Status of $t\bar{t}$ cross section predictions

Sven-Olaf Moch

Sven-Olaf.Moch@desy.de

DESY, Zeuthen

TOP 2010 - 3rd International Workshop on Top Quark Physics, Brugge, May 31, 2010

Perturbative QCD at colliders

- Hard hadron-hadron scattering
 - constituent partons from each incoming hadron interact at short distance (large momentum transfer Q^2)

- QCD factorization at scale μ
 - separate sensitivity to dynamics from different scales

$$\sigma_{pp \to t\bar{t}X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij \to t\bar{t}X} \left(\alpha_s(\mu^2), Q^2, \mu^2 \right)$$

• subprocess cross section $\hat{\sigma}_{ij \rightarrow t\bar{t}X}$ for parton types *i*, *j*

Hard scattering cross section

- Standard approach to uncertainties in theoretical predictions
 - variation of factorization scale μ : $\frac{d}{d \ln \mu^2} \sigma_{pp \to X} = \mathcal{O}(\alpha_s^{l+1})$

$$\sigma_{pp \to t\bar{t}X} = \sum_{ijk} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij \to t\bar{t}} \left(\alpha_s(\mu^2), Q^2, \mu^2 \right)$$

- Parton cross section $\hat{\sigma}_{ij \rightarrow t\bar{t}}$ calculable pertubatively in powers of α_s
 - constituent partons from incoming protons interact at short distances of order O(1/Q)
- Parton luminosity $f_i \otimes f_j$
 - proton: very complicated multi-particle bound state
 - colliders: wide-band beams of quarks and gluons

Parton luminosity at LHC

- LHC will run at 7 TeV until end of 2011 years, up to 1 fb^{-1}
- $t\bar{t}$ cross section is $\simeq 1/4$ rate with respect to run at 14 TeV
 - Iarger PDF uncertainties
- Parton kinematics restricted to larger effective $\langle x \rangle = M/\sqrt{S}$
 - 100 GeV physics: small-x, sea partons
 - TeV scales: large-x
- Limited discovery reach
 - less phase space available for heavy mass states
 - use 7 TeV for accurate SM benchmarking

Top quark production

Leading order Feynman diagrams

- NLO in QCD Nason, Dawson, Ellis '88; Beenakker, Smith, van Neerven '89; Mangano, Nason, Ridolfi '92; Bernreuther, Brandenburg, Si, Uwer '04; Mitov, Czakon '08; ...
 - accurate to $\mathcal{O}(15\%)$ at LHC

Top quark production

Leading order Feynman diagrams

- NLO in QCD Nason, Dawson, Ellis '88; Beenakker, Smith, van Neerven '89; Mangano, Nason, Ridolfi '92; Bernreuther, Brandenburg, Si, Uwer '04; Mitov, Czakon '08; ...
 - accurate to $\mathcal{O}(15\%)$ at LHC

Challenge

- Improve theory precdictions and reduce theoretical uncertainty
 - hard scattering cross section $\hat{\sigma}_{ij \rightarrow t\bar{t}}$
 - parton luminosity $f_i\otimes f_j$

Recent theory activities

- General structure of massive QCD amplitudes
 - relate massive to massless amplitudes in limit $m \rightarrow 0$ Mitov, S.M. '06
 - two-loop virtual corrections to $q\bar{q} \rightarrow t\bar{t}$ and $gg \rightarrow t\bar{t}$
 - \blacksquare small-mass limit $m^2 \ll s, t, u$ Czakon, Mitov, S.M. '07
 - **complete IR singularities Ferroglia**, Neubert, Pecjak, Yang '09
- Exact virtual amplitudes
 - one-loop squared terms (NLO × NLO)
 Anastasiou, Mert Aybat '08; Kniehl, Merebashvili, Körner, Rogal '08
 - two-loop virtual corrections for $q\bar{q} \rightarrow t\bar{t}$ (analytic, n_f -terms) Bonciani, Ferroglia, Gehrmann, Maitre, Studerus '08; (analytic, two-loop planar) Bonciani, Ferroglia, Gehrmann, Studerus '09; (numerical result) Czakon '08
- Complete NLO corrections to $t\bar{t}$ in association with jets

 \rightarrow talk by Worek

- $t\bar{t} + 1$ jet at NLO Dittmaier, Uwer, Weinzierl '07-'08; Melnikov, Schulze '10
- $t\bar{t} + 2$ jets at NLO Bevilacqua, Czakon, Papadopoulos, Worek '10

