CP violation in top physics*

How to look for CP violation from new physics in top-quark pair production and decay with T-odd correlations

- *based on work with
- Sudhir Kumar Gupta (ISU postdoc)
- Oleg Antipin (now a postdoc in Odense)
- Serhan Mete (Atlas ISU student)
- Sehwook Lee (DØ ISU student)

T-odd correlations

- simple kinematic correlations of the form

$$
\vec{p}_{1} \cdot\left(\vec{p}_{2} \times \vec{p}_{3}\right)
$$

- T-odd: change sign under 'naive'-T $\vec{p} \longrightarrow-\vec{p}$ but no interchange of initial/final states
- These correlations can be:
- CP-odd if \vec{p}_{i}, \vec{p}_{j} involve particle anti-particle pairs
- CP-even but not at tree-level as they require a phase -- small and distinguishable 'background'
- The \vec{p} can be that of a composite object (jet) \leftrightharpoons sums over processes

T-odd correlations-2

- triple product correlations appear in matrix elements in the form

$$
\epsilon\left(p_{t}, p_{\bar{t}}, p_{\ell^{+}}, p_{\ell^{-}}\right) \equiv \epsilon_{\mu \nu \alpha \beta} p_{t}^{\mu} p_{\bar{t}}^{\nu} p_{\ell^{+}}^{\alpha} p_{\ell^{-}}^{\beta}
$$

- 4 independent four-vectors needed, so unless one has an effective theory with vertices involving 5 particles at least, they originate from spin correlations
- top pair production is ideal 'lab' to look for them

Examples for LHC, Tevatron

- Heavy (bsm) Higgs with CP violation
- large intrinsic asymmetry
- hard to extract (if such a Higgs exists!)
- Anomalous top-quark couplings

Peskin,Schmidt,Chang,
Keung, Bernreuther, Brandenburg,Flesch ...

Atwood, Aeppli,Soni,
Bernreuther,Nachtmann,
Overmann,Schroeder,Ma, Brandenburg,Choi,Kim, Zhou, Sjolin ...

- exhibits the correlations in the general case (including those between initial and final state momenta)
- contains examples that are truly CP odd and others that are not
- small asymmetries (by assumption ...)

kinematics

new physics with CP violation
sum over final states such that CP conjugate pairs appear with equal probability

T-odd Spin correlations

- the underlying T-odd correlations are spin correlations, different observables correspond to different spin analyzers

- want the lab frame, not the top-rest frame

CP Violation via Neutral Higgs

- A neutral Higgs has the general coupling:

$$
-\frac{m_{t}}{v} H \bar{t}\left(A+i B \gamma_{5}\right) t
$$

- which violates CP if both A and B are nonzero at the same time (multi-Higgs models)
- Weinberg showed that $\quad|A B| \leq \frac{1}{\sqrt{2}}$
- under some assumptions
- lightest neutral mass eigenstate is dominant
- different vevs have comparable sizes
- use upper bound for numerics

Case of H decay

- For a sufficiently heavy H, it decays to top pairs. The decay chain, for example,

$$
H \rightarrow t \bar{t} \rightarrow b \bar{b} W^{+} W^{-}
$$

- picks a CP odd correlation

$$
\begin{aligned}
& \mathcal{O}_{1}=\epsilon\left(p_{t}, p_{\bar{t}}, p_{b}, p_{\bar{b}}\right) \xrightarrow{H_{C . M .}} \propto \vec{p}_{t} \cdot\left(\vec{p}_{b} \times \vec{p}_{\bar{b}}\right) \\
& \xrightarrow{C P}-\vec{p}_{t} \cdot\left(-\vec{p}_{\bar{b}} \times-\vec{p}_{b}\right)=-\vec{p}_{t} \cdot\left(\vec{p}_{b} \times \vec{p}_{\bar{b}}\right)
\end{aligned}
$$

