

Probing the CP nature of the top-Higgs Yukawa coupling in $t\bar{t}H$ and tH events at ATLAS

Zak Lawrence

11th February 2025

What we don't see

- →We expect that when the universe formed there should have been an equal amount of both matter and antimatter created.
- →This would have resulted in the annihilation of both and in turn an empty universe devoid of both matter and antimatter.
- \rightarrow Clearly this isn't what we see..

Why search for CP violation?

The Sakharov conditions:

- →To explain this difference between expectations and observations three necessary conditions must be satisfied:
 - \rightarrow The violation of Baryon number.
 - \rightarrow C-symmetry and CP-symmetry violation.
 - \rightarrow Interactions out of thermal equilibrium.

C and P symmetries

- \rightarrow Charge and Parity are important symmetries of the SM.
- →We have observed *C*,*P* and *CP* violation in the weak interaction
- There is not enough CP violation to match the observed matter dominance.

Yukawa Interactions

Yukawa couplings

$$\mathcal{L}_{\text{Yukawa}} = -\sum_{ij}^{3} [y_{ij}^{\ell} \bar{L}_{L}^{j} \Phi \bar{e}_{R}^{i}] - \sum_{ij}^{3} [y_{ij}^{u} \bar{\mathcal{Q}}_{L}^{j} \tilde{\Phi} u_{R}^{i} + y_{ij}^{d} \bar{\mathcal{Q}}_{L}^{j} \Phi d_{R}^{i}] + \text{H.c.},$$

- →The Yukawa couplings provide mass to the fermions in the SM → Measurement of the couplings is important to verify the predictions of the SM.
- \rightarrow The strength, y_{ij}^k , is proportional to the mass of the fermion.
- \rightarrow Top quarks are the heaviest particles in the SM and so have the largest coupling, $y_t \approx 1.$
- $\rightarrow t\bar{t}H$ provides a direct probe of the top-Higgs coupling at tree level.
- \rightarrow Allows us to search for CP violation in Yukawa interactions.

CP Violation in top Yukawa Couplings

 \rightarrow Within the SM the Higgs is even under *CP* inversion.

- \rightarrow *CP* violating terms can be added to the interaction and parametrised in terms of a coupling strength modifier κ'_t and a mixing angle α .
- →Results in modifications to the observed cross section of the process.
- \rightarrow From $t\bar{t}H$ alone we are unable to distinguish between y_t and $-y_t$, but sensitivity can be gained through contributions from tH.
- →Previous results from $t\bar{t}H(H \rightarrow \gamma\gamma)$ have excluded a pure CP-odd coupling at 99.98% CL.

Higgs Production at the LHC

Decreasing Cross Section

 \rightarrow The Higgs is predominantly produced via the gluon fusion channel at the LHC.

 $\rightarrow t\bar{t}H$ events make up a small fraction of the total Higgs production.

$$\frac{\sigma(pp \to t\bar{t}H)}{\sigma(pp \to H)} \approx 1\%$$

The $t\bar{t}H$ process

Decreasing Branching Ratio

 \rightarrow The $t\bar{t}H$ process was first observed in 2018 by ATLAS and CMS.

- \rightarrow The $H \rightarrow b\overline{b}$ channel offers the largest branching ratio at 58% although comes with the challenge of a large $t\overline{t} + jets$ background.
- Multilepton offers lower backgrounds and a clear signature while having a smaller branching ratio and requiring careful handling of fake lepton background.
- \rightarrow The $H \rightarrow \gamma \gamma$ channel can give a precise measurement of the top-Higgs coupling however contributions from non-SM particles to the loops could compensate for deviations in y_t from its SM value.

Experimental status: $t\bar{t}H(bb)$ Run 2 results

Run: 280950 Event: 2059211291 2015-10-04 07:25:29 CEST

Analysis Overview

- \rightarrow The analysis targets events $t\bar{t}H$ events with the Higgs decaying to a pair of *b*-quarks.
- \rightarrow Makes use of data collected by ATLAS during Run 2 of the LHC.
- \rightarrow Represents the first measurement of the CP properties of top-Higgs coupling in the $H \rightarrow b\bar{b}$ decay channel.
- →Analysis strategy is based on <u>Run 2 STXS analysis</u>, with modifications made to probe CP properties of top-Higgs coupling.