Recent theory activities (cont'd)

- Threshold resummation
 - updates of cross section predictions based on resummation
 S.M., Uwer '08; Cacciari, Frixione, Mangano, Nason, Ridolfi '08; Kidonakis, Vogt '08;
 Beneke, Czakon, Falgari, Mitov, Schwinn '09;
 Ahrens, Ferroglia, Neubert, Pecjak, Yang '10
 - coulomb corrections

Hagiwara, Sumino, Yokoya '08; Kiyo, Kühn, S.M., Steinhauser, Uwer '08

- Definition of mass parameter Hoang, Jain, Scimemi, Stewart '08
- Parton luminosity

 \rightarrow talk by Guffanti

- precision PDFs for LHC (NNLO global analyses)
 Martin, Stirling, Thorne, Watt '08; Alekhin, Blümlein, Klein, S.M. '09; Jimenez-Delgado, Reya '09
- correlation of cross section at NLO with gluon PDFs Nadolsky, Lai, Cao, Huston, Pumplin, Stump, Tung, Yuan '08
- benchmarking of PDFs under way

NLO

• Cross section for heavy-quark hadro-production (scaling functions f_{ij})

$$\hat{\sigma}_{ij \to t\bar{t}} = \frac{\alpha_s^2}{m_t^2} \{ f_{ij}^{(0)}(\rho) + (4\pi\alpha_s) f_{ij}^{(1)}(\rho, \mu_f/m_t, \mu_r/\mu_f) \}$$

Perturbative expansion at NLO

NLO

• Cross section for heavy-quark hadro-production (scaling functions f_{ij})

$$\hat{\sigma}_{ij \to t\bar{t}} = \frac{\alpha_s^2}{m_t^2} \{ f_{ij}^{(0)}(\rho) + (4\pi\alpha_s) f_{ij}^{(1)}(\rho, \mu_f/m_t, \mu_r/\mu_f) \}$$

Perturbative expansion at NLO

Strategy beyond NLO

- Use universal features of soft/collinear regions of phase space
 - double logarithms from singular regions in Feynman diagrams

• propagator vanishes for: $E_g = 0$, soft $\theta_{qg} = 0$ collinear

$$\frac{1}{(p+k)^2} = \frac{1}{2p \cdot k} = \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$\sum_{p+k} \alpha_s \int d^4 k \frac{1}{(p+k)^2} \longrightarrow \alpha_s \int dE_g d \sin \theta_{qg} \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

$$\longrightarrow \alpha_s \ln^2(\dots)$$

Beyond NLO: all-order resummation

• Cross section for heavy-quark hadro-production (scaling functions f_{ij})

$$\hat{\sigma}_{ij \to t\bar{t}} = \frac{\alpha_s^2}{m_t^2} \{ f_{ij}^{(0)}(\rho) + (4\pi\alpha_s) f_{ij}^{(1)}(\rho, \mu_f/m_t, \mu_r/\mu_f) + f_{ij}^{\text{resummed}}(\alpha_s, N, \mu_f/m_t, \mu_r/\mu_f) + \mathcal{O}(N^{-1}\ln^n N) \}$$

- All order resummation of large logarithms $\alpha_s^n \ln^{2n}(\beta) \longleftrightarrow \alpha_s^n \ln^{2n}(N)$
 - resummation in Mellin space (renormalization group equation)
 - long history Kidonakis, Sterman '97; Bonciani, Catani, Mangano, Nason '98;
 Kidonakis, Laenen, S.M., Vogt '01; ...
- Upshot:

•
$$f_{ij}^{\text{resummed}} \simeq \exp\left(\alpha_s \ln^2 N\right) + \mathcal{O}(N^{-1} \ln^n N)$$

Beyond NLO: NNLOapprox

• Cross section for heavy-quark hadro-production (scaling functions f_{ij})

$$\hat{\sigma}_{ij \to t\bar{t}} = \frac{\alpha_s^2}{m_t^2} \{ f_{ij}^{(0)}(\rho) + (4\pi\alpha_s) f_{ij}^{(1)}(\rho, \mu_f/m_t, \mu_r/\mu_f) + (4\pi\alpha_s)^2 f_{ij}^{(2)}(\rho, \mu_f/m_t, \mu_r/\mu_f) + \mathcal{O}(\alpha_s^3) \}$$

