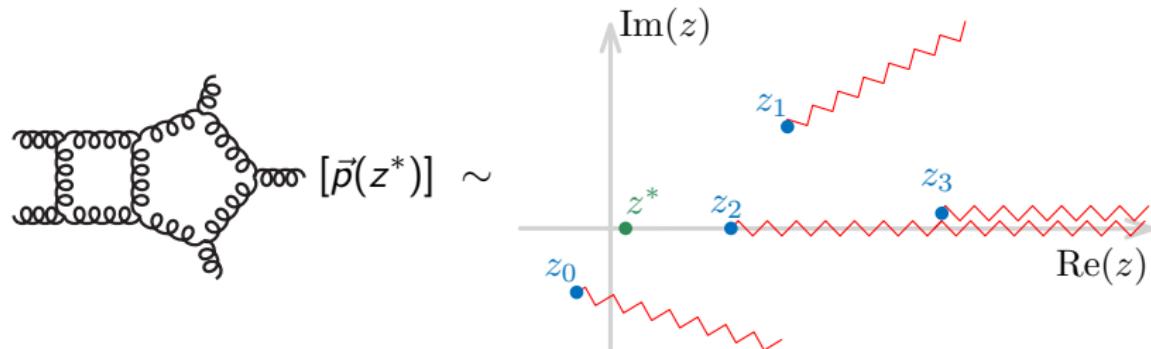


Feynman Integrals: Complex Analytic Functions



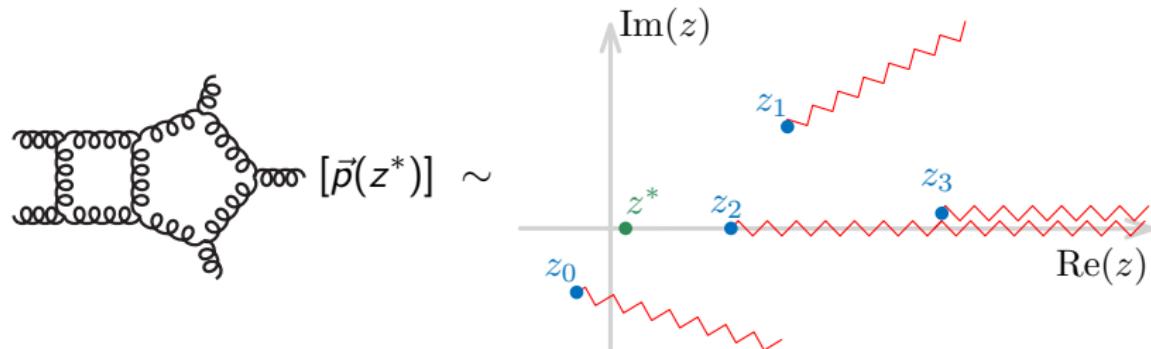
- Logarithmic and algebraic branch points, e.g.
 - when intermediate particles go “on-shell”.

Feynman Integrals: Complex Analytic Functions



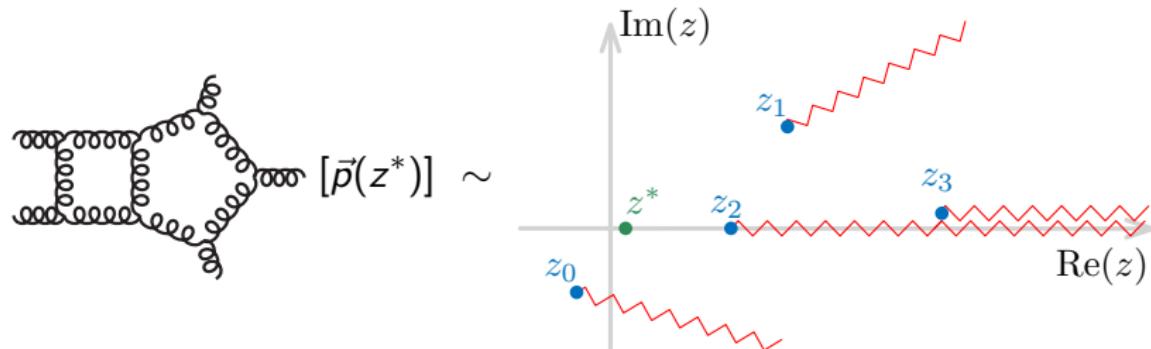
- Logarithmic and algebraic branch points, e.g.
 - when intermediate particles go “on-shell”.

