

THEORY STATUS FOR SINGLE-TOP CROSS SECTIONS (S AND T CHANNEL)

Rikkert Frederix University of Zurich

3rd International Workshop on Top Quark Physics, May 31 - June 4, 2010, Bruges, Belgium

SINGLE TOP PRODUCTION

- Contrary to top pair production, single tops are not produced via the strong force, but by the weak force
- * There are three distinct* production mechanisms, named after the virtuality of the W boson
 - s channel
 - % t channel
 - W-associated single-top production
 - * There are interferences between the three channels at (N)NLO, but they are color suppressed and do not hamper the separation in (most) phenomenological studies

SINGLE TOP PRODUCTION

- Contrary to top pair production, single tops are not produced via the strong force, but by the weak force
- * There are three distinct* production mechanisms, named after the virtuality of the W boson
 - s channel
 - % t channel

Chris White's talk

W-associated single-top production

* There are interferences between the three channels at (N)NLO, but they are color suppressed and do not hamper the separation in (most) phenomenological studies

SINGLE TOP IN THE SM

t channel

* relative t-channel enhancement at LHC # Also enhancement from b quark PDF % Proportional to $|V_{tb}|^2$

Cross section		
Tevatron	2.0 pb	
LHC 14 TeV	240 pb	

SINGLE TOP AND BSM

t channel

MOTIVATION FOR NLO

Because of the small cross section and the high backgrounds, experimental analyses use multi-variance techniques based on using as much (kinematic) information as possible

These techniques are sensitive to details of the theory predictions

Need high precision predictions, which go beyond leading order

BEYOND LEADING ORDER

(UNIVERSIA		RICENSIS
	E		Ţ

Single top	s channel	t channel (5-Flavor Scheme)	t channel (4-FS)
NLO total rate	Smith & Willenbrock (1996)	Bordes & Van Eijk (1995); Stelzer, Sullivan & Willenbrock (1997)	Campbell, RF, Maltoni,
NLO differential	Harris, Laenen, Pbaf, Sullivan e ³ Weinzierl (2002); Sullivan (ZTOP, 2004)		<i>Tramontano</i> (MCFM, <i>2009</i>)
NLO including top quark decay	Pittau (1996) Campbell, Ellis & Tramontano (MCFM, 2004) Cao, Schwienworst & Yuan + Benitz & Brock (2005)		×
approx. higher orders (total rate only)	Kidonakis (2006, 2010)		×
NLO matched to parton shower	Frixione, Laenen, Motylinski & Webber(MC@NLO, 2006); Alioli, Nason, Oleari & Re (POWHEG, 2009)		×
NLO electroweak corrections	×	Beccaria, Carloni Calame, Mirabella, Piccinini, Renard e3 Verzegnassi (2008)	×

W

S-CHANNEL PROCESS

** NLO estimate of the theory uncertainty:

- * top mass as central scale with independent variation of renormalization and factorization scales by a factor 2;
- # 44 eigenvector CTEQ6.6 PDF's;
- # top mass: 172 ± 1.7 GeV;

$\sigma_{\rm s-ch}^{\rm NLO}(t+\bar{t})$		scale	PDF	m_t	
Tevatron Run II	0.858	$+0.023 \\ -0.021$	$+0.015 \\ -0.016$	$+0.018 \\ -0.017$	pb
LHC (7 TeV)	4.02	$^{+0.12}_{-0.09}$	$^{+0.15}_{-0.16}$	$^{+0.16}_{-0.15}$	pb
LHC (14 TeV)	10.58	$+0.34 \\ -0.23$	$+0.34 \\ -0.34$	$^{+0.40}_{-0.35}$	pb

- Preferred tools for event simulation are MC@NLO and/or POWHEG:
 - ** Narrow-width approximation for the top quark, keeping spin correlations; but spin correlation and decay at LO

Completely general CKM matrix Rikkert Frederix, University of Zurich

T-CHANNEL PROCESS

For the t-channel process the situation is more complicated due to the initial state b quark

The LO + parton shower greatly underestimates the importance of the spectator b

q q q q w t t g \overline{b}

leading order

(contribution to) NLO

With NLO, spectator b spectrum is described only at first non-zero order (thus, in fact, LO)