- General structure at NNLO
 - dependence on factorization and renormalization scale $L_M = \ln(\mu_f^2/m_t^2)$ and $L_R = \ln(\mu_r^2/\mu_f^2)$

$$f_{ij}^{(1)}(\rho,\mu_f/m_t,\mu_r/m_t) = f_{ij}^{(10)} + L_M f_{ij}^{(11)} + 2\beta_0 L_R f_{ij}^{(0)},$$

$$f_{ij}^{(2)}(\rho,\mu_f/m_t,\mu_r/m_t) = f_{ij}^{(20)} + L_M f_{ij}^{(21)} + L_M^2 f_{ij}^{(22)} + 3\beta_0 L_R f_{ij}^{(10)}$$

$$+ 3\beta_0 L_R L_M f_{ij}^{(11)} + 2\beta_1 L_R f_{ij}^{(0)} + 3\beta_0^2 L_R^2 f_{ij}^{(0)}$$

- only unknown: $f_{ij}^{(20)}$ (but knowledge of threshold logarithms)
- all other function known through renormalization group equations

Two-loop results

- NNLO cross section for heavy-quark hadro-production near threshold S.M, Uwer '08; Beneke, Czakon, Falgari, Mitov, Schwinn '09
 - e.g. gg-fusion for $n_f = 5$ light flavors at $\mu = m_t$

$$\begin{aligned} f_{gg}^{(10)} &= \frac{f_{gg}^{(0)}}{(16\pi^2)} \Biggl\{ 96 \ln^2 \beta - 9.5165 \ln \beta + 35.322 + 5.1698 \frac{1}{\beta} \Biggr\} \\ f_{gg}^{(20)} &= \frac{f_{gg}^{(0)}}{(16\pi^2)^2} \Biggl\{ 4608 \ln^4 \beta - 1894.9 \ln^3 \beta + \left(-912.35 + 496.30 \frac{1}{\beta} \right) \ln^2 \beta \\ &+ \left(2456.7 + 321.14 \frac{1}{\beta} \right) \ln \beta + 68.547 \frac{1}{\beta^2} - 8.6226 \frac{1}{\beta} + C_{gg}^{(2)} \Biggr\} \end{aligned}$$

Who's who

- Sudakov logarithms in $\ln \beta$ (generated from resummed cross sections)
- 1/β-terms from Coulomb corrections resummation to all orders in non-relativistic QCD
- unkown constant $C_{gg}^{(2)}$

Total cross section at Tevatron

Scale dependence

- Theoretical uncertainty from variation of scales μ_R, μ_F
 - plot with PDF set MSTW 2008 (but largely independent on PDFs)
 - mass $m_t = 173 \text{ GeV}$ (from $m_t = 173.1 \pm 1.3 \text{ GeV}$ Tevatron winter '09)
 - stable predictions in range $\mu_R, \mu_F \in [m_t/2, 2m_t]$
 - $-3\% \leq \Delta \sigma \leq +1\%$ at LHC
 - $-5\% \leq \Delta \sigma \leq +3\%$ at Tevatron

The total cross section

- Theory prediction at NNLO_{approx} accuracy
 - pole mass $m_t = 173 \text{ GeV}$
 - theoretical uncertainity from variation of $\mu_R, \mu_F \in [m_t/2, 2m_t]$
 - NNLO PDF set and α_s , e.g. MSTW 2008

 $\sigma_{\text{LHC}} = 157.0 \text{ pb} \stackrel{+2.1}{_{-6.5}} \text{ pb (scale)} \stackrel{+4.4}{_{-4.4}} \text{ pb (MSTW2008)}$

 $\sigma_{\text{TeV}} = 6.93 \,\text{pb} + \frac{+0.15}{-0.32} \,\text{pb} (\text{scale}) + \frac{+0.14}{-0.14} \,\text{pb} (\text{MSTW2008})$

The total cross section

- Theory prediction at NNLO_{approx} accuracy
 - pole mass $m_t = 173 \text{ GeV}$
 - theoretical uncertainity from variation of $\mu_R, \mu_F \in [m_t/2, 2m_t]$
 - NNLO PDF set and α_s , e.g. MSTW 2008

 $\sigma_{\text{LHC}} = 157.0 \text{ pb} \stackrel{+2.1}{_{-6.5}} \text{ pb (scale)} \stackrel{+4.4}{_{-4.4}} \text{ pb (MSTW2008)}$

