Top Pair Spin Correlations at the Tevatron

Tim Head

University of Manchester

TOP 2010
$3^{\text {rd }}$ June 2010

Part I - Introduction
 Part 2 - Measurement Part 3 - Results

The Top Quark

Mass $=173.1 \pm 1.3 \mathrm{GeV}$
Heaviest SM particle

Strong coupling to Higgs and new physics

100\% decay to Wb

Lifetime \approx 5×10^{-25} seconds

Decays before hadronising

Why Spin Correlation Is Interesting?

- Tests whole chain from production to decay.
- Only in top production can we see QCD correlating the spins during production.
- Can not reliably predict this for b quarks which form hadrons!
- Predictions of QCD and EW theory aspects can be experimentally verified.
- Observing Spin Correlations would place an upper limit on top quark lifetime.

Top Production

- SM cross section $\approx 8 \mathrm{pb}$, dominated by quark antiquark fusion.
- QCD dynamics cause top quark spins to be correlated.
- Can be modified by Z', KK gluons, ... decaying to tops.

Spin Correlations in Production

- Strength of correlation, \boldsymbol{A}, depends on spin quantisation axis.

Spin Quantisation Axes

- To measure the direction in which a spin vector is pointing we need a quantisation axis.
- Three choices at the Tevatron: beamline, helicity and off-diagonal.

Beamline

- Use direction of one of the colliding hadrons in the top-antitop zero momentum frame.
- Simple to construct, optimal for top pairs produced at threshold.
- (almost) highest correlation, $\mathrm{A}=0.777$ @nLo.

Helicity

- Use direction of (anti)top quark in the top-antitop zero momentum frame to quantise (anti)top quark spin.
- Smaller correlation strength, $A=-0.352$ @NLO.

Bernreuther, Brandenburger, Si and Uwer et al., Nucl. Phys. B 690, 8 I (2004)

Off-Diagonal

- Interpolates between beamline and helicity basis.

$$
\tan \omega=\sqrt{1-\beta^{2}} \tan \theta
$$

- Gets the top pairs produced above threshold.
- Slightly higher correlation, $\mathrm{A}=0.782$ @NLO.

Bernreuther, Brandenburger, Si and Uwer et al., Nucl. Phys. B 690, 8 I (2004)

Top Decay l, q W^{+}
 v, \bar{q},
 b

- Decays before it hadronises
\Rightarrow spin information preserved in decay products
- Decays to charged Higgs (spin 0)?
- MSSM might modify the Wtb vertex.

Analysing the Top Spin

- Information about direction of top spin is passed on to its decay products.

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta_{i}}=\frac{1}{2}\left(1+\alpha_{i} \cdot \cos \theta_{i}\right)
$$

Spin analysing power for lepton and down type quark $\alpha=I$, for b quarks $\alpha=-0.4 \mathrm{l}$.

Use lepton or down type quark!

Putting it All Together
 D \varnothing Run II preliminary

- To see the correlations look at combinations of decay products from top and anti top quark.

Putting it All Together

 D \varnothing Run II preliminary

- To see the correlations look at combinations of decay products from top and anti top quark.

Part I - Introduction Part 2 - Measurement Part 3 - Results

Dilepton

Signal

- Require two high PT jets.
- Advantage: Small backgrounds!
- Advantage: No ambiguities in finding down type objects.
- Disadvantage:Two neutrinos in the final state.
Tim Head, $3^{\text {rd }}$ June 2010

Dealing With Two Neutrinos

- Using sum of neutrino momenta $\mathbb{E}_{T}^{x}, \mathbb{E}_{T}^{y}$, assuming $M_{\text {top }}$ and Mw the kinematics can be solved.
- The equations are quartic so one can get up to four solutions per event, additionally the jet assignment is unknown.
- Therefore up to eight solutions per event!

Neutrino Weighting

- At DØ the "Neutrino weighting" technique is used.
- Do not use E_{T}^{x} and E_{T}^{y} to solve kinematics.
- Instead test several assumptions for neutrino and antineutrino η.
- Weighted by agreement with missing transverse energy:

$$
\begin{array}{r}
w=\exp \left(-\frac{\left(\not \mathbb{E}_{T}^{x}-\nu_{x}-\bar{\nu}_{x}\right)^{2}}{\sigma^{2}}\right) \times \\
\exp \left(-\frac{\left(\not \mathbb{E}_{T}^{y}-\nu_{y}-\bar{\nu}_{y}\right)^{2}}{\sigma^{2}}\right)
\end{array}
$$

Use weighted mean as estimator for $\cos \theta_{1} \cos \theta_{2}$

Dealing With Two Neutrinos

- Alternative approach used at CDF.
- Likelihood fit for neutrino and b jet momenta.
- Solve jet-lepton assignment problem by choosing combination with largest likelihood.

