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qq̄ → tt̄ Spin Structure

Incoming q, q̄ must have opposite helicity to couple to s-channel gluon.

Off-diagonal basis: tanΩ = (1 − β2) tan θ
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Reverse all spins for qLq̄R initial state.
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qq̄ → tt̄ Spin Structure: Limits

Off-diagonal basis: tanΩ = (1 − β2) tan θ
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Beamline basis Helicity basis

Off-diagonal basis smoothly connects these two extremes.
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gg → tt̄ Spin Structure

Opposite-helicity gluons dominate when βγ sin θ > 1

(

β2 >
1

2 − cos2 θ

)

:

same correlations as qq̄ → tt̄.

tanΩ = (1 − β2) tan θ
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Maximum correlation in off-diagonal basis.
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gg → tt̄ Spin Structure

Like-helicity gluons dominate when βγ sin θ < 1:

maximum correlation in helicity basis (for all β) for these events.
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For gLgL → tt̄, flip the spins on both the gluons and the top quarks.
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Polarized Top Decay
(LO: Jeżabek and Kühn, Phys. Lett. B329, 317 (1994);
NLO: Brandenburg, Si, and Uwer, Phys. Lett. B539, 235 (2002).)

b

l+ or d
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s

θbθl

θν
t

Define angles in top rest frame:
1

Γ

dΓ

d(cos θi)
=

1 + αi cos θi

2

Note: Coefficients for b, u, and d̄ are for partons; jets differ slightly at NLO.
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Polarized Top Decay (cont.)

For a complete event,
pp̄ → tt̄ → 6-body state

we have the distribution

1

σ

d2σ

d(cos θi)d(cos θ̄ı̄)
=

1

4

[

1 +
N‖−N×

N‖+N×
αiᾱı̄ cos θi cos θ̄ı̄

]

.

Dependence on production:

N‖ is the number of like spin tt̄ events

N× is the number of unlike spin tt̄ events

Dependence on decay:

θi, αi: from t side of event

θ̄ı̄, ᾱı̄: from t̄ side of event

See Bernreuther, Brandenburg, Si, and Uwer, Phys. Rev. Lett. 87, 242002
(2001) for NLO QCD corrections to this distribution.
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Theoretical Shape of the Distribution
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Tevatron Strategies for Observing Spin Correlations

• Choose spin axis to make |N‖−N×| as large as possible.

• Choose decay products with large analyzing powers (i.e. charged lepton
or d-type quark).

• Dilepton or lepton+jets modes most promising.

Dilepton mode:

+ Maximum possible analyzing power.

− Low statistics.

− Two neutrinos: ⇒ t, t̄ rest frames poorly determined.

Lepton + jets:

+ Higher statistics.

+ Only 1 neutrino: t, t̄ rest frames better known.

− Loss of analyzing power since d-type quark selected probabilistically.
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Spin Basis Optimization for gg → tt̄

Write amplitudes using arbitrary spin axis orientation.

t
g g

t
(recoil direction)

ŝ ξ

Top quark rest frame

g
g

t

t

θ

zero momentum frame

Parke and Shadmi, Phys. Lett. B387 (1996), 199.
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Spin Basis Optimization for gg → tt̄ (continued)

Like-spin fraction is

f(θ, β) =
γ−2(1 + β2 cos2 ξ) + β2 sin2 θ(γ−1 sin θ cos ξ − cos θ sin ξ)2

(1 − β4) + β2 sin2 θ(2 − β2 sin2 θ)
.

Straightforward analytic exercise to find the extrema of this fraction (see Uwer,
Phys. Lett. B609, 271 (2005) for numerical extremization).
Extrema occur when ξ satisfies

tan 2ξ{same, oppo} =
2γ−1 sin3 θ cos θ

sin2 θ cos2 θ − γ−2 sin4 θ − γ−2
;

they are related as follows: ξoppo = ξsame + π/2.

Learn the following:

• Best spin basis maximizes ↑↑ + ↓↓ fraction when βγ sin θ < 1 (like-helicity
gluons dominate this region).

• Best spin basis maximizes ↑↓ + ↓↑ fraction when βγ sin θ > 1 (opposite-
helicity gluons dominate this region).
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Spin Basis Optimization for gg → tt̄ (continued)
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Spin Basis Optimization for gg → tt̄ (continued)

• If βγ sin θ < 1, spin basis that maximizes ↑↑ + ↓↓ fraction is very close
to the helicity basis (like-helicity gluons dominate this region).

• If βγ sin θ > 1, spin basis that maximizes ↑↓ + ↓↑ fraction is very close
to the off-diagonal basis (opposite-helicity gluons dominate this region).
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Separating Gluons

• Plenty of tt̄ production at LHC energies (about 106 tt̄ pairs per fb−1 at
full beam energy; even at reduced energy get 104 to 105 pairs per fb−1).

• Can implement significant cuts before statistical uncertainties rival sys-
tematic uncertainties.

⇒ Focus on γβ sin θ < 1 region:

⋆ Like-helicity gluons to like-helicity tt̄ pairs dominates these events.

⋆ Spin correlations not masked by large boosts.

⇒ In principle, could employ a Tevatron-style analysis.

⋆ Another option exists, however.
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Comparison of Correlated and Uncorrelated Tops

”Uncorrelated” = spherical top quark decays (in their rest frames)

+ normal W decays.

Examine the ratio:

S ≡
(|A|2RR + |A|2LL)corr

(|A|2RR + |A|2LL)uncorr

=

[

1 − β2

1 + β2

][

(1 + β2) + (1 − β2)cēµ − 2β2ctēct̄µ

(1 − βctē)(1 − βct̄µ)

]

∼ 1 + cēµ when β → 0.