"EompHep-SingleTop NLO" FOR T-CHANNEL

At LO, no spectator b quark

- At NLO, effects related to the spectator b only enter at this order and not well described by corresponding MC implementations
- → separate regions according to $p_T(b)$ and use LO 5F (2 → 2)+ shower below and LO 4F (2 → 3) above

Ad hoc matching well motivated, but theoretically unappealing

MC@NLO & POWHEG

Consistently implemented in the MC@NLO and POWHEG frameworks

* No ad hoc cut needed to get harder tail for the spectator b

MC@NLO & POWHEG II

Frixione, Laenen, Motylinski & Webber (2006); Alioli, Nason, Oleari & Re (2009)

However...

- Sizable differences between MC@NLO and POWHEG (with Herwig shower) for spectator b in shape and normalization
- * No real surprise, because the b quarks are treated massless -> low p_T region not well described

INITIAL STATE B QUARK

"Standard" way of looking at this process

leading order

5-flavor scheme

4-flavor

scheme

(contribution to) NLO

But there is an equivalent description with no bottom PDF and an explicit gluon splitting to b quark pairs


```
(part of) leading order
```


THE TWO SCHEMES

5-flavor scheme: " $2 \rightarrow 2$ "

At all orders both description should agree; otherwise, differ by:

- * evolution of logarithms in PDF: they are resummed
- * available phase space
- ** approximation by large logarithm

FOUR-FLAVOR SCHEME

Campbell, RF, Maltoni, Tramontano (2009)

- We the 4-flavor (2 → 3) process as the Born and calculate NLO
 - Much harder calculation due to extra mass and extra parton

- Spectator b for the first time at NLO
- Compare to 5F (2 → 2) to asses logarithms and applicability
- Process implemented in the MCFM-v5.7 parton-level NLO code

** Starting point for future NLO+PS beginning at $(2 \rightarrow 3)$

PDFS

- For the 5F (2 → 2) scheme, use regular PDF
- Solution For 4F (2 → 3) calculation, PDF's need special treatment for consistency
 - ** the b quark should not enter the evolution of the strong coupling or the PDF: MRST2004FF4
 - * could also use a 5F PDF and pass to the 4F scheme using transition rules by *Cacciari et al., JHEP05, 007 (1998)*
- We use second option: CTEQ6.6 PDF set for both

SCALE DEPENDENCE

Both schemes much improved from LO

[∞] 5F (2 → 2) only mildly sensitive to scales at NLO (use m_t in what follows)

- % 4F (2 → 3) expected to be worse, but isn't much
- # Hardly a region of overlap between the two
- ^{**} 4F (2 → 3) prefers smaller scales than m_t , particularly at the Tevatron

SCALE DEPENDENCE 2 -

- Due to the near-factorization between the heavy and light quark lines we can vary the corresponding scales independently
 - \circledast Expect smaller scale for heavy line due to $g \to bb$ splitting
- * Tevatron, LHC is similar
- Stronger dependence on heavy line, as expected
- Preference for scales smaller than m_t
- * Choose central values: $\mu_L = m_t/2, \ \mu_H = m_t/4$

TOTAL RATES AND THEORY UNCERTAINTIES

- Stimate of the theory uncertainty:
 - * independent variation of renormalization and factorization scales by a factor 2
 - # 44 eigenvector CTEQ6.6 PDF's
 - ✤ Top mass: 172 ± 1.7 GeV
 - ✤ Bottom mass: 4.5 ± 0.2 GeV