Analysis targets the $t\bar{t}H$ and tH processes as signal.

Analysis Overview

 \rightarrow The analysis splits events into three different analysis channels based on the decay of the $t\bar{t}$ system.

 \rightarrow Only electrons and muons are considered, events with τ candidates are vetoed.

\rightarrow Dilepton channel:

 \rightarrow Both top quarks decay leptonically.

 \rightarrow 4 *b*-tagged jets.

- \rightarrow 2 charged leptons.
- \rightarrow Single lepton (l+jets) channel:
 - \rightarrow One top decays leptonically, the other hadronically.
 - \rightarrow Expect 6 jets, including 4 *b*-tagged jets.

 \rightarrow 1 charged lepton

\rightarrow Boosted Channel:

→Is a subcategory of the l+jets channel where the two bquarks are sufficiently boosted to be reconstructed as a single large R jet.

Event Classification

Events selected for dilepton, and l+jets channels are further split with selections based on the number of jets and b-tagged jets.

→Selections define control regions and training regions

 $\ell + \mathbf{jets}$

- Control regions (CRs) have a lower fraction of signal events and are defined to allow the fit to constrain the background model.
- Training regions (TRs) are used for the training of MVAs used in the definition of the signal regions.
 - \rightarrow Analysis utilises two BDT: One for reconstruction of $t\bar{t}H$ system and one for separation of signa from background.
 - ightarrow Both BDTs originally developed for Run 2 STXS analysis.

Reconstruction BDT

→A Reconstruction BDT was trained to assign jets to parent particles.

→Within the dilepton channel there a 12 possible jet parent particle assignments.

Classification BDT

- \rightarrow A BDT was trained to separate $t\bar{t}H$ signal from backgrounds.
 - \rightarrow Was trained with CP-even $t\bar{t}H$ signal and $t\bar{t} +\geq 1b$ background.
 - Separate trainings performed in each of the training regions.
 - Achieves a separation around of 24% for CP-even and 19% for CP-odd events in the Dilepton channel.

$$\langle S^2 \rangle = rac{1}{2} \sum_{i=1}^N rac{(s_i - b_i)^2}{(s_i + b_i)},$$

.]4

CP Sensitive Observables

- →Analysis achieves sensitivity to CP properties of the top-Higgs Yukawa coupling by using observables sensitive to the differences in kinematics between CP-even and CP-odd *ttH*events.
- Phenomenological studies have proposed a variety of different observables to use.
- →Observables generally rely on being able to fully reconstruct the *ttH* system.
- →It's possible to evaluate observables in a wide variety of rest frames.

Observable	Definition	Reference
P_T^H	—	
$\Delta \eta_{tar{t}}$	$ \eta_t - \eta_{ar{t}} $	
$\Delta \phi_{tar{t}}$	$ \phi_t - \phi_{ar{t}} $	
$m_{tar{t}H}$	$(p_t + p_{\bar{t}} + p_H)^2$	
$m_{tar{t}}$	$(p_t + p_{\bar{t}})^2$	
b_1	$\frac{(\vec{p}_t \times \vec{n}) \cdot (\vec{p}_{\overline{t}} \times \vec{n})}{p_T^t p_T^{\overline{t}}}$	
<i>b</i> ₂	$\frac{(\vec{p}_t \times \vec{n}) \cdot (\vec{p}_{\bar{t}} \times \vec{n})}{ \vec{p}_t \vec{p}_{\bar{t}} }$	Link
<i>b</i> ₃	$rac{p_t^x p_{\overline{t}}^x}{p_T^t p_T^{\overline{t}}}$	LINK
b_4	$\frac{p_t^z p_{\bar{t}}^z}{ \vec{p}_t \vec{p}_{\bar{t}} }$	

Examples of observables

 \rightarrow The observables b_1 - b_4 are all distributed between -1 and 1.

→Diagrams attempts to show roughly what angular separation are encapsulated by observables used in the analysis.

 \rightarrow Just a rough sketch for visualisation purposes.

CP Sensitive Observables | Dilepton

Within the dilepton channel two different observables are used.