⇒ Examine ∆φ, ∆η, and ∆R for the two charged leptons.

• Find almost no difference in (∆η)corr and (∆η)uncorr.

• Modest difference in (∆R)corr and (∆R)uncorr.

• Significant difference in (∆φ)corr and (∆φ)uncorr!
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Di-lepton azimuthal opening angle (∆φ distribution)

Restrict βγ sin θ to small values (like-helicity gluons) by limiting mtt̄.

Advantage: ∆φ invariant under longitudinal boosts: measure in lab frame!

Disadvantage: Two ν’s make mtt̄ unobservable.
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∆φ distribution at NLO
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∆φSolid lines: leading-order prediciton.

Dashed lines: next-to-leading order in strong and weak gauge couplings.

Figure from Bernreuther and Si, arXiv:1003.3926v1 [hep-ph]
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Di-lepton Event Reconstruction

8 unknowns: (Eν , νx, νy, νz) and (Eν̄ , ν̄x, ν̄y, ν̄z).

6 linear constraint equations:

• 2 from missing ET .

• 2 top mass constraints.

• 2 W mass constraints.

2 quadratic constraint equations:

• ν and ν̄ mass constraints.
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Di-lepton Event Reconstruction

Strategy:

• Pick a b-jet/lepton pairing.

• Solve 6 × 8 system for 2-parameter family of solutions.
⇒ Insert into quadratic constraints.

• Combine 2 quadratic equations with 2 unknowns into single quartic equa-
tion.

⋆ Use complex root-finder to extract 4 solutions to quartic equation.

⋆ Discard physically unacceptable solutions.

• Repeat process for other possible b-jet/lepton pairing.

⇒ Up to 8 viable solutions result (8 possible values of mtt̄).

Simplest option: form the (näıve) unweighted average of these values for use
in place of (unknown) true value of mtt̄.
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Di-lepton azimuthal opening angle (∆φ distribution)

• Use of 〈mtt̄〉 introduces systematic depletion of events near ∆φ = π.

• Significant discriminating power remains, however!

⋆ Need to understand systematics, NLO, very well.

⋆ Does a better substitute for mtt̄ exist?
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Di-lepton azimuthal opening angle (∆φ distribution)

• ∆φ distribution shows almost no effect for the Tevatron!

⋆ Consequence of qq̄ vs. gg dominance in initial state.

Observation of significant ∆φ correlations at LHC= evidence for gg production.
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Correlations using lepton+jets mode

Advantage: single neutrino is over-constrained.

⇒ Can do a good job of locating the ZMF/calculating mtt̄.

Disadvantage: can’t tell with 100% certainty which W -decay jet corresponds
to the d-type quark.

⇒ Use best informed guess:

• Choose jet which smallest spatial separation from b jet in W rest
frame [Mahlon and Parke, Phys. Rev. D53, 4886 (1996)].

• Equivalent to using jet with lowest energy in t rest frame
[Jeżabek, Nucl. Phys. (Proc. Suppl.) B37, 197 (1994); Shelton, Phys. Rev.

D79, 014032 (2009)].

• Somewhat reduced correlation (α ∼ 0.5), but still potentially useful.
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Correlations using lepton+jets mode: cos θēd in ZMF

Half of area between the curves = 0.07 (compare to 0.11 for ∆φ distributions)

• Reduced sensitivity vs. ∆φ offset by higher statistics?

• Different systematics, so worth investigating further!
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The future: what can be done with O(106) tt̄ pairs?

Precision measurements/more tests of the Standard Model

• Probe top, gluon couplings.

⋆ Three diagrams for gg → tt̄ are related in a specific way due to
gauge-invariance of QCD.

⋆ All three contribute to the predicted spin correlations.

⇒ Test of spin correlations = test of QCD gauge invariance.

• Probe tbW vertex.

⋆ Direct test of V −A structure for quarks.

• Look for non-S.M. couplings, particles.

K.K. gluons?

“Extra” Higgses?

“Extra” Z bosons?
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Machine energy dependence
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Summary and Conclusions

• The Tevatron and LHC probe two different aspects of spin correlations in
top quark pair production and decay.

• Tevatron production is mostly qq̄ → tt̄

1. Spin correlations are largest in the off-diagonal spin basis (opposite
spin top pairs dominate)

2. Try to extract joint decay angular distribution in t,t̄ rest frames.

3. Measurement hampered by low statistics.
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Summary and Conclusions

• LHC production is mostly gg → tt̄

1. Rich spin structure in gg → tt̄

2. Opposite-helicity gluons: maximize correlations with off-diagonal
basis (same as qq̄ → tt̄).

3. Like-helicity gluons: maximize correlations with helicity basis (like-
helicity top pairs dominate).

4. Restrict mtt̄ to enhance contributions from like- or opposite-
helicity gluons.

→ Like helicity: γβ sin θ < 1

→ Opposite helicity: γβ sin θ > 1

5. Promising variables for observing correlations:

→ Di-lepton mode: ∆φēµ

“Easy” lab-frame measurement!

→ Lepton+jets mode: cos θēd

41



Summary and Conclusions

The story of top pair spin correlations has only just begun.

• Tevatron on verge of unambiguously seeing the correlations for the first
time (but statistics-limited).

• The LHC (even running at 7 TeV) ought to have sufficient statistics to
firmly establish a spin-correlation effect.

⋆ Observation of spin correlations ⇒ upper limit on top quark lifetime.

⋆ Observation of correlation effect in ∆φ distribution provides evidence
of top pair production via gluon fusion.

With millions of tt̄ events on the horizon, precision (%-level) measurements of
correlation parameters will be possible.
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