Search for New Physics Using the Top Quark at the Tevatron

- **1. Introduction**
- 2. Tevatron Status and Run II Data Collection
- **3. New Physics Opportunities with Top**
- 4. Top Decays
- **5. Top Production**
- 6. Conclusions

Pekka K. Sinervo, F.R.S.C. Department of Physics University of Toronto

Representing the DØ and CDF Collaborations

The Top Quark and New Physics

- The top quark provides a virtual lab to search for new phenomena
 - Heaviest fermion in the Standard Model, so already unique
 - > Most obvious, Higgs coupling
 - As a bare quark, decays before hadronizing
 - > Simple couplings in SM
 - > >99% decays to W+b
 - Simple production model
 - Pair production dominates
 - Provides tools to separate SM from "anomalous" production

Nucl. Phys. Proc. Suppl. 183, 75

- A large number of models predict "new physics" in top sector
 - Range from simple phenomenological models to new symmetries
- But present significant experimental challenges
 - Top quark signature is difficult to reconstruct efficiently
 - > Many-body final state
 - > Large backgrounds
 - > Production rate in SM is low
 - > Predicted to be

$$\sigma_{t\bar{t}} = 7.45^{+0.72}_{-0.63} \text{ pb}$$

- > Constrains possible models
- > Searches are harder

General Strategies for Searches

- 1. Top quark coupling to lower mass objects
 - Look at final state properties
 - Identify possible daughters and/or anomalous decay properties
 - Top quark pair production typically dominates
 - > End up with 6 parton final state
 - > With additional jets

- 2. For heavier objects, use kinematics of top quark pair as signature
 - Select "normal" ttbar events, e.g. lepton+jets mode
 - > Charged lepton + neutrino
 - > 2 jets from 2nd W decay
 - > 2 more jets from b quarks
 - Look at other properties of final state
- In most cases, measure every accessible decay mode
 - Employ different techniques to test assumptions
 - Backgrounds vary significantly depending on selection

Top Quark Event Selection

Goal is to efficiently identify each event topology

- Dileptons (~4-6%)
 - > 2 leptons (e, μ) P_T > 20 GeV/c
 - > Missing $E_T > 20 \text{ GeV}$
 - > 2 or more jets
 - $P_T > 20 \text{ GeV/c and } |\eta| < 2$
 - > $S/B \sim 4-6$ (without trying hard)
- Lepton + jets (~30%)
 - > 1 lepton (e, μ) P_T > 20 GeV/c
 - > Missing $E_T > 20 \text{ GeV}$
 - > 2 or more jets
 - P_T>20 GeV/c and lηl<2</p>
 - > $S/B \sim 1-4$ (except double tags)
- All Hadronic (~44%)
 - > 6 or more jets
 - P_T>15 GeV/c and lηl<2</p>
 - > Kinematic cuts + neural nets
 - $> S/B \sim 0.3$

- Techniques and selection optimized to reduce systematics
- Much innovation over last five years
- Host of studies that optimize and extend these

e-e(1/81)

mu-mu (1/81)

tau-tau (1/81)

e -mu (2/81)

e -tau(2/81)

mu-tau (2/81)

e+jets (12/81)

mu+jets(12/81)

tau+jets(12/81)

iets (36/81)

Two Categories of Searches

- In first category, look at what top decays/couples to:
 - Charged Higgs decays in MSSM
 - D0 has performed several separate searches with 1.0 fb⁻¹
 - > CDF has searches with 2.8 fb⁻¹
 - Top decaying to H⁺ in NMSSM model
 - ttbar + Higgs
 - CDF performed initial search with 0.3 fb⁻¹
 - > D0 has recent study -2.1 fb⁻¹
 - Top decaying to Zc, Zg
 - > Won't have time to talk about these

In second, look for objects that decay to ttbar or t-bbar:

- Resonances decaying to ttbar (CDF & DØ)
 - > Significant sensitivity to high mass states
 - Top pair final state seen as a unique probe in many models
- W' -> tbbar search (CDF & DØ)
- t' searches (CDF)
- Stop search
- Important to note that limits usually expressed in context of specific model
 - Should appreciate the sensitivity
 - > Seeing fb observed rates
 - Especially as one compares with future studies at LHC