- which can be measured with a counting asymmetry such as

$$
A_{C P} \equiv \frac{N_{\text {events }}\left(\vec{p}_{\vec{b}} \cdot\left(\vec{p}_{b} \times \vec{p}_{t}\right)>0\right)-N_{\text {events }}\left(\vec{p}_{\vec{b}} \cdot\left(\vec{p}_{b} \times \vec{p}_{t}\right)<0\right)}{N_{\text {events }}\left(\vec{p}_{\vec{b}} \cdot\left(\vec{p}_{b} \times \vec{p}_{t}\right)>0\right)+N_{\text {events }}\left(\vec{p}_{\vec{b}} \cdot\left(\vec{p}_{b} \times \vec{p}_{t}\right)<0\right)}
$$

A picture

$$
\mathcal{O}_{1}=\epsilon\left(p_{t}, p_{\bar{t}}, p_{b}, p_{\bar{b}}\right) \xrightarrow{t \bar{t} C M} \propto \overrightarrow{p_{t}} \cdot\left(\overrightarrow{p_{b}} \times \overrightarrow{p_{\bar{b}}}\right)
$$

$t \bar{t}$ event in the CM frame of $t \bar{t}$

O_{1} is proportional to the triple product $\overrightarrow{p_{t}} \cdot\left(\vec{p}_{b} \times \vec{p}_{\bar{b}}\right)$

Can be easily computed

$$
=\frac{\pi}{4} \sqrt{1-\frac{4 m_{t}^{2}}{M_{H}^{2}}} \frac{A B}{|A|^{2}+|B|^{2}} \frac{\left(1-\frac{2 M_{W}^{2}}{m_{t}^{2}}\right)^{2}}{\left(1+\frac{2 M_{W}^{2}}{m_{t}^{2}}\right)^{2}}:\left(\frac{1}{1-\frac{2 m_{t}^{2}}{M_{H}^{2}}-2 \frac{|A|^{2}-|B|^{2}}{|A|^{2}+|B|^{2}} \frac{m_{1}^{2}}{M_{H}^{2}}}\right)
$$

There is a large intrinsic asymmetry: near 7% for $A=B$ and maximum CP violation

But need to isolate the sample with the asymmetry.

Signal gets diluted

G. Valencia (Iowa State), TOP 2010, Brugge

How did we get a CP test?

$$
p p \rightarrow H \rightarrow t \bar{t} \rightarrow\left(b W^{+}\right)\left(\bar{b} W^{-}\right) \rightarrow\left(b \mu^{+} \nu_{\mu}\right)\left(\bar{b} \mu^{-} \bar{\nu}_{\mu}\right)
$$

- p p initial state is not a CP eigenstate
- get good CP properties from final state: view LHC as a Higgs (or more generally a $\overline{\mathrm{t}}$) factory
- this works for g g or $\mathrm{q} \overline{\mathrm{q}}$ initial states after we sum over spin and color
- won't work for q q initial state, need to reject it.
- pick final states such that this is a small contamination

top-quark anomalous couplings

- electric dipole moments indicate T violation (and thus CP violation)
- experimental limits on electron edm and neutron edm; for example $d_{n}<2.9 \times 10^{-26}$ ecm
- one contribution to neutron edm is the light quark edm and also its cedm:

quark edm (cedm)

- beyond the SM these can be induced at oneloop
- for example models with scalars generate contributions such as

$$
d_{q}, \tilde{d}_{q} \sim m_{q}^{3}
$$

- perhaps heavy quarks can have large (c)edms?
- measure at a top-quark factory, LHC?

CP violating top-quark couplings

- For CP violation in the production process: a (chromo)-edm of the top-quark:

$$
\mathcal{L}_{c e d m}=-i g_{s} \frac{\tilde{d}}{2} \bar{t} \sigma_{\mu \nu} \gamma_{5} t G^{\mu \nu}
$$

- It modifies the $t \bar{t} g$ coupling and introduces

$$
g g \text { or } q \bar{q} \rightarrow t \bar{t} \rightarrow\left(b \mu^{+} \nu_{\mu}\right)\left(\bar{b} \mu^{-} \bar{\nu}_{\mu}\right)
$$

