

Top Pair Spin Correlations at the Tevatron

Tim Head University of Manchester

TOP 2010 3rd June 2010

The University of Manchester

Thursday, 3 June 2010

Part 2 - Measurement Part 3 - Results

The Univers of Manchest

The Top Quark

$Mass = 173.1 \pm 1.3 \text{ GeV}$

Heaviest SM particle

100% decay to Wb

Lifetime \approx 5×10⁻²⁵ seconds

Decays before hadronising

Strong coupling to Higgs and new physics

MANCHE

Why Spin Correlation Is Interesting?

- Tests whole chain from production to decay.
- Only in top production can we see QCD correlating the spins during production.
 - Can not reliably predict this for b quarks which form hadrons!
- Predictions of QCD and EW theory aspects can be experimentally verified.
- Observing Spin Correlations would place an upper limit on top quark lifetime.

- SM cross section \approx 8pb, dominated by quark antiquark fusion.
- QCD dynamics cause top quark spins to be correlated.
- Can be modified by Z', KK gluons, ... decaying to tops.

MANCHESTER

Spin Correlations in Production

 Strength of correlation, A, depends on spin quantisation axis.

Spin Quantisation Axes

- To measure the direction in which a spin vector is pointing we need a quantisation axis.
- Three choices at the Tevatron: beamline, helicity and off-diagonal.

Tim Head, 3rd June 2010

The University of Mancheste

Beamline

- Use direction of one of the colliding hadrons in the top-antitop zero momentum frame.
- Simple to construct, optimal for top pairs produced at threshold.
- (almost) highest correlation, A=0.777 @NLO.

Bernreuther, Brandenburger, Si and Uwer et al., Nucl. Phys. B 690, 81 (2004)

The University of Mancheste

- Use direction of (anti)top quark in the top-antitop zero momentum frame to quantise (anti)top quark spin.
- Smaller correlation strength, A=-0.352 @NLO.

Bernreuther, Brandenburger, Si and Uwer et al., Nucl. Phys. B 690, 81 (2004)

Thursday, 3 June 2010

The University of Manchester

• Interpolates between beamline and helicity basis.

$$\tan \omega = \sqrt{1 - \beta^2} \tan \theta$$

- Gets the top pairs produced above threshold.
- Slightly higher correlation, A=0.782 @NLO.

Bernreuther, Brandenburger, Si and Uwer et al., Nucl. Phys. B 690, 81 (2004)

10

Tim Head, 3rd June 2010

Thursday, 3 June 2010

The University of Mancheste

- Decays before it hadronises
 ⇒ spin information preserved in decay products
- Decays to charged Higgs (spin 0)?
- MSSM might modify the Wtb vertex.

Tim Head, 3rd June 2010

Analysing the Top Spin

 Information about direction of top spin is passed on to its decay products.

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_i} = \frac{1}{2} \left(1 + \alpha_i \cdot \cos\theta_i \right)$$

Dower

Spin analysing power for lepton and down type quark $\alpha = 1$, for b quarks $\alpha = -0.41$.

Use lepton or down type quark!

MANCHES

The University of Manchestei

Putting it All Together

• To see the correlations look at combinations of decay products from top and anti top quark.

• This is a tough measurement to make!

Putting it All Together

• To see the correlations look at combinations of decay products from top and anti top quark.

• This is a tough measurement to make!

The University of Manchestei

Part I - Introduction Part 2 - Measurement Part 3 - Results

MANCHESTER

- Require two high pT jets.
- Advantage: Small backgrounds!
- Advantage: No ambiguities in finding down type objects.
- Disadvantage: Two neutrinos in the final state.

pr	roton q roton	Main Z ⁰	background e ⁺ e ⁻		
using up to 4.1fb ⁻¹					
	ee	eµ	μμ		

	ee	eµ	μμ
Background	3.4	24.3	5.4
Signal	11.5	140	8.3
Data	17	168	13

MANCHESTER

Dealing With Two Neutrinos

- Using sum of neutrino momenta \mathbb{Z}_T^x , \mathbb{Z}_T^y , assuming M_{top} and M_W the kinematics can be solved.
- The equations are quartic so one can get up to four solutions per event, additionally the jet assignment is unknown.
- Therefore up to eight solutions per event!