DØ Charged Higgs Search

- Perform a broad multi-channel search
 - Use lepton+jets and dileptons
 - H⁺ decays into either c-sbar or $\tau^+ \nu_{\tau}$
 - Search for excess in 14 channels
 - Take into account σ_{tt} by simultaneous measurement

DØ searched in 1.0 fb⁻¹

- Used a likelihood approach to combine candidate event rates
 - > See no evidence for excess
 - > Place upper limits on BR and m_{H+}

Analyze 3 specific H⁺ models

- > Leptophobic H⁺ -- decays hadronically
- > CPX model with generation heirarchy
- > No-mixing scenario

CDF Charged Higgs Search

- **CDF** searched for $H^+ \rightarrow c$ -sbar
 - Looking for dijet final state in 2.2 fb⁻¹
 - Work to reduce combinatorial confusion
 - > 4 jets + 5 jets with 1 jet assumed to come from FSR
 - > Observed 200 events with 7% background

Don't find evidence for H⁺ decay

 Set limits based on fit

Shows that one can fully reconstruct final states

 Limited by presence of W

7

Search for H⁺ Decays in NMSSM

CDF has also performed recent search for H⁺

Assume next-to-minimal SUSY model

- Introduces another set of Higgs bosons >
- Search for evidence of lower mass A
 - Decays to **TT** final state

CDF has studied 2.7 fb⁻¹

- Focused on lepton+jets
- Identify τ candidates
 - Single isolated charged track >
 - Underlying event model important >

- Set limits based on expected BR vs charge Higgs mass
 - **Exclusion depends sensitively on** mass

DØ Search for ttH

Identified as "golden channel" for H, H-> bbar

- Tevatron rate tiny
- But spectacular final state
 - > W+W- and 4 b's
- CDF did search in 0.3 fb⁻¹
 - > Found 2 events, x100 above SM

DØ completed search using 2.6 fb⁻¹

- Looked in l+jets mode
- Divided into 12 sub-samples
 - > 4 or \ge 5 jets
 - > 1, 2 or \ge 3 b-tags
- Use H_T as further background rejection against SM ttbar

Analyzed S/N in each sub-sample

Observed 526 events

- Expected 400 from ttbar, 173 other background
- > Best signal to noise in 5 jets, 3 tags
 - But only 0.6 ttbar+H events expected for $M_H = 105 \text{ GeV/c}^2$
 - Expected 3.8 background events
 - Observe 5 events

DØ ttH Results

Set cross section limits

About x 40 above SM prediction

 Small contribution, but complementary to other searches and part of Tevatron limit

Background limited given the sensitivity

- > Mistag rates are manageable
- Intrinsic background from SM is challenge

Implications of Higgs Searches

- **CDF and DØ have taken these** results to further constrain **MSSM**
 - For tan β around 35, ____ implications for Higgs sector
 - > "strangephilic", so t and bottom modes suppressed
 - Searches employing heavy fermions > would miss these
 - > Picked up in searches looking at hadronic modes

tan β

100-

80

90

Observed limit 95% CL

m,=MG/2=400 GeV

n,=M_G/2=450 GeV

m,=MG/2=500 GeV

Standard Model

130

Expected limit 95% CL

160 M_H (GeV)

Search for Massive X \rightarrow **ttbar**

- Many models predict new massive objects that couple to top pair final state
- Search for massive objects coupling to top
 - Need to reconstruct high p_T top quarks
 - $> p_T \sim 300 \text{ GeV/c}$
 - Challenge is statistics and techniques
 - Pushing limits of detector understanding
- Background is now SM top quark pair production

- Host of models that motivate these sorts of studies, e.g.
 - Topcolor
 - Topcolor assisted technicolor
 - String theory motivated models
 - > KK excitations
 - > Gravitons
- Key point is that many of these models have ttbar as preferred decay mode

DØ Search for Massive Objects

- DØ uses a standard l+jets ttbar selection
 - e/μ candidate + MET
 - ≥3 jets, one b-tagged with NN
 - Analyze 3.6 fb⁻¹
 - Observe 2345 events