 $\sigma_{\text{TeV}} = 6.93 \,\text{pb} + \frac{+0.15}{-0.32} \,\text{pb} (\text{scale}) + \frac{+0.14}{-0.14} \,\text{pb} (\text{MSTW2008})$

Quality control

• Check of systematics: variation of $C_{gg}^{(2)}$

• recall $f_{gg}^{(20)} \simeq f_{gg}^{(0)} \{ 4608 \ln^4 \beta + \dots + C_{gg}^{(2)} \}$

- Estimate systematic uncertainty of total cross section $\Delta \sigma \sim \mathcal{O}(2\%)$
 - $\Delta \sigma \sim \mathcal{O}(3-4) \,\mathrm{pb}$ at LHC 7 TeV ($\mathcal{O}(10-15) \,\mathrm{pb}$ at 14 TeV)
 - $\Delta \sigma \sim \mathcal{O}(0.15 0.2) \, \mathrm{pb}$ at Tevatron

$t\bar{t}+$ jet production (I)

- LHC: large rates for production of $t\bar{t}$ -pairs with additional jets
- NLO corrections to tt
 +jet production are part of NNLO corrections for inclusive tt
 production

- - at scale $\mu_R = \mu_F = m_t$ corrections are almost zero
 - threshold resummation captures dominant contributions

$t\bar{t}+$ jet production (II)

	$\sigma_{ m t\bar{t}jet}[m pb]$	
$p_{\mathrm{T,jet,cut}}$ [GeV]	LO	NLO
20	1.583(2) $^{+0.96}_{-0.55}$	$1.791(1)^{+0.16}_{-0.31}$
30	$0.984(1)^{+0.60}_{-0.34}$	1.1194(8) $^{+0.11}_{-0.20}$
40	$0.6632(8)^{+0.41}_{-0.23}$	$0.7504(5)^{+0.072}_{-0.14}$
50	$0.4670(6)^{+0.29}_{-0.17}$	$0.5244(4)^{+0.049}_{-0.096}$

 $\begin{array}{c|c|c|c|c|c|c|c|} \hline \sigma_{t\bar{t}jet}[pb] \\ \hline p_{T,jet,cut} \ [GeV] & LO & NLO \\ \hline 20 & 710.8(8)^{+358}_{-221} & 692(3)3^{-40}_{-62} \\ \hline 50 & 326.6(4)^{+168}_{-103} & 376.2(6)^{+17}_{-48} \\ \hline 100 & 146.7(2)^{+77}_{-47} & 175.0(2)^{+10}_{-24} \\ \hline 200 & 46.67(6)^{+26}_{-15} & 52.81(8)^{+0.8}_{-6.7} \end{array}$

• Cross section $\sigma_{t\bar{t}jet}$ for different values of $p_{T,jet,cut}$ for $\mu = \mu_R = \mu_F = \{m_t/2, m_t, 2m_t\}$ with PDF sets CTEQ6L1, CTEQ6M Dittmaier, Uwer, Weinzierl '07-'08

Tevatron

LHC 14

Concordance approach

Cacciari, Czakon, Mangano, Mitov, S.M., Nason, Uwer [to appear]

- Philosophy
 - genuine NLO approach improved with threshold logarithms only
 - technically: truncation of $f_{ij}^{(2)} = f_{ij}^{(20)} + L_M f_{ij}^{(21)} + L_M^2 f_{ij}^{(22)} + \dots$ to logarithmic accuracy in $\ln \beta$
- Conservative estimate of theoretical uncertainty
 - scale variation of $\mu_R, \mu_F \in [m_t/2, 2m_t]$ with $1/2 \le \mu_R/\mu_F \le 2$
 - e.g. pole mass $m_t = 173$ GeV and NNLO PDF set MSTW08

 $\sigma_{\rm LHC} = 155.4 \text{ pb} + 1.3 \text{ pb} (\text{scale}) + 4.4 \text{ pb} (\text{MSTW2008})$ $\sigma_{\rm TeV} = 6.92 \text{ pb} + 0.01 \text{ pb} (\text{scale}) + 0.14 \text{ pb} (\text{MSTW2008}) + 0.14 \text{ pb}$

HATHOR

C++ package

Aliev, Lacker, Langenfeld, S.M. Uwer [to appear]