→ Due to the reconstruction of events failing for a fraction of events.

- \rightarrow Fully reconstructed events make use of the b_4 observable:
 - \rightarrow There is an enhancement in top quarks travelling in opposite directions and closer to the beamline for *CP*-odd $t\bar{t}H$.
- \rightarrow For events that can't be fully reconstructed make use of $\Delta \eta_{ll}$:

 \rightarrow Acts a proxy for the pseudorapidity difference between top quarks, which is larger for *CP*-odd $t\bar{t}H$.

CP Sensitive Observables | l+jets

 \rightarrow In the l+jets channel the $b_2^{t\bar{t}H}$, which is evaluated in the $t\bar{t}H$ rest frame.

→Relies on the smaller azimuthal separation of top quarks and larger fraction of longitudinal momentum for CPodd ttH.

→Within the boosted channel the output of the classification BDT is used.

 \rightarrow CP-odd $t\bar{t}H$ and tH is significantly enhanced compared to CP-even in the the boosted region.

Analysis Regions

Channel (TR)	Final SRs and CRs	Classification BDT selection	Fitted observable	
Dilepton (TR $^{\geq 4j,\geq 4b}$)	$ $ CR $^{\geq 4j,\geq 4b}_{no-reco}$	_	$\Delta\eta_{\ell\ell}$	
	$CR^{\geq 4j,\geq 4b}$	$BDT^{\geq 4j, \geq 4b} \in [-1, -0.086)$	b_4	
	${ m SR}_1^{\geq 4j,\geq 4b}$	$BDT^{\geq 4j, \geq 4b} \in [-0.086, 0.186)$	b_4	
	${ m SR}_2^{{ m \geq}4j,{ m \geq}4b}$	$BDT^{\geq 4j, \geq 4b} \in [0.186, 1]$	b_4	
ℓ +jets (TR $^{\geq 6j,\geq 4b}$)	$ $ CR $_1^{\geq 6j,\geq 4b}$	BDT $^{\geq 6j,\geq 4b} \in [-1, -0.128)$	b_2	
	$CR_2^{\geq 6j,\geq 4b}$	$BDT^{\geq 6j, \geq 4b} \in [-0.128, 0.249)$	b_2	
	$\mathrm{SR}^{\geq 6j,\geq 4b}$	$BDT^{\geq 6j, \geq 4b} \in [0.249, 1]$	b_2	
ℓ +jets (TR _{boosted})	SR _{boosted}	$BDT^{boosted} \in [-0.05, 1]$	BDT ^{boosted}	

→From the training regions (TRs) a further eight regions are defined based on cut on the classification BDT.

→Regions with a signal to background ratio of >7.7% are classified as signal regions.

Signal Modelling

 $t\bar{t}H$ Modelling: $N(\kappa'_t, \alpha) = (\kappa'_t \cos \alpha)^2 \cdot N_{CP-even} + (\kappa'_t \sin \alpha)^2 \cdot N_{CP-odd}$

- →The $t\bar{t}H$ signal is modelled by interpolating between two MadGraph(NLO) samples, generated under a CP-even and CP-odd hypothesis.
- →The effects of interference are neglected →Verified by comparing to maximally mixed sample.

Signal Modelling

tH Modelling: $\frac{N(\kappa'_t,\alpha)}{N_{CP-even}} = A \cdot (\kappa'_t C_\alpha)^2 + B \cdot (\kappa'_t S_\alpha)^2 + C \cdot (\kappa'_t C_\alpha) + D \cdot (\kappa'_t S_\alpha) + E \cdot (\kappa'_t C_\alpha) \cdot (\kappa'_t S_\alpha) + F$

 \rightarrow Modelling of *tH* signal is complicated by the interference between diagrams where the Higgs couples to the top and those where it couples to a W^{\pm} .

 \rightarrow The values of the coefficients A-F are determined by performing a fit to 11 different MC samples produced with various values of κ'_t and α .

 \rightarrow An independent fit is performed in each bin of each region in the analysis.

$t\bar{t}$ + jets Background

 \rightarrow The analysis is heavily impacted by the presence of the the $t\bar{t}$ +jets background.

→Contributions from other backgrounds make a minor contribution to most regions.