Expect 1345 coming from ttbar

 W+jets next largest contribution at 721 events

- Form M_{ttbar} and look for resonance signal
 - Assume narrow resonance (width 0.012M_Z,)
 - Take into account SM + backgrounds
 - Limit on topcolour-assisted TC model M_Z, > 820 GeV/c² at 95% CL

CDF Lepton+Jets Search

- CDF has published search looking for "massive gluon"
 - Used a "standard" l+jets selection
 - Require at least one b-tagged jet
 - Use 1.9 fb⁻¹ of data

- Results given for various masses and widths
 - Model doesn't define mass-width relationship
 - Get contours of coupling strength λ

CDF All-Hadronic Search

CDF has used all-hadronic channel

- Require 6 or 7 jets

- > ET>15 GeV and lhl<2.0
- $> \ge 1$ b-tag

Used matrix-element to reconstruct signal

- > Shown that this works well
- > Employ various control regions

Analysis uses 2.8 fb⁻¹ of data

Challenging analysis because of poor S/N

- Observe 2086 events with M_{tt}>400 GeV/c²
 - QCD background determined by b-tag fake rate
- Sets limit on "leptophobic" Z' of M_Z>805 GeV/c² at 95% CL

Searches for 4 Generation

CDF has searched for 4th generation t'

- Decays to W⁺q
 - > Essentially a massive top quark
 - > Another spectacular signal

Challenge is to manage backgrounds at high mass

- > SM ttbar production now a problem
- QCD backgrounds large (and uncertain)

- Need strategy to manage S/N
 - Reconstruct lepton, MET $+ \ge 4$ jets

Pick best solution

- > Observe 3648 events
- > Expect 3664±1570
 - Background about half ttbar and half QCD
 - Uncertainty comes from QCD

Searches for 4 Generation

- Used results to place limit on possible t'
 - Divide data into four regions
 - > 4 and \geq 5 jets
 - > Good or bad kinematic fit
 - (χ²<8 and χ²≥8)</p>
 - Use M_{rec} and H_T and fit data to templates 2-D templates

Use max likelihood fit to cross

- Results show that there is significant sensitivity
 - Data consistent with backgrounds
 - Exclude t' with mass < 335 GeV/c² at 95% CL
 - Assumes strong couplings and decay always to W⁺q
 - > No b-tagging required

DØ Search for W'

- W' searches traditionally done in l v₁ final states
 - q-qbar' background dominated
 - W' \rightarrow t bbar is a "clean" final state
- An initial search was performed by CDF using Run I data (0.1 fb⁻¹)
 - CDF set limit M_W, > 536 GeV/c² at 95% CL
- **DØ** has now analyzed 0.9 fb⁻¹
 - Selecting lepton+jets, MET
 - > Only keep 2 or 3 jet events
 - > Require one to be b-tagged
 - Divide into 8 channels (e/µ), (2-3 jets), (1-2 b-tags)
 - Select 182 events
 - > Expect 59 ttbar and 127 background

No evidence of signal

Set limit of M_W, > 731 GeV/c² at 95% CL

Phys. Rev. Lett. 101, 211803 (2008)

CDF Search for W'

- CDF has repeated its earlier analysis with Run II data
 - Similar strategy to that of DØ
 - Select events with lepton+MET
 - Require only 2 or 3 jets in final state
 - > And 1 or 2 b-tagged jets

Analyzed 1.9 fb⁻¹

- Have modeled the backgrounds and signals for each subsample
- Combined them using CLs

Also see no evidence of signal

CDF Search for Stop

- CDF has searched for stop pair production decaying to dileptons
 - Specific model
 - LSP is neutralino
 - > Lightest stop < m_{top}
 - > Chargino mass $< m_{top} m_b$
 - Same topology as ttbar
 - Begin with standard dilepton cuts
 - Search for combination of further cuts to maximize sensitivity

Analyzed 2.7 fb⁻¹

- Consider b-tagged and non btagged samples
 - > important element

No evidence of signal, e.g.

Set limits depending on various masses and BRs

Topics Not Covered

- Many topics not covered
 - Rare top quark decays
 - > $t \rightarrow Zc, gc, \gamma c$
 - > $t \rightarrow Wq$, where $q \neq b$
 - Anomalous kinematics
 - Anomalous couplings
 - Earlier searches with lower sensitivity
- Some of these have been covered in other talks
 - Apologize for the others!

