CP violation in top physics*

How to look for CP violation from new physics in top-quark pair production and decay with T-odd correlations

- *based on work with
 - Sudhir Kumar Gupta (ISU postdoc)
 - Oleg Antipin (now a postdoc in Odense)
 - Serhan Mete (Atlas ISU student)
 - Sehwook Lee (DØ ISU student)

T-odd correlations

simple kinematic correlations of the form

 $\vec{p_1} \cdot (\vec{p_2} \times \vec{p_3})$

- T-odd: change sign under `naive'-T $\ \vec{p} \longrightarrow -\vec{p}$ but no interchange of initial/final states
- These correlations can be:

(jet)

- CP-odd if $\vec{p_i}$, $\vec{p_j}$ involve particle anti-particle pairs^{*}
- CP-even but not at tree-level as they require a phase -- small and distinguishable `background'

sums over processes

• The \vec{p} can be that of a composite object

T-odd correlations-2

 triple product correlations appear in matrix elements in the form

 $\epsilon(p_t, p_{\bar{t}}, p_{\ell^+}, p_{\ell^-}) \equiv \epsilon_{\mu\nu\alpha\beta} p_t^{\mu} p_{\bar{t}}^{\nu} p_{\ell^+}^{\alpha} p_{\ell^-}^{\beta}$

- 4 independent four-vectors needed, so unless one has an effective theory with vertices involving 5 particles at least, they originate from spin correlations*
- * top pair production is ideal `lab' to look for them

Examples for LHC, Tevatron

- Heavy (bsm) Higgs with CP violation
 - large intrinsic asymmetry
 - hard to extract (if such a Higgs exists!)
- Anomalous top-quark couplings
 - exhibits the correlations in the general case (including those between initial and final state momenta)
 - contains examples that are truly CP odd and others that are not
 - small asymmetries (by assumption ...)

Peskin,Schmidt,Chang, Keung, Bernreuther, Brandenburg,Flesch ...

Atwood, Aeppli,Soni, Bernreuther,Nachtmann, Overmann,Schroeder,Ma, Brandenburg,Choi,Kim, Zhou, Sjolin ...

kinematics

new physics with CP violation

sum over final states such that CP conjugate pairs appear with equal probability

T-odd Spin correlations

 the underlying T-odd correlations are spin correlations, different observables correspond to different spin analyzers

want the lab frame, not the top-rest frame

CP Violation via Neutral Higgs

• A neutral Higgs has the general coupling:

 $-\frac{m_t}{v} H \bar{t} (A + iB\gamma_5) t$

- which violates CP if both A and B are nonzero at the same time (multi-Higgs models)
- Weinberg showed that

$$|AB| \le \frac{1}{\sqrt{2}}$$

- under some assumptions
 - lightest neutral mass eigenstate is dominant
 - different vevs have comparable sizes
 - use upper bound for numerics

with Yili Wang

Case of H decay

- For a sufficiently heavy H, it decays to top pairs. The decay chain, for example, $H \rightarrow t\bar{t} \rightarrow b\bar{b}W^+W^-$
- picks a CP odd correlation

 $\mathcal{O}_{1} = \epsilon(p_{t}, p_{\bar{t}}, p_{b}, p_{\bar{b}}) \xrightarrow{H_{C.M.}} \propto \vec{p}_{t} \cdot (\vec{p}_{b} \times \vec{p}_{\bar{b}})$ $\xrightarrow{CP} -\vec{p}_{\bar{t}} \cdot (-\vec{p}_{\bar{b}} \times -\vec{p}_{b}) = -\vec{p}_{t} \cdot (\vec{p}_{b} \times \vec{p}_{\bar{b}})$

• which can be measured with a counting asymmetry such as $A_{CP} \equiv \frac{N_{events}(\vec{p_b} \cdot (\vec{p_b} \times \vec{p_t}) > 0) - N_{events}(\vec{p_b} \cdot (\vec{p_b} \times \vec{p_t}) < 0)}{N_{events}(\vec{p_b} \cdot (\vec{p_b} \times \vec{p_t}) > 0) + N_{events}(\vec{p_b} \cdot (\vec{p_b} \times \vec{p_t}) < 0)}$