- →The background is divided into components based on the flavour of the additional jets.
 - $\rightarrow t\bar{t} + \geq 1\bar{b}$: events where there is at least one true *b*-jet.
 - $\rightarrow t\bar{t} + \geq 1c$: events with no b-jets but at least one c-jet.
 - $\rightarrow t\bar{t}$ +light: any other events
- →Modelling of the $t\bar{t} +\geq 1b$ component is done in the 4 flavour scheme, while the others are modelled in the 5 flavour scheme.

Systematic uncertainties

	Uncertainty source	Description		Components
→Systematic	$t\bar{t}$ cross-section	Up or down by 6% Free-floating		$t\bar{t}$ +light
	$t\bar{t}+\geq 1b$ normalisation			$t\bar{t}+\geq 1b$
uncertainties	$t\bar{t}+ \geq 1c$ normalisation	Up or down by 100%		$t\bar{t} + \ge 1c$
shown here	ISR	Varying $\mu^{\text{ISR}}(\text{PS})$ $\mu_{\text{P}} \& \mu_{\text{P}}(\text{ME})$	in Powheg-Box+Pythia 8 $t\bar{t} + b\bar{b}$ (4FS)	$t\bar{t}+\geq 1b$
		varying $\mu_{\rm R}$ (13), $\mu_{\rm R} \alpha \mu_{\rm F}$ (112)	in Powheg-Box+Pythia 8 $t\bar{t}$ (5FS)	$t\bar{t}+\geq 1c$, $t\bar{t}+$ light
	FSR	Vorving (FSR (DS)	Powheg-Box+Pythia 8 $tar{t}+bar{b}$ (4FS)	$t\bar{t}+\geq 1b$
apply just to		varying $\mu_{\rm R}$ (1.5)	in Powheg-Box+Pythia 8 $tar{t}$ (5FS)	$t\bar{t}+\geq 1c$, $t\bar{t}+$ light
	NLO matching	MadGraph5_aMC@NLO+Pythia 8 $t\bar{t}$ (5FS)	vs. Powheg-Box+Pythia 8 $t\bar{t}$ (5FS)	All
tt +iets	PS & hadronisation	Powheg-Box+Herwig 8 $t\bar{t}$ (5FS)	vs. Powheg-Box+Pythia 8 $t\bar{t}$ (5FS)	All
66 1 3000	Flavour scheme	Powheg-Box+Pythia 8 $t\bar{t}$ (5FS)	vs. Powheg-Box+Pythia 8 $t\bar{t} + b\bar{b}$ (4FS)	$t\bar{t}+\geq 1b$
background.	$t\bar{t}+\geq 1b$ fractions	Variation of the relative fractions of $t\bar{t} + \geq 2b$ and $t\bar{t} + 1b/B$		$t\bar{t}+\geq 1b$
	$p_T^{bar{b}}$ shape	Shape mismodelling measured from data		$t\bar{t}+\geq 1b$

 \rightarrow Emphasis is placed on understanding the uncertainties applied to $t\bar{t}$ + jets with 13 nuisance parameters applied to the $t\bar{t}$ + $\geq 1b$ component alone.

→This analysis additionally includes uncertainty on the choice of flavour scheme compared to the <u>Run 2 STXS analysis</u>.

 \rightarrow Results of analysis were found to be particularly sensitive to this effect.

Fit to data | overall

- Results obtained from profile likelihood fit to data.
- →Overall there is good post-fit agreement across all regions.
- →Significance of signal over background of 1.3σ .
- →Goodness of fit evaluated by comparing to a saturated model give a probability of 80% for compatibility to the data.

Fit to data | Dilepton

Fit to data | l+jets

Results

 \rightarrow **Observed**(expected) CP-odd exclusion significance of **1.23** σ (1.57 σ)

 \rightarrow Best fit value of $\alpha/\pi = 0.06^{+0.30}_{-0.44} \rightarrow \alpha = 11^{\circ}_{-77^{\circ}}^{+55^{\circ}}$, $\kappa'_{t} = 0.84^{+0.30}_{-0.46}$

 $\kappa'_t \cos \alpha$

Impact of Systematic Uncertainties

→Contribution of systematics to uncertainty is measured via the change in the ±1σ exclusion region when fixing the systematic to its best-fit value.

ttb 4V5 FS I+jets resolved

> 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Impact

Post-fit uncertainties

- \rightarrow Post fit uncertainty on α is dominated by contributions from systematic uncertainties.
- →A substantial amount of that arises from the $t\bar{t}$ +jets background, which contribute $^{+37^{\circ}}_{-51^{\circ}}$ to the overall uncertainty.
 - Analysis would greatly benefit from an improvement in the modelling of this background.
- →Statistical uncertainty is also a significant factor to limiting the total precision of the measurement.

