

PHYSICS AND RECONSTRUCTION

Eric Chabert on behalf

CMS collaboration

Jörgen Sjölin on behalf ATLAS collaboration

E. Chabert & J. Sjölin

Top2010

Outline

- The physics motivations
- New reconstruction technique: <u>top-tagging^{1,5}</u>
- Search for <u>tresonances</u> in several channels
- Summary of the sensitivity
- Perspectives

Channel for tt resonances searches:

	di-leptonic	semi-leptonic	All hadronic
Low mass		CMS⁴/ATLAS ⁶	
High mass		CMS ³ /ATLAS ⁷	CMS ^{1,2}

Publications:

1.CMS-PAS-JME-09-001 2.CMS-PAS-EXO-09-002 3.CMS-PAS-EXO-09-008 4.CMS-PAS-TOP-09-009 5.ATL-PHYS-CONF-2008-008 6.CERN-OPEN-2008-20 7.ATLAS-PHYS-PUB-2009-081

See talk on 'Challenges in new Physics Searches in top-like events'

Physics motivations

BOOSTED TOP: PRODUCTION

BOOSTED TOP: DECAY

Boosted top: quark top produced with a high boost $(\beta, \gamma) \rightarrow$ high p_{τ}

What can produce boosted top ? Standard Model

Hard pp collisions (gg,q \bar{q}): 0.5% of the top pair production, p_T(top)>500GeV

New physics

tt resonances: heavy particle decaying in tt

- new scalars, ex: heavy Higgs
- new vectors: Z',W' (ex: Technicolor)
- Colorons (color interaction)
- KK-excitations including gravitons (RS/ADD)

٥..

These resonances can be

- Spin: 0,1,2
- ◆ Parity J^P: 0⁻,0⁺,1⁻,1⁺,2⁻,2⁺
- color singlet/octet

Particles decaying in 1 top+X

- top partner: stop in SUSY
- fourth generation of quark (b',t')

Top's boost mainly depends on the mass its mother

Top2010

Simulations

List of samples/generators used for the results presented in this talk.

	ATLAS	CMS
tt generator	MC@NLO	MadGraph
Z': generator	Pythia	MadGraph/Pythia
width	1%	1-10%
mass	500GeV-4TeV	750 GeV-4 TeV
QCD generator	Pythia	Pythia
W/Z generator	Alpgen	MadGraph
W+bb/cc generator	Alpgen	MadGraph
Simulation	GEANT-based	GEANT-based

CMS: MadGraph interfaced with Pythia with matching (MLM)

E. Chabert & J. Sjölin

Top2010

Boosted top-jet tagging

ALGORITHMS

KINEMATIC DISCRIMATORS

Principle:

- Develop a algorithm to reconstruct high p_{τ} top as a single jet
- Tag this jet as a top-jet using its sub-structure: sub-jets

CMS top tags based on: Phys.Rev.Lett.101:142001,2 008

PERFORMANCES

ATLAS top tags based on: ATL-PHYS-CONF-2008-008

Granularity is fine enough to distinguish the sub-structure

E. Chabert & J. Sjölin

Top2010

Top2010

ALGORITHMS

KINEMATIC DISCRIMATORS

CMS

PERFORMANCES

Decomposition of the hard jet

p_τ>300 GeV - |**η**|<2.5

Run the $k_{\!_{\rm T}}$ algorithm backwards to decluster the jet

- The k_{τ} jets are built from topological clusters.
- Identify the splitting scale for the 1 \rightarrow 2 jet split $\sqrt{d_{\min(1,2)}}$.
- Identify the splitting scale for the 2 \rightarrow 3 jet split $\sqrt{(d_{min(2,3)})}$.
- Identify the splitting scale for the $3 \rightarrow 4$ jet split $\sqrt{(d_{min(3,4)})}$.

Topological clusters groups cells based on the significance and exploits the fine granularity of ATLAS.