Cross section evaluation done entirely in Hathor class

HATHOR

C++ package

Aliev, Lacker, Langenfeld, S.M. Uwer [to appear]

Cross section evaluation done entirely in Hathor class

```
unsigned int scheme = Hathor::LO | Hathor::NLO | Hathor::NNLO;
double mt = 171., muf=171., mur=171.;
double val,err,chi2a,up,down;
Lhapdf pdf("MSTW2008nnlo68cl"); \leftarrow PDF choice
Hathor XS(pdf)
XS.setPrecision(Hathor::MEDIUM);
XS.getXsection(mt,mur,muf); \rightarrow \sigma = 164.3^{+4.6}_{-9.2} pb (scale unc.)
XS.getResult(0,val,err,chi2a);
```


HATHOR

C++ package

Aliev, Lacker, Langenfeld, S.M. Uwer [to appear]

Cross section evaluation done entirely in Hathor class

```
unsigned int scheme = Hathor::LO | Hathor::NLO | Hathor::NNLO;
double mt = 171., muf=171., mur=171.;
double val, err, chi2a, up, down;
Hathor XS(pdf)
XS.setPrecision(Hathor::MEDIUM);
XS.getXsection(mt,mur,muf); \longrightarrow \sigma = 164.3^{+4.6}_{-9.2} pb (scale unc.)
XS.getResult(0,val,err,chi2a);
XS.setPrecision(Hathor::LOW);
XS.getXsection(mt,mur,muf);
                            \longrightarrow \sigma = 164.3^{+4.6}_{-9.2} \text{ pb} (sc.) ^{+4.4}_{-4.4} \text{ pb} (PDF unc.)
XS.getPdfErr(up,down);
```

Dependence on parton distributions

- Comparision of NLO and NNLO_{approx}
- Theoretical uncertainty from scale variation: $\mu_R, \mu_F \in [m_t/2, 2m_t]$
 - uncertainties: scale (left) and scale + PDF (right)
- Sizeable difference between the ABKM/MSTW sets at NNLO well outside the PDF uncertainty
 - due to value of α_s and shape of gluon PDFs at $\langle x \rangle = 2m_t/\sqrt{s}$
 - can only be settled with first LHC data

Dependence on parton distributions

- Comparision of NLO and NNLO_{approx}
- Theoretical uncertainty from scale variation: $\mu_R, \mu_F \in [m_t/2, 2m_t]$
 - uncertainties: scale (left) and scale + PDF (right)
- Sizeable difference between the ABKM/MSTW sets at NNLO well outside the PDF uncertainty
 - due to value of α_s and shape of gluon PDFs at $\langle x \rangle = 2m_t/\sqrt{s}$
 - can only be settled with first LHC data

Resummation of Coulomb corrections

- Invariant mass distribution $d\sigma/dM_{t\bar{t}}$
 - at LHC $gg \rightarrow t\bar{t} \left({}^{1}S_{0}^{[1]} \right)$ dominates; driven by large gluon luminosity
 - at Tevatron with small bound state effects; $q\bar{q}$ -channel large with only color-octet configurations only

Electroweak corrections

- Electroweak corrections (ratio of $\sigma_{\rm EW}/\sigma_{\rm LO}$) Beenakker, Denner, Hollik, Mertig, Sack, Wackeroth '94; Bernreuther, Fücker '05; Kühn, Uwer, Scharf '06
- Effect depends on Higgs mass (choices $m_H = 120 \text{GeV}, m_H = 200 \text{GeV}, m_H = 1000 \text{GeV}$)

- Tevatron: vanishing contribution for light Higgs
- LHC: $\mathcal{O}(2\%)$ with respect to $\sigma_{\rm LO}$

negative contribution to total cross section $\Delta \sigma_{\rm EW} \simeq \mathcal{O}(10 - 15)$ pb

Sven-Olaf Moch

Mass dependence of cross section

Pole mass scheme

Based on (unphysical) concept of top-quark being a free parton _

heavy-quark self-energy $\Sigma(p, m_t)$ receives contributions from regions of all loop momenta – also from momenta of $\mathcal{O}(\Lambda_{\rm QCD})$

 \rightarrow talk by Corcella

Mass dependence of cross section

Pole mass scheme

Based on (unphysical) concept of top-quark being a free parton

$$-m_t - \Sigma(p, m_t) \Big|_{p^2 = m_t^2}$$
 t
 g

heavy-quark self-energy $\Sigma(p, m_t)$ receives contributions from regions of all loop momenta – also from momenta of $\mathcal{O}(\Lambda_{\text{QCD}})$