Uncertainty source	$\Delta \alpha [^{\circ}]$	
Process modelling		
$t\bar{t}H$ modelling	+8.8	-14
$t\bar{t}+\geq 1b$ modelling		
$tar{t}+\geq 1b$ 4V5 FS	+23	-37
$t\bar{t}+\geq 1b$ NLO matching	+22	-33
$t\bar{t}+\geq 1b$ fractions	+14	-21
$t\bar{t}+\geq 1b$ FSR	+5.2	-9.9
$t\bar{t}+\geq 1b$ PS & hadronisation	+16	-24
$tar{t}+\geq 1b\;p_T^{bar{b}}$ shape	+5.4	-4.6
$t\bar{t}+\geq 1b\bar{ ext{ISR}}$	+14	-24
$t\bar{t}+\geq 1c$ modelling	+6.6	-11
$t\bar{t}$ +light modelling	+2.5	-4.7
b-tagging efficiency and mis-tag rates		
b-tagging efficiency	+8.7	-15
c-mis-tag rates	+6.7	-11
<i>l</i> -mis-tag rates	+2.3	-2.7
Jet energy scale and resolution		
b-jet energy scale	+1.6	-3.8
Jet energy scale (flavour)	+7.8	-11
Jet energy scale (pileup)	+5.2	-7.9
Jet energy scale (remaining)	+8.1	-13
Jet energy resolution	+5.7	-9.3
Luminosity	+0	-0
Other sources	+4.9	-8
Total systematic uncertainty	+41	-54
$t\bar{t}+\geq 1b$ normalisation	+8.2	-13
κ_t'	+17	-33
Total statistical uncertainty	+32	-49
Total uncertainty	+52	-73

Comparison to recent CMS results

arXiv:2407.10896(accepted by JHEP)

 \rightarrow Recent CMS results present a similar picture to ATLAS results, with results disfavouring a CP-odd coupling at about 1σ .

Recent CMS results

 \rightarrow Recent results from CMS also provide combined limits on the mixing angle α

 \rightarrow Able to exclude a purely CP-odd coupling at more than 3σ significance.

→Maximally mixed scenario is still not excluded.

Summary

- Additional sources of CP-violation are needed to explain the observed matter-antimatter asymmetry.
- The Higgs sector provides a promising area to search for potential new sources.
 - \rightarrow Direct access to the top-Higgs coupling can be gained through probing the $t\bar{t}H$ and tH processes.
- \rightarrow The $H \rightarrow b\overline{b}$ decay mode provides an interesting but challenging decay channel to study the effects of CP-violation.
 - \rightarrow Improved understanding of the $t\bar{t}$ + jets background would greatly benefit the sensitivity of the measurement.
- →While a purely *CP*-odd coupling has been excluded by other results there is still the possibility of mixed states that would introduce a new source of *CP* violation.

tWH Parametrisation Dilepton

tHjb Parametrisation l+jets

tWH Parametrisation l+jets

Nuisance parameter pulls

Flavour scheme uncertainty

→ Fits to pseudo data with the $t\bar{t} + \ge 1b$ component of the background replaced by a 5 flavour scheme sample performed.

- \rightarrow Various value of the mixing angle α were injected to test is the model could recover this.
- →Without the systematic a significant bias towards a CP-odd signal was obtained.
- →Including the uncertainty was found to ameliorate this issue.

Compatibility of Results

→The compatibility of the results to those obtained from the previous ATLAS measurement was evaluated from a bootstrap study.

 \rightarrow Difference is compatible at 1σ .

CP Observables

Distribution of CP observables when given a pair of random vectors uniformly distributed over a sphere.