Top2010

E. Chabert & J. Sjölin

"Boosted top"

9/37

Top2010

Boosted top-jet tagging

ALGORITHMS

KINEMATIC DISCRIMATORS

Top2010

CMS

Top-tagging

Identification of top-jet based on kinematic discriminators

For b-jet:

- Track with high impact parameter
- Displaced vertex
- Leptonic decay of b-hadrons: (e/µ)

For top-jet:

E. Chabert & J. Sjölin

- Mass of the jet (~m_{top})
- 2 body mass (~m_w)

Kin. discr.	cuts
m _{jet}	[100,250] GeV/c ²
M _{min}	> 50 GeV/c ²

Signal = top-jet (from t continuum or resonances) Background = non-top jet (QCD production) mass of jet scales as ~10% of p_T

Algorithms	S/√B
Κ _τ	1.6
anti-K _T	1.3
C-A	2.4

Boosted top-jet tagging

ALGORITHMS

KINEMATIC DISCRIMATORS

jet p_{τ} =600 GeV/c: efficiency = 46% & rejection = 98.5%

Efficiency from MC (stat limited)

Effect	Systematic Uncertainty (%)
Initial State Radiation	1
Final State Radiation	2
Renormalization Scale	3
Light Quark Fragmentation	< 1
Heavy Quark Fragmentation	< 1
Theoretical Uncertainty	3.8
Momentum Smearing + 10%	3.3
Azimuthal Smearing + 50%	2.9
Rapidity Smearing + 50%	2.9
Detector-Based Uncertainty	5.3
Total Systematic Uncertainty	6.5

PERFORMANCES

Fake rate: data-driven estimation Anti-tag & probe method

Selection: Events with 2 jets p_T >250 GeV/c & $|\eta|$ <2.5 Anti-tag: <3 sub-jets or masses outside cut windows Probe: the second jet Continuum ft subtracted from MC expectation Tag rate is parametrized as function of jet p_T Stat: 10³ events for 100 pb⁻¹ @ 7 TeV Results: 33% (stat) for jet with p_T = 800 GeV

E. Chabert & J. Sjölin

Top2010

Channel for tt resonances searches:

	di-leptonic	semi-leptonic	All hadronic
Low mass		CMS ⁴ /ATLAS ⁶	
High mass		CMS ³ /ATLAS ⁷	CMS ^{1,2}

With use of top-tagging

Publications:

1.CMS-PAS-JME-09-001 2.CMS-PAS-EXO-09-002 3.CMS-PAS-EXO-09-008 4.CMS-PAS-TOP-09-009 5.ATL-PHYS-CONF-2008-008 6.CERN-OPEN-2008-20 7.ATLAS-PHYS-PUB-2009-081

E. Chabert & J. Sjölin

Top2010

Channel for tt resonances searches:

	di-leptonic	semi-leptonic	All hadronic
Low mass		CMS ⁴ /ATLAS ⁶	
High mass		CMS ³ /ATLAS ⁷	CMS ^{1,2}

With a I+4 jets topology

Publications:

1.CMS-PAS-JME-09-001 2.CMS-PAS-EXO-09-002 3.CMS-PAS-EXO-09-008 4.CMS-PAS-TOP-09-009 5.ATL-PHYS-CONF-2008-008 6.CERN-OPEN-2008-20 7.ATLAS-PHYS-PUB-2009-081

E. Chabert & J. Sjölin

Top2010

Top2010

Low-mass resonances: semi-leptonic

RECONSTRUCTION

19/37

SENSITIVITY

Selection of 4 jets

- Consider all subset of 4 jets among N jets where $4 \le N \le 8$ with jet $p_{\tau} \ge 20$ GeV
- subsets with 12 combinations for each. $\left(\frac{1}{N-4}\right)$
- Build a χ^2 using hadronic masses (W,top), $\Delta R(I,b)$, $m_{\tau}(I,b,MET)$ and $\Sigma p_{\tau}(jets)$
- Parameters and resolution are taken from Monte Carlo
- Select the 4 jets which minimize the χ^2

SELECTION

0.25

Low-mass resonances: semi-leptonic

SELECTION

RECONSTRUCTION

Invariant mass of a 2 TeV/c² Z'

Expected Invariant mass for all processes

SENSITIVITY

"Boosted top"

20/37

E. Chabert & J. Sjölin

Top2010

Channel for tt resonances searches:

	di-leptonic	semi-leptonic	All hadronic
Low mass		CMS ⁴ /ATLAS ⁶	
High mass		CMS ³ /ATLAS ⁷	CMS ^{1,2}

With a I+4 jets topology

Publications:

1.CMS-PAS-JME-09-001 2.CMS-PAS-EXO-09-002 3.CMS-PAS-EXO-09-008 4.CMS-PAS-TOP-09-009 5.ATL-PHYS-CONF-2008-008 6.CERN-OPEN-2008-20 7.ATLAS-PHYS-PUB-2009-081