$\sigma_{\rm t-ch}^{\rm NLO}(t+\bar{t})$	$2 \rightarrow 2 \text{ (pb)}$	$2 \rightarrow 3 \text{ (pb)}$
Tevatron Run II	$1.96 \begin{array}{c} +0.05 \\ -0.01 \end{array} \begin{array}{c} +0.20 \\ -0.06 \end{array} \begin{array}{c} +0.06 \\ -0.06 \end{array} \begin{array}{c} +0.05 \\ -0.05 \end{array}$	$1.87 \begin{array}{c} +0.16 \\ -0.21 \end{array} \begin{array}{c} +0.18 \\ -0.06 \end{array} \begin{array}{c} +0.04 \\ -0.06 \end{array} \begin{array}{c} +0.04 \\ -0.04 \end{array}$
LHC (7 TeV)	$62.6 \begin{array}{cccccccccccccccccccccccccccccccccccc$	$59.4 \begin{array}{ccccccccc} +2.1 & +1.4 & +1.0 & +1.3 \\ -3.4 & -1.4 & -1.0 & -1.2 \end{array}$
LHC (14 TeV)	$244 \begin{array}{c} +5 \\ -4 \end{array} \begin{array}{c} +5 \\ -6 \end{array} \begin{array}{c} +3 \\ -3 \end{array} \begin{array}{c} +4 \\ -4 \end{array}$	$234 \begin{array}{c} +7 \\ -9 \end{array} \begin{array}{c} +5 \\ -5 \end{array} \begin{array}{c} +3 \\ -3 \end{array} \begin{array}{c} +4 \\ -4 \end{array}$
Fac. & Ren.	scale top mass	b mass
Rikkert Frederix, University of	Zurich PDF	19

TOP QUARK DISTRIBUTIONS

Jet defined by: pT>15 GeV, $\Delta R > 0.7$

- Some differences, but typically of the order of ~10% in the regions where the cross section is large
- Shapes are very similar to LO predictions (not shown)

4-FS vs 5-FS

- Calculation in the 4-flavor scheme is well under control: scale dependence is mild
- * Total rate in agreement with the 5-Flavor calculation (in particular at the Tevatron)
 - * "Large logarithms" which are resummed in the PDF are maybe not so large after all... Should be confirmed in other processes as well
- Also shapes for top and jet distributions are similar
- Improvement: spectator b distributions are now at NLO including b mass effects, see next slides...

IMPROVEMENT IN 2 -

- When the b quark is **initial state**: treat it as a **massless** quark as usual
- When the b quark is **finial state**: treat it as a **massive** quark

BOTTOM QUARK

Solution Solution Solution The Same Shape as the 2 → 3 at LO
When final state is the 2 → 3 at LO

- Solid: 2 \rightarrow 3 at NLO: first NLO prediction for these observables
- \ll More forward and softer in 2 \rightarrow 3, particularly at the Tevatron
- % Mild deviations up to ~ 20%

BOTTOM QUARK

Solution Solution Solution The Same Shape as the 2 → 3 at LO
When final state is the 2 → 3 at LO

Solid: 2 \rightarrow 3 at NLO: first NLO prediction for these observables

- \ll More forward and softer in 2 \rightarrow 3, particularly at the Tevatron
- % Mild deviations up to ~ 20%

In fact: $2 \rightarrow 3$ at LO does a pretty good job (for shapes)! Rikkert Frederix, University of Zurich

MORE BOTTOMS IN 4F

- [∞] However, there are large differences between 5F (2 → 2) and 4F (2 → 3) schemes for more exclusive quantities in the spectator b quark
 - ^{**} Event though b quarks in the 4F (2 → 3) scheme are more forward and softer, we expect to see more b's than in the 5F (2 → 2)
 - In 5F (2 → 2) only a subset of real emission diagrams have a final state b quark
 - Define "acceptance" as the ratio of events that have a central, hard b over inclusive cross section:

 $\sigma(|\eta(b)| < 2.5, p_T(b) > 20 \text{ GeV})$

ACCEPTANCE

- [∞] Very large scale
 dependence for 5F (2 → 2),
 → effectively a LO quantity
- ≈ NLO 4F (2 → 3) much stabler
- Striking difference at the Tevatron!

CONCLUSIONS

- For s-channel events,
 - MC@NLO and/or POWHEG are the preferred event generators
- For t-channel events, the situation is more subtle:
 - * MC@NLO and POWHEG give a good description of the process:
 - Consistent matching between NLO and parton shower
 - However, the distributions for the spectator b quark show differences -> sizable uncertainty
 - * New NLO computation in the 4-flavor scheme predicts the spectator b spectrum for the first time at NLO including mass effects
 - ≪ Corrections compared to 4-flavor LO (2 → 3) are mild for shapes.
 - * "Final" solution would be the NLO 4-flavor calculation matched to a parton shower