- What I hope to be the take-home message
 - Tevatron has significant "reach" using top quarks as laboratory
 - Now probing mass scales > 800 GeV/c²
 - Continuing to developing new tools for these searches
- Not ready to hand over reins to LHC searches!
 - Analyses are using only half the collected data
 - That will change as we validate and calibrate latest data
 - More new analyses underway

Summary

- Top provides unique access to new physics
 - Extensive searches for H+
 - Now setting limits on BR ~ 0.1 for Higgs masses 100-150 GeV/c2
 - Moving to more sophisticated models
- No evidence for high mass objects coupling to top
 - Limits on t-tbar final state
 - > $M_X > 820 \text{ GeV/c}^2$ at 95% CL
 - Limits on t-bbar final state
 - > $M_{W'}$ > 731GeV/c² at 95% CL
- Searches for 4th generation
 - Limited by backgrounds
 - > $M_{t'}$ > 335GeV/c² at 95% CL
- Stop search

- Most of these analyses are based on 2-3 fb⁻¹
 - Analyses are starting to appear with 4-5 fb⁻¹
 - And have > 7 fb⁻¹ on "tape"
- Most of these are backgroundlimited by top production and/ or SM processes
 - Working to develop "next generation" studies

Backup Slides

Fermilab Tevatron

Tevatron Run II Performance

Tevatron running very well!

- Overcame a slow start in 2002-03
- Exceeded goals over last three years
 - > Record luminosity of $4.0 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - > <N_{coll}> ~ 12 collisions/crossing!
- Have almost 9 fb⁻¹ delivered
 - 7.2 fb⁻¹ recorded by both experiments
 - Now accumulating ~2 fb⁻¹/year

- This has led to some changes in plan
 - Originally Tevatron was to shut down by Sep 2009
 - Now running through Sep 2011 is certain given recent budget decision
 - Discussions underway about running further

CDF Detector

Collider Detector at Fermilab

- Excellent charged particle tracking
 - Large 1.4 T solenoid for particle momentum measurement
- Calorimeters measure jet energies and missing energy
- Muon detectors outside of calorimeter

Trigger & DAQ system designed to

- Examine each beam crossing (2.4 MHz rate)
- Select "interesting" events
- Record data at rate of 100 Hz

- B tagging provided by 7-layer silicon tracking system
 - For top quarks, tagging efficiency is ~45%
 - Essential tool to reduce backgrounds in mass analyses

DØ Detector

Dzero Detector was significar¹-upgrade for Run II

- State-of-the-art magnetic spectrometer
 - > 2 T Solenoid
 - > SciFi tracking system
- New Silicon tracking
- Scintillators for preshower detectors
- Trigger & DAQ system also upgraded
 - Examine each beam crossing (2.4 MHz rate)
 - Select "interesting" events
 - Record data at rate of 100 Hz

Original strengths retained

- Excellent muon identification
- Largely hermetic calorimetry

- B tagging provided by 4-layer silicon tracking system with disks
 - Essential tool to reduce backgrounds in mass analyses

DØ Charged Higgs Search I

- Top → H⁺b is a favourite search channel
 - Charged Higgs comes in the simplest SUSY extension
 - $\quad H^{+} \ decays \ preferentially \ into \ c-sbar \ and \ \tau^{+}\nu_{\tau}$
 - First search, look for evidence of excess τ⁺ decays
 - > Use discriminant based on probabilities

DØ searched in lepton+jets channel with 0.9 fb⁻¹

- Look for τ lepton excess in 2386 candidate events
- Lepton+jet & dileptons channels
- Place upper limits on BR and m_{H+}
 - > BR < 0.25 at 95% CL
 - > for $80 < m_{H^+} < 155 \text{ GeV/c}^2$

Top Production Issues

- Helpful to keep in mind two issues
 - Top is produced largely at low p_T
 - Have large backgrounds!

Need to worry about S/N
But "life" does get easier at higher p_T and mass

Courtesy, N. Kidonakis and R. Vogt, (2010)