Feynman Integrals: Complex Analytic Functions



- Logarithmic and algebraic branch points, e.g.
 - when intermediate particles go “on-shell”.
 - when momenta become **co-planar**, $G(p_1, p_2, p_3, p_4) \rightarrow 0$.

Feynman Integrals: Complex Analytic Functions



- Logarithmic and algebraic branch points, e.g.
 - when intermediate particles go “on-shell”.
 - when momenta become **co-planar**, $G(p_1, p_2, p_3, p_4) \rightarrow 0$.

Highly complicated analytic functions.

Ansätze = Analytic Structure

Ansätze = Analytic Structure

- Let f be \mathcal{C}_k or M_{jk} . Typically algebraic and **Lorentz invariant**.

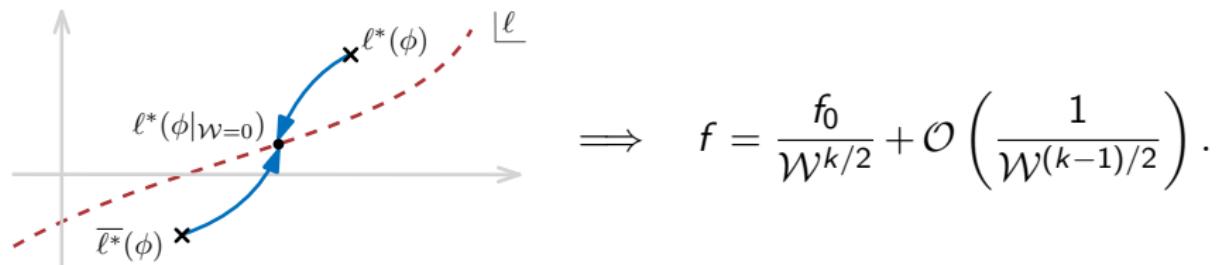
$$\phi_n \quad \longrightarrow \quad \vec{s} = \{p_i \cdot p_j, m_k^2\}.$$

Ansätze = Analytic Structure

- Let f be \mathcal{C}_k or M_{jk} . Typically algebraic and **Lorentz invariant**.

$$\phi_n \quad \longrightarrow \quad \vec{s} = \{p_i \cdot p_j, m_k^2\}.$$

- Singularities of $f(\phi_n)$ are those of Feynman integrals. E.g. by Landau:

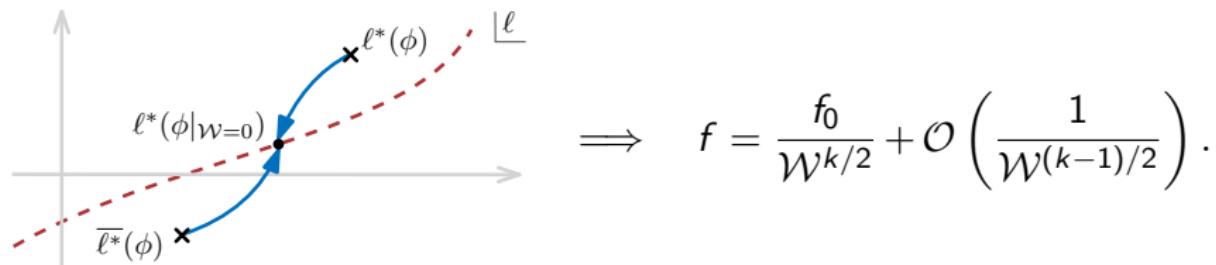


Ansätze = Analytic Structure

- Let f be \mathcal{C}_k or M_{jk} . Typically algebraic and **Lorentz invariant**.

$$\phi_n \quad \longrightarrow \quad \vec{s} = \{p_i \cdot p_j, m_k^2\}.$$

- Singularities of $f(\phi_n)$ are those of Feynman integrals. E.g. by Landau:



- Problem reduced to understanding numerator polynomial.

$$f(\vec{s}) = \frac{\mathcal{N}(\vec{s}, \sqrt{\mathcal{W}_{\text{root}}}, \dots)}{\prod_k \mathcal{W}_k(\vec{s})^{q_k}}.$$

Solving the Differential Equation

- Conjecture: exists “special” basis in dim reg.

$$\vec{I} = U \vec{J} \quad : \quad d\vec{J} = \epsilon \mathbf{M}(\vec{s}) \vec{J}.$$

- Solve \vec{J} as series expansion in dim-reg ϵ

$$\vec{J} = \mathbb{P} \exp \left[\epsilon \int_{\gamma} \mathbf{M} \right] \vec{J}_0$$

- Entries of \mathbf{M} determine special functions, e.g.

$$d \log(x - a) \quad \sim \quad$$