- The differential cross section now contains the following CP-odd correlations:

$$
\begin{aligned}
\mathcal{O}_{1} & =\epsilon\left(p_{t}, p_{\bar{t}}, p_{\mu^{+}}, p_{\mu^{-}}\right) \\
\mathcal{O}_{2} & =(t-u) \epsilon\left(p_{\mu^{+}}, p_{\mu^{-}}, P, q\right) \\
\mathcal{O}_{3} & =(t-u)\left(P \cdot p_{\mu^{+}} \epsilon\left(p_{\mu^{-}}, p_{t}, p_{\bar{t}}, q\right)+P \cdot p_{\mu^{-}} \epsilon\left(p_{\mu^{+}}, p_{t}, p_{\bar{t}}, q\right)\right)
\end{aligned}
$$

- where the sum and difference of parton momenta are denoted by P and q.
- for W as one jet: lepton \longleftrightarrow b-jet momenta
- for more jets: lepton $\leftrightarrow d$-jet momenta
- Notice that they are quadratic in q

$$
(t-u)=q \cdot\left(p_{\bar{t}}-p_{t}\right)
$$

top cedm continued

- The CP violating part of the differential cross section looks like

$$
d \sigma \sim C_{1}(s, t, u) \mathcal{O}_{1}+C_{2}(s, t, u) \mathcal{O}_{2}+C_{3}(s, t, u) \mathcal{O}_{3}
$$

- where the form factors look like

$$
\begin{aligned}
& C_{1}=\frac{\tilde{d} m_{t}}{6 s^{2}\left(s^{2}-(t-u)^{2}\right)^{2}}\left(9(t-u)^{6}-2 s^{2}(t-u)^{4}-7 s^{4}(t-u)^{2}\right. \\
& \left.+32 m_{t}^{4}\left(7 s^{4}+9 s^{2}(t-u)^{2}\right)+4 m_{t}^{2}\left(7 s^{5}+7(t-u)^{2} s^{3}+18(t-u)^{4} s\right)\right)
\end{aligned}
$$

- notice they are also even under t,u interchange (which proton is p 1)
- this expression (3 f.f's) appears to be the most general one

CP violation in the decay vertex

- For anomalous tbW couplings, there is only one that interferes with the SM amplitude in the limit of massless b quark:

$$
\begin{aligned}
& \Gamma_{W t b}^{\mu}=-\frac{g}{\sqrt{2}} V_{t b}^{\star} \bar{u}\left(p_{b}\right)[\gamma_{\mu}\left(f_{1}^{L} P_{L}+f_{1}^{R} P_{R}\right)-i \sigma^{\mu \nu}\left(p_{t}-p_{b}\right)_{\nu}(f_{2}^{L} P_{L}+\underbrace{R}_{2} P_{R}) u\left(p_{t}\right), \\
& \left.\bar{\Gamma}_{W t b}^{\mu}=-\frac{g}{\sqrt{2}} V_{t b} \bar{v}\left(p_{\bar{t}}\right)\left[\gamma_{\mu}\left(\bar{f}_{1}^{L} P_{L}+\bar{f}_{1}^{R} P_{R}\right)-i \sigma^{\mu \nu}\left(p_{\bar{t}}-p_{\bar{b}}\right),\left(f_{2}^{L} P_{L}\right)+\bar{f}_{2}^{R} P_{R}\right)\right) v\left(p_{\bar{b}}\right),
\end{aligned}
$$

- include absorptive phases also and take:
- no seagulls (with a gluon) are present

T-odd correlations

- this time they appear in the differential cross section as:

$|\mathcal{M}|_{T}^{2}=f \sin \left(\phi_{f}+\delta_{f}\right) \epsilon\left(p_{t}, p_{b}, p_{\ell^{+}}, Q_{t}\right)+f \sin \left(\phi_{f}-\delta_{f}\right) \epsilon\left(p_{\bar{t}}, p_{\bar{b}}, p_{\ell^{-}}, Q_{\bar{t}}\right)$.
- Q is a four momentum (spin analizer), it is a linear combination of other momenta in the process
- the correlations are NOT CP odd, they can be also signal absorptive phases
- true CP odd observables can be constructed by comparing the top and anti-top decays