A picture

 $tar{t}$ event in the CM frame of $tar{t}$

O₁ is proportional to the triple product $\vec{p_t} \cdot (\vec{p_b} \times \vec{p_b})$

Can be easily computed

$$=\frac{\pi}{4}\sqrt{1-\frac{4m_t^2}{M_H^2}}\frac{AB}{|A|^2+|B|^2}\frac{(1-\frac{2M_W^2}{m_t^2})^2}{(1+\frac{2M_W^2}{m_t^2})^2} \left(\frac{1}{1-\frac{2m_t^2}{M_H^2}-2\frac{|A|^2-|B|^2}{|A|^2+|B|^2}\frac{m_t^2}{M_H^2}}\right)$$

There is a large intrinsic asymmetry: near 7% for A=B and maximum CP violation

But need to isolate the sample with the asymmetry.

Signal gets diluted

How did we get a CP test?

$$p \ p \to H \to t \ \overline{t} \to (bW^+) \ (\overline{b}W^-) \to (b\mu^+\nu_\mu)(\overline{b}\mu^-\overline{\nu}_\mu)$$

- p p initial state is not a CP eigenstate
 - get good CP properties from final state: view LHC as a Higgs (or more generally a t \bar{t}) factory
 - this works for g g or q \overline{q} initial states after we sum over spin and color
 - won't work for q q initial state, need to reject it.
 - pick final states such that this is a small contamination

top-quark anomalous couplings

- electric dipole moments indicate T violation (and thus CP violation)
- experimental limits on electron edm and neutron edm; for example d_n < 2.9 × 10⁻²⁶ ecm
- one contribution to neutron edm is the light quark edm and also its cedm:

$$\mathcal{H} \sim \frac{1}{2} e \, d_q \, \bar{q} \sigma_{\mu\nu} \gamma_5 q \, F^{\mu\nu} \, + \, \frac{1}{2} \, g_s \, \tilde{d}_q \, \bar{q} \sigma_{\mu\nu} \gamma_5 t_a q \, G_a^{\mu\nu}$$

quark edm (cedm)

- beyond the SM these can be induced at oneloop
- for example models with scalars generate contributions such as

- perhaps heavy quarks can have large (c)edms ?
- measure at a top-quark factory, LHC?

CP violating top-quark couplings

 For CP violation in the production process: a (chromo)-edm of the top-quark:

$$\mathcal{L}_{cedm} = -ig_s \frac{\tilde{d}}{2} \,\bar{t} \,\sigma_{\mu\nu}\gamma_5 \,t \,G^{\mu\nu}$$

• It modifies the $t \ \overline{t} \ g$ coupling and introduces

with Oleg Antipin

0

 $gg \text{ or } q\bar{q} \to t\bar{t} \to (b\mu^+\nu_\mu)(b\mu^-\bar{\nu}_\mu)$

 The differential cross section now contains the following CP-odd correlations:

$$\begin{aligned}
\mathcal{O}_{1} &= \epsilon(p_{t}, p_{\bar{t}}, p_{\mu^{+}}, p_{\mu^{-}}) \\
\mathcal{O}_{2} &= (t-u) \epsilon(p_{\mu^{+}}, p_{\mu^{-}}, P, q) \\
\mathcal{O}_{3} &= (t-u) \left(P \cdot p_{\mu^{+}} \epsilon(p_{\mu^{-}}, p_{t}, p_{\bar{t}}, q) + P \cdot p_{\mu^{-}} \epsilon(p_{\mu^{+}}, p_{t}, p_{\bar{t}}, q) \right)
\end{aligned}$$