E. Chabert & J. Sjölin

Top2010

Top2010

10

200

400

600

Top2010

800

"Boosted top"

M_{t 7} [GeV]

ATLAS

1000 1200 1400 1600 1800 2000

24/37

Top2010

E. Chabert & J. Sjölin

"Boosted top"

25/37

Channel for tt resonances searches:

	di-leptonic	semi-leptonic	All hadronic
Low mass		CMS ⁴ /ATLAS ⁶	
High mass		CMS ³ /ATLAS ⁷	CMS ^{1,2}

With a I+>=2 jets topology

Publications:

1.CMS-PAS-JME-09-001 2.CMS-PAS-EXO-09-002 3.CMS-PAS-EXO-09-008 4.CMS-PAS-TOP-09-009 5.ATL-PHYS-CONF-2008-008 6.CERN-OPEN-2008-20 7.ATLAS-PHYS-PUB-2009-081

E. Chabert & J. Sjölin

Top2010

Top2010

Top2010

"Boosted top"

28/37

High-mass resonances: semi-leptonic

SELECTION

RECONSTRUCTION

events

60

40

20

SENSITIVIT)

Region A

200 pb

600

29/37

Z' (M = 1 TeV/c²) \times 3 Z' $(M = 2 \text{ TeV/c}^2) \times 30$

single top

SM tī Z+jets W+iets QCD

Z' $(M = 3 \text{ TeV/c}^2) \times 300$

≥ 2 Jets 1 Muon CMS preliminary

Region B

√s = 10 TeV / L = 200 pb⁻¹

Estimation of the background via a combined fit (cf low-mass analysis)

Systematic uncertainties

- **JES: 10%**
- Modeling of W+jets and SM tt: Q² ISR/FSR
- Effects on acceptance, $H_{\tau}(lep) \& M_{\#}$ distributions

E. Chabert & J. Sjölin

Top2010

Channel for tt resonances searches:

	di-leptonic	semi-leptonic	All hadronic
Low mass		CMS ⁴ /ATLAS ⁶	
High mass		CMS ³ /ATLAS ⁷	CMS ^{1,2}

2 jet topology with a lepton in a jet

Publications:

1.CMS-PAS-JME-09-001 2.CMS-PAS-EXO-09-002 3.CMS-PAS-EXO-09-008 4.CMS-PAS-TOP-09-009 5.ATL-PHYS-CONF-2008-008 6.CERN-OPEN-2008-20 7.ATLAS-PHYS-PUB-2009-081

E. Chabert & J. Sjölin

Top2010

Top2010

High-mass resonances: semi-leptonicSELECTIONRECONSTRUCTIONSENSITIVITY

Tagging of the muon top jet

E. Chabert & J. Sjölin

Top2010

"Boosted top"

32/37

Top2010

"Boosted top"

33/37

√s = 14 TeV/ L = 100 pb⁻¹

Final performance after tagging one hadronic and one leptonic top jet

Top2010

"Boosted top"

34/37

E. Chabert & J. Sjölin

Summary of sensitivity

Expected limits on $\sigma xBR(Z' \rightarrow t\bar{t})$

E. Chabert & J. Sjölin

Top2010

Perspectives

Center-of-mass energy:

Results presented @ 10/14 TeV. No public results yet @ 7 TeV

New developments:

- CMS: Top-tagging: cut windows depending on jet p_{T}
- ATLAS: scanning combinations of known variables for optimal top tagging
- CMS/ATLAS: Handle the transition region between non boosted and boosted

Activity on data:

Focus on data-driven estimation of backgrounds, fake rate (top-tagging)

Coverage of the channels:

- Semi-leptonic & fully-hadronic channels are covered
- Di-leptonic channel could extend the list
- A combination of the channels within the experiment might be envisaged

Extension of the searches:

- Focused on tresonances
- Can be extended to 1 top-tagged + X (higher energy & luminosity)

Top2010

- Both ATLAS & CMS experiment prepared a strategy to probe new physics with boosted top
- First approach is to look for <u>resonances</u> in the m_# spectrum
- Several techniques are used to <u>cover the full spectrum</u>
 From standard jet reconstruction to top-tagging technique
 From loose isolated lepton to lepton in a jet
- Data-driven methods to estimate backgrounds were developed
- L=1 fb⁻¹ @ 7 TeV might already reveals new phenomena
- A increase of energy will then open a new window on new physics where boosted top will play an important role