Observables

- We have the 'theoretical' correlations. Need some that involve only observable momenta.
- for LHC we use the di-lepton (muon) channel, for Tevatron the lepton (muon) + jets, and multijet channels:
$p_{\mu^{+}}, p_{\mu^{-}}$
$p_{b}, p_{\bar{b}}$, some observables require distinguishing them
$\tilde{q} \equiv P_{1}-P_{2},=$ difference of proton momenta
$p_{j 1}, p_{j 2} \cdots$ non $-b$ jets ordered by p_{T}
- any CP-blind ordering of the jets should work

correlations for di-muon channel

- For CP violation in both production and decay
$\tilde{\mathcal{O}}_{1}=\epsilon\left(p_{b}, p_{\bar{b}}, p_{\mu^{+}}, p_{\mu^{-}}\right) \xrightarrow{b \bar{b} C M} \propto \vec{p}_{b} \cdot\left(\vec{p}_{\mu^{+}} \times \vec{p}_{\mu^{-}}\right)$
$\tilde{\mathcal{O}}_{2}=\tilde{q} \cdot\left(p_{\mu^{+}}-p_{\mu^{-}}\right) \epsilon\left(p_{\mu^{+}}, p_{\mu^{-}}, p_{b}+p_{\bar{b}}, \tilde{q}\right) \longleftarrow$ quadratic
$\tilde{\mathcal{O}}_{3}=\tilde{q} \cdot\left(p_{\mu^{+}}-p_{\mu^{-}}\right) \epsilon\left(p_{b}, p_{\bar{b}}, p_{\mu^{+}}+p_{\mu^{-}}, \tilde{q}\right)$
- J.Sjölin has done an Atlas study with an observable proportional to
- For T-odd but CP even from the decay process

$$
\begin{aligned}
\mathcal{O}_{a} & =\tilde{q} \cdot\left(p_{\mu^{+}}+p_{\mu^{-}}\right) \epsilon\left(p_{\mu^{+}}, p_{\mu^{-}}, p_{b}+p_{\bar{b}}, \tilde{q}\right) \\
\mathcal{O}_{b} & =\tilde{q} \cdot\left(p_{\mu^{+}}-p_{\mu^{-}}\right) \epsilon\left(p_{\mu^{+}}, p_{\mu^{-}}, p_{b}-p_{\bar{b}}, \tilde{q}\right) .
\end{aligned}
$$

correlations for muon + jets

- For CP violation in both production and decay

$$
\begin{aligned}
\mathcal{O}_{1} & =\epsilon\left(p_{t}, p_{\bar{t}}, p_{b}, p_{\bar{b}}\right) \xrightarrow{t \bar{\epsilon} C M} \propto \vec{p}_{t} \cdot\left(\vec{p}_{b} \times \vec{p}_{\bar{b}}\right) \\
\mathcal{O}_{2} & =\epsilon\left(P, p_{b}+p_{\bar{b}}, p_{\ell}, p_{j 1}\right) \xrightarrow{l a b} \propto\left(\vec{p}_{b}+\vec{p}_{\bar{b}}\right) \cdot\left(\vec{p}_{\ell} \times \vec{p}_{j 1}\right) \\
\mathcal{O}_{3} & =Q_{\ell} \epsilon\left(p_{b}, p_{\bar{b}}, p_{\ell}, p_{j 1}\right) \xrightarrow{b b C M} \propto Q_{\ell} \vec{p}_{b} \cdot\left(\vec{p}_{\ell} \times \vec{p}_{j 1}\right) \\
\mathcal{O}_{4} & =Q_{\ell} \epsilon\left(P, p_{b}-p_{\bar{b}}, p_{\ell}, p_{j 1}\right) \xrightarrow{l a b} \propto Q_{\ell}\left(\vec{p}_{b}-\vec{p}_{\bar{b}}\right) \cdot\left(\vec{p}_{\ell} \times \vec{p}_{j 1}\right) \\
\mathcal{O}_{7} & =\tilde{q} \cdot\left(p_{b}-p_{\bar{b}}\right) \epsilon\left(P, \tilde{q}, p_{b}, p_{\bar{b}}\right) \xrightarrow{l a b} \propto \vec{p}_{b e a m} \cdot\left(\vec{p}_{b}-\vec{p}_{\bar{b}}\right) \vec{p}_{b e a m} \cdot\left(\vec{p}_{b} \times \vec{p}_{\bar{b}}\right) .
\end{aligned}
$$