- where the sum and difference of parton momenta are denoted by P and q.
 - for W as one jet: lepton 🛶 b-jet momenta
 - for more jets: lepton \longleftrightarrow d-jet momenta
- Notice that they are quadratic in q

$$(t-u) = q \cdot (p_{\bar{t}} - p_t)$$

top cedm continued

 The CP violating part of the differential cross section looks like

 $d\sigma \sim C_1(s,t,u) \mathcal{O}_1 + C_2(s,t,u) \mathcal{O}_2 + C_3(s,t,u) \mathcal{O}_3,$

where the form factors look like

$$C_{1} = \frac{\tilde{d} m_{t}}{6s^{2}(s^{2} - (t - u)^{2})^{2}} \left(9(t - u)^{6} - 2s^{2}(t - u)^{4} - 7s^{4}(t - u)^{2} + 32m_{t}^{4}(7s^{4} + 9s^{2}(t - u)^{2}) + 4m_{t}^{2}(7s^{5} + 7(t - u)^{2}s^{3} + 18(t - u)^{4}s)\right)$$

- notice they are also even under t,u interchange (which proton is p1)
- this expression (3 f.f's) appears to be the most general one

CP violation in the decay vertex

 For anomalous tbW couplings, there is only one that interferes with the SM amplitude in the limit of massless b quark:

$$\Gamma^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} V^{\star}_{tb} \bar{u}(p_b) \left[\gamma_{\mu} (f_1^L P_L + f_1^R P_R) - i\sigma^{\mu\nu} (p_t - p_b)_{\nu} (f_2^L P_L + f_2^R P_R) \right] u(p_t),$$

$$\bar{\Gamma}^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} V_{tb} \bar{v}(p_{\bar{t}}) \left[\gamma_{\mu} (\bar{f}_1^L P_L + \bar{f}_1^R P_R) - i\sigma^{\mu\nu} (p_{\bar{t}} - p_{\bar{b}})_{\nu} (\bar{f}_2^L P_L + \bar{f}_2^R P_R) \right] v(p_{\bar{b}}),$$

include absorptive phases also and take:

• no seagulls (with a gluon) are present

T-odd correlations

 this time they appear in the differential cross section as:

absorptive phase

 $|\mathcal{M}|_T^2 = f \sin(\phi_f + \delta_f) \epsilon(p_t, p_b, p_{\ell^+}, Q_t) + f \sin(\phi_f - \delta_f) \epsilon(p_{\bar{t}}, p_{\bar{b}}, p_{\ell^-}, Q_{\bar{t}}).$

CP odd phase

- Q is a four momentum (spin analizer), it is a linear combination of other momenta in the process
- the correlations are NOT CP odd, they can be also signal absorptive phases
- true CP odd observables can be constructed by comparing the top and anti-top decays

Observables

- We have the `theoretical' correlations. Need some that involve only observable momenta.
 - for LHC we use the di-lepton (muon) channel, for Tevatron the lepton (muon) + jets, and multijet channels:

 p_{μ^+}, p_{μ^-}

 $p_b, p_{\bar{b}}$, some observables require distinguishing them $\tilde{q} \equiv P_1 - P_2, =$ difference of proton momenta $p_{j1}, p_{j2} \cdots \text{non} - b$ jets ordered by p_T

- any CP-blind ordering of the jets should work

correlations for di-muon channel

For CP violation in both production and decay

- J.Sjölin has done an Atlas study with an observable proportional to $\tilde{\mathcal{O}}_1$
- For T-odd but CP even from the decay process

$$\mathcal{O}_{a} = \tilde{q} \cdot (p_{\mu^{+}} + p_{\mu^{-}}) \epsilon(p_{\mu^{+}}, p_{\mu^{-}}, p_{b} + p_{\bar{b}}, \tilde{q})$$

$$\mathcal{O}_{b} = \tilde{q} \cdot (p_{\mu^{+}} - p_{\mu^{-}}) \epsilon(p_{\mu^{+}}, p_{\mu^{-}}, p_{b} - p_{\bar{b}}, \tilde{q}).$$