Pole mass measurements are strongly order-dependent

- e.g. threshold scan of cross section in e^+e^- collision Beneke, Signer, Smirnov '99; Hoang, Teubner '99; Melnikov, Yelkhovsky '98; Penin, Pivovarov '99; Yakovlev '99
- LO (dotted), NLO (dashed), NNLO (solid)

talk by Corcella

Tevatron analyses

- Total cross section and different channels of Tevatron analyses (theory uncertainty band from scale variation)
- Determination of m_t from total cross section (slope $d\sigma/dm_t$)
 - e.g. DZero '09: NLO $m_t = 165.5^{+6.1}_{-5.9}$; NNLO $m_t = 169.1^{+5.9}_{-5.2}$; ...

The running top-quark mass

- \overline{MS} mass definition $m(\mu_R)$ realizes running mass (scale dependence)
 - short distance mass probes at scale of hard scattering
 - conversion between pole mass and \overline{MS} mass definition in perturbation theory: $m_t = m(\mu_R) \left(1 + a_s(\mu_R)d^{(1)} + a_s(\mu_R)^2d^{(2)}\right)$
- Scale dependence greatly reduced

The running top-quark mass

- \overline{MS} mass definition $m(\mu_R)$ realizes running mass (scale dependence)
 - short distance mass probes at scale of hard scattering
 - conversion between pole mass and \overline{MS} mass definition in perturbation theory: $m_t = m(\mu_R) \left(1 + a_s(\mu_R)d^{(1)} + a_s(\mu_R)^2d^{(2)}\right)$
- Pole mass scheme for comparison

Mass dependence in \overline{MS} mass scheme

- Total top-quark cross section as function of \overline{m}
 - theoretical uncertainity (band) due to variation of $\mu_R \in [\overline{m}/2, 2\overline{m}]$ for fixed set $\mu_F \in \overline{m}/2, \overline{m}, 2\overline{m}$

- **•** First direct determination of m(m) Langenfeld, S.M., Uwer '09
 - \overline{MS} mass $m(m) = 160.0^{+3.3}_{-3.2} \text{GeV}$
- Sven-Olaf Moch conversion to pole mass $m_t = 168.9^{+3.5}_{-3.4} {
 m GeV}$

Implications for indirect Higgs searches

• Electroweak precision data constrains M_H

pole mass $m_t = 168.9^{+3.5}_{-3.4} \text{GeV}$ (lighter top-quark masses disfavor SM Higgs sector)

Summary

- Top quark theory
 - much recent progress for Tevatron and LHC phenomenology
 - improved understanding of theory and application of new concepts
- Total cross section
 - NNLO_{approx} prediction with exact scale dependence $\mu_R \neq \mu_F$ ($\ln(\mu_R/m)$, $\ln(\mu_F/m)$ -terms)
 - cross check on systematics with NLO correction to $t\bar{t}$ + jet
 - electroweak corrections
 - bound state effects for $t\bar{t}$ -system
- \overline{MS} mass definition
 - running top-quark mass of $m(\mu = m) = 160.0^{+3.3}_{-3.2}$ GeV
 - greatly reduced scale dependence
 - much improved convergence of perturbation theory

Extra slides

Other recent developments

- Total cross section from invariant mass distribution $d\sigma/dM_{t\bar{t}}$ Ahrens, Ferroglia, Neubert, Pecjak, Yang '10
 - resummation of threshold logarithms in $\ln(1 M_{t\bar{t}}^2/s)/(1 M_{t\bar{t}}^2/s)$
- Cross section numbers significantly lower
 - $\sigma_{\text{LHC}} = 146 \text{ pb} + \frac{7}{7} \text{ pb (scale)} + \frac{8}{-8} \text{ pb (MSTW2008)}$
 - $\sigma_{\text{TeV}} = 6.48 \,\text{pb} + \frac{+0.17}{-0.21} \,\text{pb} (\text{scale}) + \frac{+0.32}{-0.25} \,\text{pb} (\text{MSTW2008})$
- Open issues:
 - impact of scale choices μ_s , μ_h , μ_f
 - compatibility at high energy (BFKL asymptotics at small-x)

Kidonakis, Laenen, S.M., Vogt '01