- For T-odd but CP even from the decay process

$$
\begin{aligned}
\mathcal{O}_{a} & =\epsilon\left(P, p_{b}-p_{\bar{b}}, p_{\ell}, p_{j 1}\right) \xrightarrow{l a b} \propto\left(\vec{p}_{b}-\vec{p}_{\bar{b}}\right) \cdot\left(\vec{p}_{\ell} \times \vec{p}_{j 1}\right) \\
\mathcal{O}_{b} & =Q_{\ell} \epsilon\left(P, p_{b}+p_{\bar{b}}, p_{\ell}, p_{j 1}\right) \xrightarrow{l a b} \propto Q_{\ell}\left(\vec{p}_{b}+\vec{p}_{\bar{b}}\right) \cdot\left(\vec{p}_{\ell} \times \vec{p}_{j 1}\right)
\end{aligned}
$$

correlations for multi jet channel

- For CP violation in both production and decay

$$
\begin{aligned}
& \mathcal{O}_{1}=\epsilon\left(p_{t}, p_{\bar{t}}, p_{b}, p_{\bar{b}}\right) \xrightarrow{t \bar{t} C M} \propto \vec{p}_{t} \cdot\left(\vec{p}_{b} \times \vec{p}_{\bar{b}}\right) \\
& \mathcal{O}_{5}=\epsilon\left(p_{b}, p_{\bar{b}}, p_{j 1}, p_{j 1^{\prime}}\right) \xrightarrow{b \bar{b} C M} \propto \vec{p}_{b} \cdot\left(\vec{p}_{j 1} \times \vec{p}_{j 1^{\prime}}\right) \\
& \mathcal{O}_{6}=\epsilon\left(p_{b}, p_{\bar{b}}, p_{j 1}+p_{j 2}, p_{j 1^{\prime}}+p_{j 2^{\prime}}\right) \xrightarrow{t \bar{t} C M} \propto\left(\vec{p}_{j 1}+\vec{p}_{j 2}\right) \cdot\left(\vec{p}_{b} \times \vec{p}_{\bar{b}}\right) \\
& \mathcal{O}_{7}=\tilde{q} \cdot\left(p_{b}-p_{\bar{b}}\right) \epsilon\left(P, \tilde{q}, p_{b}, p_{\bar{b}}\right) \xrightarrow{\text { lab }} \propto \vec{p}_{b e a m} \cdot\left(\vec{p}_{b}-\vec{p}_{\bar{b}}\right) \vec{p}_{b e a m} \cdot\left(\vec{p}_{b} \times \vec{p}_{\bar{b}}\right) .
\end{aligned}
$$

- For T-odd but CP even from the decay process

$$
\mathcal{O}_{c}=\epsilon\left(P, p_{b}+p_{\bar{b}}, p_{j 1}, p_{j 1^{\prime}}\right) \xrightarrow{l a b} \propto\left(\vec{p}_{b}+\vec{p}_{\bar{b}}\right) \cdot\left(\vec{p}_{j 1} \times \vec{p}_{j 1^{\prime}}\right)
$$

Observables

- For each correlation define a counting asymmetry:

$$
A_{i} \equiv \frac{N_{\text {events }}\left(\mathcal{O}_{i}>0\right)-N_{\text {events }}\left(\mathcal{O}_{i}<0\right)}{N_{\text {events }}\left(\mathcal{O}_{i}>0\right)+N_{\text {events }}\left(\mathcal{O}_{i}<0\right)} .
$$