correlations for muon + jets

For CP violation in both production and decay

$$\begin{array}{rcl} \mathcal{O}_{1} & = & \epsilon(p_{t},p_{\overline{t}},p_{b},p_{\overline{b}}) & \frac{t\overline{t} \ CM}{\longrightarrow} \propto \ \vec{p}_{t} \cdot (\vec{p}_{b} \times \vec{p}_{\overline{b}}) \\ \mathcal{O}_{2} & = & \epsilon(P,p_{b}+p_{\overline{b}},p_{\ell},p_{j1}) & \frac{lab}{\longrightarrow} \propto \ (\vec{p}_{b}+\vec{p}_{\overline{b}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j1}) \\ \mathcal{O}_{3} & = & Q_{\ell} \ \epsilon(p_{b},p_{\overline{b}},p_{\ell},p_{j1}) & \frac{bb \ CM}{\longrightarrow} \propto \ Q_{\ell} \ \vec{p}_{b} \cdot (\vec{p}_{\ell} \times \vec{p}_{j1}) \\ \mathcal{O}_{4} & = & Q_{\ell} \ \epsilon(P,p_{b}-p_{\overline{b}},p_{\ell},p_{j1}) & \frac{lab}{\longrightarrow} \propto \ Q_{\ell} \ (\vec{p}_{b}-\vec{p}_{\overline{b}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j1}) \\ \mathcal{O}_{7} & = & \widetilde{q} \cdot (p_{b}-p_{\overline{b}}) \ \epsilon(P,\widetilde{q},p_{b},p_{\overline{b}}) & \frac{lab}{\longrightarrow} \propto \ \vec{p}_{beam} \cdot (\vec{p}_{b}-\vec{p}_{\overline{b}}) \ \vec{p}_{beam} \cdot (\vec{p}_{b} \times \vec{p}_{\overline{b}}). \end{array}$$

 For T-odd but CP even from the decay process

$$\mathcal{O}_{a} = \epsilon(P, p_{b} - p_{\bar{b}}, p_{\ell}, p_{j1}) \xrightarrow{lab} \propto (\vec{p}_{b} - \vec{p}_{\bar{b}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j1})$$

$$\mathcal{O}_{b} = Q_{\ell} \epsilon(P, p_{b} + p_{\bar{b}}, p_{\ell}, p_{j1}) \xrightarrow{lab} \propto Q_{\ell} (\vec{p}_{b} + \vec{p}_{\bar{b}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j1})$$

correlations for multi jet channel

For CP violation in both production and decay

$$\begin{aligned} \mathcal{O}_1 &= \epsilon(p_t, p_{\bar{t}}, p_b, p_{\bar{b}}) \xrightarrow{t\bar{t} \ CM} \propto \vec{p}_t \cdot (\vec{p}_b \times \vec{p}_{\bar{b}}) \\ \mathcal{O}_5 &= \epsilon(p_b, p_{\bar{b}}, p_{j1}, p_{j1'}) \xrightarrow{b\bar{b} \ CM} \propto \vec{p}_b \cdot (\vec{p}_{j1} \times \vec{p}_{j1'}) \\ \mathcal{O}_6 &= \epsilon(p_b, p_{\bar{b}}, p_{j1} + p_{j2}, p_{j1'} + p_{j2'}) \xrightarrow{t\bar{t} \ CM} \propto (\vec{p}_{j1} + \vec{p}_{j2}) \cdot (\vec{p}_b \times \vec{p}_{\bar{b}}) \\ \mathcal{O}_7 &= \tilde{q} \cdot (p_b - p_{\bar{b}}) \epsilon(P, \tilde{q}, p_b, p_{\bar{b}}) \xrightarrow{lab} \propto \vec{p}_{beam} \cdot (\vec{p}_b - \vec{p}_{\bar{b}}) \vec{p}_{beam} \cdot (\vec{p}_b \times \vec{p}_{\bar{b}}). \end{aligned}$$