$$
\begin{aligned}
& \mathcal{L}\left(\vec{p}_{v}, \vec{p}_{\bar{p}}, E_{b}^{\text {guess }}, E_{b}^{\text {guess }}\right)=P\left(p_{z}^{t i t}\right) P\left(p_{T}^{t}\right) P\left(M_{t t}\right) \times \\
& \frac{1}{\sigma_{b}} \exp \left[-\frac{1}{2}\left\{\frac{E_{b}^{\text {meas }}-E_{b}^{\text {guess }}}{\sigma_{b}}\right\}^{2}\right] \times \frac{1}{\sigma_{b}} \exp \left[-\frac{1}{2}\left\{\frac{E_{b}^{\text {meas }}-E_{b}^{\text {guess }}}{\sigma_{b}}\right\}^{2}\right] \times \\
& \frac{1}{\sigma_{x}^{\mathrm{MET}}} \exp \left[-\frac{1}{2}\left\{\frac{\underline{\underline{x}}_{x}^{\text {meas }}-\mathscr{E}_{x}^{\text {guess }}}{\sigma_{x}^{\sigma_{x}^{\mathrm{ETT}}}}\right\}^{2}\right] \times \frac{1}{\sigma_{y}^{\mathrm{MET}}} \exp \left[-\frac{1}{2}\left\{\frac{E_{y}^{\text {meas }}-E_{y}^{\text {guess }}}{\sigma_{y}^{\mathrm{MET}}}\right\}^{2}\right]
\end{aligned}
$$

Lepton plus Jets

- I00I events of which 786 are signal.
- Advantage: High statistics!
- Disadvantage: Having to pick down type quark.
- Pick jet closest to bjet in W boson rest frame as down type quark.
- $\approx 60 \%$ chance of getting it right.
- Reconstruction of kinematics not as difficult as in dilepton, there is only one neutrino.
- Kinematics are solved using a constrained X^{2} fitter.
- Measuring the top quark helicity fraction, but equivalent to a spin correlations measurement.

Same Helicity Basis Template

Same Helicity Basis Template

Template Fits

- As distributions are distorted by selection and acceptance cuts \Rightarrow template fits.
- Make template for backgrounds and different values of spin correlation strength.
- Fit several distributions simultaneously to take advantage of all the information.

Part I - Introduction Part 2 - Measurement Part 3 - Results

Results in Dilepton

- Uses angles of the two leptons.
- Fit for fraction of no spin and SM spin contribution.
- Use Feldman-Cousins prescription for limit setting.

Results in Dilepton

- Using 2D templates for both lepton and b jet angles.
- Fit analytic functions to histograms and perform unbinned likelihood fit for C .

$$
C=0.32_{-0.78}^{+0.55}(\text { stat }+ \text { syst })
$$

SM off-diagonal basis $\mathrm{C}=0.782$

- Using 2D templates for both lepton and b jet angles.
- Fit analytic functions to histograms and perform unbinned likelihood fit for C .

Results in Lepton + Jets

$$
f_{0}=\frac{\sigma\left(\bar{t}_{R} t_{L}\right)+\sigma\left(\bar{t}_{L} t_{R}\right)}{\sigma\left(\bar{t}_{R} t_{R}+\bar{t}_{L} t_{L}+\bar{t}_{R} t_{L}+\bar{t}_{L} t_{R}\right)}
$$

- Opposite helicity states dominate at low β.
- Use templates for same and opposite helicity states.
- Helicity fraction easily translated: $C=2 f_{0}-1$

Results in Lepton + Jets

Helicity Angle Bilinear $\operatorname{Cos}\left(\theta_{1}\right)^{*} \operatorname{Cos}\left(\theta_{\mathrm{d}}\right)$, Fit Result

$$
\begin{aligned}
& f_{0}=0.80 \pm 0.25 \text { (stat) } \pm 0.08 \text { (syst) } \\
& C=0.60 \pm 0.50 \text { (stat) } \pm 0.16 \text { (syst) }
\end{aligned}
$$

SM helicity basis $C=0.4$

- Opposite helicity states dominate at low β.
- Use templates for same and opposite helicity states.
- Helicity fraction easily translated: $C=2 f_{0}-1$

Systematic Uncertainties

- Statistics, statistics, statistics.
- Largest systematic is ≈ 0.2.
- A factor of 2.5 smaller than statistical uncertainty of 0.5 .
- Main uncertainties come from:
- PDF set used for generation,
- assumed top mass during reconstruction,
- jet energy scale,
- and signal and background modelling.

Conclusions

- Top quarks are unique, we can use their decay products to analyse their spin.
- Three measurements since summer 2009!
- Before only one Run I measurement with six events.
- Measurements so far compatible with SM.
- Tevatron has delivered $7 \mathrm{fb}^{-1}$ by now, expect updates soon!
- Planning a combination of Tevatron results.