- Can also try to extract terms linear in a given correlation \mathcal{O}_{i} from the distribution

$$
\frac{d \sigma}{d \mathcal{O}_{i}}
$$

Event generation and background

- We use MadGraph for all signals and background.
- The signal is calculated separately and `hacked' into MadGraph
- Several checks were made to satisfy ourselves that the procedure works but is not ideal
- Ideally the anomalous couplings will be directly implemented in MadGraph...
- There are no background issues beyond those already there for toppair selection
- Known backgrounds $Q C D, V b \bar{b}, V c \bar{c}, V V,\left(V=W^{ \pm}, Z\right) \cdots$ are $C P$ symmetric (in SM) and with CP-blind cuts cannot mimic the signal
- use some ‘typical' selection cuts for our analysis
- residual background simply dilutes the statistical sensitivity by factors $\sqrt{(B+S) / S}$

Numerical Results I: dimuon events

at LHC

- signal: $p p \rightarrow t \bar{t} \rightarrow\left(b \mu^{+} \nu\right)\left(\bar{b} \mu^{-} \bar{\nu}\right)$
- background: $p p \rightarrow b \bar{b} \mu^{+} \mu^{-} \quad$ (by MadGraph)
- cuts completely remove the bck. in this exercise, but it did not fake CP violation

$$
\begin{aligned}
& p_{T}\left(\mu^{ \pm}\right)>20 \mathrm{GeV}, p_{T}(b, \bar{b})>25 \mathrm{GeV} \\
& \left|\eta\left(b, \bar{b}, \mu^{ \pm}\right)\right|<2.5, \Delta R>0.4, \Perp_{T}>30 \mathrm{GeV}
\end{aligned}
$$

- left with a (LO) 2.3 pb cross section at 14 TeV, 23k events per $10 \mathrm{fb}^{-1}$
- Or 5σ (stat) sensitivity to 3% asymmetries

Our numerical results for counting asymmetries are:

$$
\begin{array}{ll}
\tilde{A}_{1}=0.64 d_{t}-0.072 f_{t} \sin \phi_{f} \\
\tilde{A}_{2}=-0.041 d_{t}-0.32 f_{t} \sin \phi_{f} \\
\tilde{A}_{3}=0.21 d_{t}+0.047 f_{t} \sin \phi_{f} . & d_{t} \equiv \tilde{d} m_{t}, \quad f_{t} \equiv f m_{t} \\
\hline
\end{array}
$$

This translates into a 5σ sensitivity for $10 \mathrm{fb}^{-1}$ of:

$$
\begin{aligned}
\left|d_{t}\right| \geq 0.05, \quad|\tilde{d}| \geq 3.0 \times 10^{-4} \mathrm{GeV}^{-1} \\
\left|f_{t} \sin \phi_{f}\right| \geq 0.10, \quad\left|f \sin \phi_{f}\right| \geq 6.0 \times 10^{-4} \mathrm{GeV}^{-1}
\end{aligned}
$$

Similarly for (unitarity) CP conserving phases:

$$
\left|f_{t} \sin \delta_{f}\right| \geq 0.10 \quad\left|f \sin \delta_{f}\right| \geq 6.0 \times 10^{-4}
$$

example of a distribution

G. Valencia (Iowa State), TOP 2010, Brugge

Numbers in Perspective

coupling	$\widetilde{\mathrm{d}}\left[\frac{1}{m}\right]$	f $\left[\frac{1}{m}\right]$
Theory Estimate	$\begin{aligned} & <10^{-13} \mathrm{SM}^{*} \\ & \sim 10^{-6} \mathrm{H}^{+\star} \\ & \sim 10^{-3} \mathrm{SUSY}^{\star} \end{aligned}$	0.03 QCD ${ }^{\text {\& }}$ (CP conserving and no phase)
$\begin{aligned} & \text { with } 10 \mathrm{fb}^{-1} \\ & \text { at } 5 \sigma \end{aligned}$	0.05	$\begin{gathered} \sim 0.10 \text { (both CP } \\ \text { and/or str.) } \end{gathered}$

units $\rightarrow 3.0 \times 10^{-4} \mathrm{GeV}^{-1}=\frac{0.05}{m_{t}} \leftrightarrow 5 \times 10^{-18} g_{s} \cdot \mathrm{~cm}$