 For T-odd but CP even from the decay process

 $\mathcal{O}_c = \epsilon(P, p_b + p_{\bar{b}}, p_{j1}, p_{j1'}) \xrightarrow{lab} \propto (\vec{p}_b + \vec{p}_{\bar{b}}) \cdot (\vec{p}_{j1} \times \vec{p}_{j1'})$

Observables

 For each correlation define a counting asymmetry:

$$A_i \equiv \frac{N_{events}(\mathcal{O}_i > 0) - N_{events}(\mathcal{O}_i < 0)}{N_{events}(\mathcal{O}_i > 0) + N_{events}(\mathcal{O}_i < 0)}.$$

• Can also try to extract terms linear in a given correlation \mathcal{O}_i from the distribution

$$\frac{d\sigma}{d\mathcal{O}_i}$$

Event generation and background

- We use MadGraph for all signals and background.
 - The signal is calculated separately and `hacked' into MadGraph
 - Several checks were made to satisfy ourselves that the procedure works but is not ideal
 - Ideally the anomalous couplings will be directly implemented in MadGraph...
- There are no background issues beyond those already there for toppair selection
 - Known backgrounds QCD, $Vb\bar{b}$, $Vc\bar{c}$, VV, $(V = W^{\pm}, Z) \cdots$ are CP symmetric (in SM) and with CP-blind cuts cannot mimic the signal
 - use some `typical' selection cuts for our analysis
 - residual background simply dilutes the statistical sensitivity by factors $\sqrt{(B+S)/S}$

Numerical Results I: dimuon events at LHC

- signal: $pp \to t\bar{t} \to (b\mu^+\nu)(\bar{b}\mu^-\bar{\nu})$
- background: $pp
 ightarrow b \overline{b} \mu^+ \mu^-$ (by MadGraph)
- cuts completely remove the bck. in this exercise, but it did not fake CP violation

 $p_T(\mu^{\pm}) > 20 \text{ GeV}, \ p_T(b,\bar{b}) > 25 \text{ GeV},$ $|\eta(b,\bar{b},\mu^{\pm})| < 2.5, \ \Delta R > 0.4, \ E_T > 30 \text{ GeV}$

- left with a (LO) 2.3 pb cross section at 14 TeV, 23k events per 10 fb⁻¹
- Or 5σ (stat) sensitivity to 3% asymmetries

with Gupta, Mete

Our numerical results for counting asymmetries are:

 $\tilde{A}_{1} = 0.64 d_{t} - 0.072 f_{t} \sin \phi_{f}$ $\tilde{A}_{2} = -0.041 d_{t} - 0.32 f_{t} \sin \phi_{f}$ $\tilde{A}_{3} = 0.21 d_{t} + 0.047 f_{t} \sin \phi_{f}.$ $d_{t} \equiv \tilde{d} m_{t}, \quad f_{t} \equiv f m_{t}$

This translates into a 5 σ sensitivity for 10 fb⁻¹ of:

 $|d_t| \ge 0.05, \quad |\tilde{d}| \ge 3.0 \times 10^{-4} \text{ GeV}^{-1}$ $|f_t \sin \phi_f| \ge 0.10, \quad |f \sin \phi_f| \ge 6.0 \times 10^{-4} \text{ GeV}^{-1}$

Similarly for (unitarity) CP conserving phases:

 $|f_t \sin \delta_f| \ge 0.10 \quad |f \sin \delta_f| \ge 6.0 \times 10^{-4}.$

example of a distribution

G. Valencia (Iowa State), TOP 2010, Brugge

Numbers in Perspective

coupling	$\widetilde{\mathbf{d}}$ $\begin{bmatrix} \frac{1}{m_t} \end{bmatrix}$	$\mathbf{f}\left[\frac{1}{m_{t}}\right]$
Theory	<10 ⁻¹³ SM*	0.03 QCD&
Estimate	~10 ⁻⁶ H+*	(CP conserving
	~10 ⁻³ SUSY*	and no phase)
with 10fb ^{_1}	0.05	~ 0.10 (both CP
at 5 σ		and/or str.)