The Ur of Mar

Neutrino Weighting

- At DØ the "Neutrino weighting" technique is used.
- Instead test several assumptions for neutrino and antineutrino η.
- Weighted by agreement with missing transverse energy:

W

$$= \exp\left(-\frac{\left(\mathbb{E}_{T}^{x} - \nu_{x} - \bar{\nu}_{x}\right)^{2}}{\sigma^{2}}\right) \times \\ \exp\left(-\frac{\left(\mathbb{E}_{T}^{y} - \nu_{y} - \bar{\nu}_{y}\right)^{2}}{\sigma^{2}}\right)$$

Use weighted mean as estimator for $\cos\theta_1\cos\theta_2$

Thursday, 3 June 2010

Dealing With Two Neutrinos

- Alternative approach used at CDF.
- Likelihood fit for neutrino and b jet momenta.
- Solve jet-lepton assignment problem by choosing combination with largest likelihood.

$$\begin{split} \mathcal{L}\left(\vec{p}_{\nu},\vec{p}_{\bar{\nu}},E_{b}^{\mathrm{guess}},E_{\bar{b}}^{\mathrm{guess}}\right) &= P\left(p_{z}^{t\bar{t}}\right)P\left(p_{T}^{t\bar{t}}\right)P\left(M_{t\bar{t}}\right) \times \\ & \frac{1}{\sigma_{b}}\exp\left[-\frac{1}{2}\left\{\frac{E_{b}^{\mathrm{meas}}-E_{b}^{\mathrm{guess}}}{\sigma_{b}}\right\}^{2}\right] \times \frac{1}{\sigma_{\bar{b}}}\exp\left[-\frac{1}{2}\left\{\frac{E_{\bar{b}}^{\mathrm{meas}}-E_{\bar{b}}^{\mathrm{guess}}}{\sigma_{\bar{b}}}\right\}^{2}\right] \times \\ & \frac{1}{\sigma_{x}^{\mathrm{MET}}}\exp\left[-\frac{1}{2}\left\{\frac{\underline{\mathcal{E}}_{x}^{\mathrm{meas}}-\underline{\mathcal{E}}_{x}^{\mathrm{guess}}}{\sigma_{x}^{\mathrm{MET}}}\right\}^{2}\right] \times \frac{1}{\sigma_{y}^{\mathrm{MET}}}\exp\left[-\frac{1}{2}\left\{\frac{\underline{\mathcal{E}}_{y}^{\mathrm{meas}}-\underline{\mathcal{E}}_{y}^{\mathrm{guess}}}{\sigma_{y}^{\mathrm{MET}}}\right\}^{2}\right] \end{split}$$

MANCHESTER

1001 events of which 786 are signal.

q

- Advantage: High statistics!
- Disadvantage: Having to pick down type quark.

q

q

Event Reconstruction

- Pick jet closest to b jet in W boson rest frame as down type quark.
 - \approx 60% chance of getting it right.
- Reconstruction of kinematics not as difficult as in dilepton, there is only one neutrino.
- Kinematics are solved using a constrained χ² fitter.
- Measuring the top quark helicity fraction, but equivalent to a spin correlations measurement.

- As distributions are distorted by selection and acceptance cuts \Rightarrow template fits.
- Make template for backgrounds and different values of spin correlation strength.
- Fit several distributions simultaneously to take advantage of all the information.

Part I - Introduction Part 2 - Measurement Part 3 - Results

- Uses angles of the two leptons.
- Fit for fraction of no spin and SM spin contribution.

• Use Feldman-Cousins prescription for limit setting. Tim Head, 3rd June 2010

Results in Dilepton

- Using 2D templates for both lepton and b jet angles.
- Fit analytic functions to histograms and perform unbinned likelihood fit for C.

Tim Head, 3rd June 2010

MANCHESTER

The University of Manchester

Results in Dilepton Feldman-Cousins interval

- Using 2D templates for both lepton and b jet angles.
- Fit analytic functions to histograms and perform unbinned likelihood fit for C.

- Opposite helicity states dominate at low β .
- Use templates for same and opposite helicity states.
- Helicity fraction easily translated: $C = 2f_0 1$

Tim Head, 3rd June 2010

S.Willenbrock, Phys. Lett. B374, 169 (1996) 27

Thursday, 3 June 2010

Results in Lepton + Jets

- Opposite helicity states dominate at low β .
- Use templates for same and opposite helicity states.
- Helicity fraction easily translated: $C = 2f_0 1$ Tim Head, 3rd June 2010

MANCHESTER

Systematic Uncertainties

- Statistics, statistics, statistics.
- Largest systematic is \approx 0.2.
 - A factor of 2.5 smaller than statistical uncertainty of 0.5.
- Main uncertainties come from:
 - PDF set used for generation,
 - assumed top mass during reconstruction,
 - jet energy scale,
 - and signal and background modelling.

Tim Head, 3rd June 2010

MANCHESTER

Conclusions

- Top quarks are unique, we can use their decay products to analyse their spin.
- Three measurements since summer 2009!
 - Before only one Run I measurement with six events.
- Measurements so far compatible with SM.
- Tevatron has delivered 7fb⁻¹ by now, expect updates soon!
- Planning a combination of Tevatron results.

The University of Manchestel