* David Atwood et. al. CP violation in top physics, Phys.Rept.347:1-222,2001.
${ }^{\text {E Chong Sheng Li, Robert J. Oakes, }}$, Tzu Chiang Yuan Phys.Rev.D43:3759-3762,1991
G. Valencia (Iowa State), TOP 2010, Brugge

Numerical Results II: lepton plus jets and

multijets at Tevatron

- signal: $\quad p \bar{p} \rightarrow t \bar{t} \rightarrow b \bar{b} \mu j_{1} j_{2}+\mathbb{E}_{T}$ or $p \bar{p} \rightarrow t \bar{t} \rightarrow b \bar{b} j_{1} j_{2} j_{1}^{\prime} j_{2}^{\prime}$
- acceptance, separation cuts used

$$
\begin{aligned}
& p_{T}\left(\mu^{ \pm}, j\right)>20 \mathrm{GeV}, p_{T}(b, \bar{b})>25 \mathrm{GeV} \\
& \left|\eta\left(b, \bar{b}, \mu^{ \pm}, j\right)\right|<2.5, \Delta R_{i j}>0.4, E_{T}>30 \mathrm{GeV}
\end{aligned}
$$

- with a sample of about 1000 top pair events the statistical sensitivity of the Tevatron is limited (at 3σ to asymmetries around 10%) resulting in limits on \tilde{d} of order 1 in units of $\left[1 / m_{+}\right]$at best
- but urge the experiments to try, at the very least to see if systematics creep in at this level
- Sehwook Lee DØ ISU student will work on it (I hope!)

Hardest jet

- Look a bit into the meaning of \mathcal{O}_{2} (used for lepton plus jets events)
$\mathcal{O}_{2}=\epsilon\left(P, p_{b}+p_{\bar{b}}, p_{\ell}, p_{j 1}\right)$
$\xrightarrow{l a b} \sqrt{S}\left[\left(\vec{p}_{b}+\vec{p}_{\vec{b}}\right) \cdot\left(\left(\vec{p}_{\mu^{+}}+\stackrel{\left.\vec{p}_{j 1}\right)+\left(\vec{p}_{\mu^{-}}\right.}{ } \times \underset{\left.\left.\left.\vec{p}_{\bar{j} 1}\right)\right)\right]}{ }\right.\right.\right.$
$\xrightarrow{C P}(-) \sqrt{S}\left[\left(\vec{p}_{b}+\vec{p}_{\bar{b}}\right) \cdot\left(\left(\vec{p}_{\mu^{-}} \times \vec{p}_{j_{1}}\right)+\left(\vec{p}_{\mu^{+}} \times \vec{p}_{j 1}\right)\right)\right]$.

- the probability for a given jet originating from a quark q in a 2 jet W^{+} decay to be the hardest one, is equal to the probability for the corresponding jet originating from the anti-quark q in a 2 jet W^{-} decay to be the hardest one.
- this is verified explicitly in the event generation and also indirectly because the results are proportional to CP violating couplings only

Hardest jet continued

- in this correlation, the hardest jet is acting to some extent as spin analyzer for the top-spin. How does it compare to the d-quark (or u-quark) jet?

$$
\begin{array}{lcc}
A_{2} & = & -0.045 d_{t} \\
A_{2}^{\prime} & \xrightarrow{j_{1} \rightarrow d} & +0.017 d_{t} \\
A_{2}^{\prime \prime} & \xrightarrow{j_{1} \rightarrow u} & -0.031 d_{t}
\end{array}
$$

- in the lab frame, the hardest jet is the better choice for this asymmetry

Conclusions

- We have studied several T-odd correlations that illustrate the different possibilities in searching for CP violation in top physics
- We have estimated the asymmetries for the simple cases of anomalous top-quark couplings in both top production and decay, and a multi-Higgs model
- With these examples we have estimated the statistical sensitivity of the LHC and the Tevatron to the CP violating top-quark couplings
- The time is ripe for experimental studies of $C P$ violation in top physics: any observation would signal new physics. We urge the collaborations to carry them out.