units
$$\rightarrow$$
 3.0 × 10⁻⁴ GeV⁻¹ = $\frac{0.05}{m_t} \leftrightarrow 5 \times 10^{-18} g_s \cdot \text{cm}$

* David Atwood et. al. CP violation in top physics, Phys.Rept.347:1-222,2001. & <u>Chong Sheng Li</u>, <u>Robert J. Oakes</u>, <u>Tzu Chiang Yuan</u> Phys.Rev.D43:3759-3762,1991. G. Valencia (Iowa State), TOP 2010, Brugge

Numerical Results II: lepton plus jets and multijets at Tevatron

- signal: $p\bar{p} \rightarrow t\bar{t} \rightarrow b\bar{b}\mu j_1 j_2 + E_T \text{ or } p\bar{p} \rightarrow t\bar{t} \rightarrow b\bar{b}j_1 j_2 j'_1 j'_2$
- acceptance, separation cuts used

 $p_T(\mu^{\pm}, j) > 20 \text{ GeV}, p_T(b, \bar{b}) > 25 \text{ GeV},$ $|\eta(b, \bar{b}, \mu^{\pm}, j)| < 2.5, \Delta R_{ij} > 0.4, E_T > 30 \text{ GeV}$

- with a sample of about 1000 top pair events the statistical sensitivity of the Tevatron is limited (at 3 σ

to asymmetries around 10%) resulting in limits on \tilde{d} of order 1 in units of [1/m_t] at best

- but urge the experiments to try, at the very least to see if systematics creep in at this level
- Sehwook Lee DØ ISU student will work on it (I hope!)

Hardest jet

• Look a bit into the meaning of \mathcal{O}_2 (used for lepton plus jets events)

 $\mu^+ (W^- \to jets) \text{ or } \mu^- (W^+ \to jets)$

- $\begin{aligned} \mathcal{O}_2 &= \epsilon(P, p_b + p_{\bar{b}}, p_{\ell}, p_{j1}) \\ \xrightarrow{lab} &\sqrt{S} \left[(\vec{p}_b + \vec{p}_{\bar{b}}) \cdot \left((\vec{p}_{\mu^+} \times \vec{p}_{j1}) + (\vec{p}_{\mu^-} \times \vec{p}_{\bar{j1}}) \right) \right] \\ \xrightarrow{CP} & (-)\sqrt{S} \left[(\vec{p}_b + \vec{p}_{\bar{b}}) \cdot \left((\vec{p}_{\mu^-} \times \vec{p}_{\bar{j1}}) + (\vec{p}_{\mu^+} \times \vec{p}_{j1}) \right) \right]. \end{aligned}$
 - the probability for a given jet originating from a quark q in a 2 jet W⁺ decay to be the hardest one, is equal to the probability for the corresponding jet originating from the anti-quark q in a 2 jet W⁻ decay to be the hardest one.
 - this is verified explicitly in the event generation and also indirectly because the results are proportional to CP violating couplings only G. Valencia (Iowa State), TOP 2010, Brugge

Hardest jet continued

 in this correlation, the hardest jet is acting to some extent as spin analyzer for the top-spin. How does it compare to the d-quark (or u-quark) jet?

$$A_2 = -0.045 d_t$$
$$A'_2 \xrightarrow{j_1 \to d} +0.017 d_t$$
$$A''_2 \xrightarrow{j_1 \to u} -0.031 d_t$$

 in the lab frame, the hardest jet is the better choice for this asymmetry

Conclusions

- We have studied several T-odd correlations that illustrate the different possibilities in searching for CP violation in top physics
- We have estimated the asymmetries for the simple cases of anomalous top-quark couplings in both top production and decay, and a multi-Higgs model
- With these examples we have estimated the statistical sensitivity of the LHC and the Tevatron to the CP violating top-quark couplings
- The time is ripe for experimental studies of CP violation in top physics: any observation would signal new physics. We urge the collaborations to carry them out.

Extras

Numerical Strategy

 We know that the asymmetries are linear in the anomalous coupling:

$$A_i = \#_1 \tilde{d} + \#_2 f \sin \phi_f$$

- Pick a value for the anomalous coupling, say $\tilde{d}, f \sin \phi_f = 5 \times 10^{-4} \ {\rm GeV}^{-1}$
- large enough to deal with statistical error with 10⁶ events, small enough for linear approximation
- compute the asymmetry and extract #, then calculate sensitivity
 G. Valencia (Iowa State), TOP 2010, Bruges

Generic asymmetry

- Start from $\epsilon(p_t, p_{\bar{t}}, p_{\ell^+}, p_{\ell^-}) \equiv \epsilon_{\mu\nu\alpha\beta} p_t^{\mu} p_{\bar{t}}^{\nu} p_{\ell^+}^{\alpha} p_{\ell^-}^{\beta}$
- becomes in the (tt) center of mass frame:

$$\sqrt{s}\vec{p_t}\cdot(\vec{p_{\ell^+}}\times\vec{p_{\ell^-}})$$

• Under CP:

$$\begin{aligned} t\bar{t}\ell^+\ell^-X &\leftrightarrow t\bar{t}\ell^+\ell^-\bar{X} \\ \sqrt{s}\vec{p}_t \cdot (\vec{p}_{\ell^+} \times \vec{p}_{\ell^-}) &\leftrightarrow \sqrt{s}(-\vec{p}_{\bar{t}}) \cdot (-\vec{p}_{\ell^-} \times (-)\vec{p}_{\ell^+}) \\ &= -\sqrt{s}\vec{p}_t \cdot (\vec{p}_{\ell^+} \times \vec{p}_{\ell^-}) \end{aligned}$$

• Count with:

$$A_{CP} = \frac{N(\vec{p}_t \cdot (\vec{p}_{\ell^+} \times \vec{p}_{\ell^-}) > 0) - N(\vec{p}_t \cdot (\vec{p}_{\ell^+} \times \vec{p}_{\ell^-}) < 0)}{N(\vec{p}_t \cdot (\vec{p}_{\ell^+} \times \vec{p}_{\ell^-}) > 0) + N(\vec{p}_t \cdot (\vec{p}_{\ell^+} \times \vec{p}_{\ell^-}) < 0)}$$

effect of (new physics)²

- For a simple case ($q\bar{q}$) we check explicitly
 - the extra terms do not produce an asymmetry
 - they only affect the normalization as:

New CP-odd observable in H ---> t anti-t.

G. Valencia, Yili Wang., hep-ph/0512127. Published in Phys.Rev.D73:053009,2006

T-odd correlations from CP violating anomalous top-quark couplings revisited. Oleg Antipin, G. Valencia (lowa State U.), arXiv:0807.1295. Published in Phys.Rev.D79:013013,2009.

CP violating anomalous top-quark couplings at the LHC. <u>Sudhir Kumar Gupta</u>, <u>Alaettin Serhan Mete</u>, <u>G. Valencia</u>, (<u>lowa State U.</u>). Published in **Phys.Rev.D80:034013,2009**. e-Print: **arXiv:0905.1074** [hep-ph]

CP-odd correlations using jet momenta from tt_bar events at the Tevatron. <u>Sudhir Kumar Gupta</u>, <u>G. Valencia</u>, (<u>lowa State U.</u>). Published in **Phys.Rev.D81:034013,2010**.e-Print: **arXiv: 0912.0707** [hep-ph]

Searching For CP Violation In Jet Physics. John F. Donoghue, German Valencia, (Massachusetts U., Amherst). Published in Phys.Rev.Lett.58:451,1987, Erratum-ibid.60:243,1988.