Extras

Numerical Strategy

- We know that the asymmetries are linear in the anomalous coupling:

$$
A_{i}=\#_{1} \tilde{d}+\#_{2} f \sin \phi_{f}
$$

- Pick a value for the anomalous coupling, say

$$
\tilde{d}, f \sin \phi_{f}=5 \times 10^{-4} \mathrm{GeV}^{-1}
$$

- large enough to deal with statistical error with 10^{6} events, small enough for linear approximation
- compute the asymmetry and extract \#, then calculate sensitivity

Generic asymmetry

- Start from

$$
\epsilon\left(p_{t}, p_{\bar{t}}, p_{\ell^{+}}, p_{\ell^{-}}\right) \equiv \epsilon_{\mu \nu \alpha} \beta p_{t}^{\mu} p_{t}^{\nu} p_{\ell^{+}}^{\alpha}+p_{\ell^{-}}^{\beta}
$$

- becomes in the ($\mathrm{t} \overline{\mathrm{t}}$) center of mass frame:
- Under CP:

$$
\sqrt{s} \vec{p}_{t} \cdot\left(\vec{p}_{\ell^{+}} \times \vec{p}_{\ell^{-}}\right)
$$

$$
\begin{aligned}
t \bar{t} \ell^{+} \ell^{-} X & \leftrightarrow t \bar{t} \ell^{+} \ell^{-} \bar{X} \\
\sqrt{s} \vec{p}_{t} \cdot\left(\vec{p}_{\ell^{+}} \times \vec{p}_{\ell^{-}}\right) & \leftrightarrow \sqrt{s}\left(-\vec{p}_{\bar{t}}\right) \cdot\left(-\vec{p}_{\ell^{-}} \times(-) \overrightarrow{p_{\ell^{+}}}\right) \\
& =-\sqrt{s} \vec{p}_{t} \cdot\left(\vec{p}_{\ell^{+}} \times \vec{p}_{\ell^{-}}\right)
\end{aligned}
$$

- Count with:

$$
A_{C P}=\frac{N\left(\vec{p}_{t} \cdot\left(\vec{p}_{\ell^{+}} \times \vec{p}_{\ell^{-}}\right)>0\right)-N\left(\vec{p}_{t} \cdot\left(\vec{p}_{\ell^{+}} \times \vec{p}_{\ell^{-}}\right)<0\right)}{N\left(\vec{p}_{t} \cdot\left(\vec{p}_{\ell^{+}} \times \vec{p}_{\ell^{-}}\right)>0\right)+N\left(\vec{p}_{t} \cdot\left(\vec{p}_{\ell^{+}} \times \vec{p}_{\ell^{-}}\right)<0\right)}
$$

G. Valencia (Iowa State), TOP 2010, Bruges

effect of (new physics) ${ }^{2}$

- For a simple case ($q \bar{q}$) we check explicitly
- the extra terms do not produce an asymmetry
- they only affect the normalization as:

Talk based on:

New CP-odd observable in H ---> t anti-t.
G. Valencia, Yili Wang., hep-ph/0512127. Published in Phys.Rev.D73:053009,2006

T-odd correlations from CP violating anomalous top-quark couplings revisited.
Oleg Antipin, G. Valencia (lowa State U.), arXiv:0807.1295. Published in Phys.Rev.D79:013013,2009.

CP violating anomalous top-quark couplings at the LHC.
Sudhir Kumar Gupta, Alaettin Serhan Mete, G. Valencia, (lowa State U.). Published in Phys.Rev.D80:034013,2009. e-Print: arXiv:0905.1074 [hep-ph]

CP-odd correlations using jet momenta from tt_bar events at the Tevatron.
Sudhir Kumar Gupta, G. Valencia, (lowa State U.) . Published in Phys.Rev.D81:034013,2010.e-Print: arXiv: 0912.0707 [hep-ph]

Searching For CP Violation In Jet Physics.
John F. Donoghue, German Valencia, (Massachusetts U., Amherst) .
Published in Phys.Rev.Lett.58:451,1987, Erratum-ibid.60:243,1988.

