tt Cross Section Measurements At the Tevatron

Frédéric Déliot CEA-Saclay

on behalf of CDF and DO Collaborations

TOP 2010 International Workshop 31-MAY-2010, Bruges

Why Do We Study the Top Quark?

$$\mathcal{L}_{\text{Yukawa}} = -\lambda_t \overline{\psi_{Lt}} \Phi \psi_{Rt} \qquad m_t >> m_b$$
$$\lambda_t \approx 1?? \qquad \Gamma_t >> \Lambda_{QCD}$$

- The top quark is a special quark !
- What kind of role does it play in EW symmetry breaking?
- Measure its strong production mechanism: tt cross section
 - compare with QCD predictions
 - measure in all possible channels
 - check tt selection to be used in

the other properties measurements

Top Strong Production and Decay At the Tevatron

• theoretical computations: Mt = 172.5 GeV, σ (tt) \approx 7.5 pb (~ NNLO)

S. Moch and P. Uwer	Phys. Rev. D78 034003 (2008)	$\sigma_{tar{t}} = 7.46^{+0.48}_{-0.67}~{ m pb}$
Kidonakis et al.	Phys. Rev. D78 074005 (2008)	$\sigma_{t\bar{t}} = 7.27^{+0.76}_{-0.85} ~{ m pb}$
Cacciari et al.	JHEP 09 127 (2008)	$\sigma_{tar{t}} = 7.14^{+0.76}_{-0.87}~{ m pb}$

 $\Delta \sigma / \sigma \sim 8 \%$

comparison with LHC:

Mt = 172.5 GeV, σ (tt) \approx 161 pb (@ 7 TeV)

with same ℓ jets selection efficiency (4 jets): ~ 10 %

 $n_{t\bar{t}}(1fb^{-1} \text{ in one LHC exp.}) \approx 2n_{t\bar{t}}(10fb^{-1} \text{ in one Tevatron exp.})$

We have large samples of $t\overline{t}$ events

A lot of our $t\overline{t}$ cross section measurements are already systematic limited

How Do We Measure the tt Cross Section?

Analysis strategy: $\sigma_{t\bar{t}} = \frac{N_{data} - N_{bkg}}{\epsilon_{t\bar{t}}(M_t) \int \mathcal{L}dt}$ analyzed integrated luminosity: from MC (Alpgen+Pythia or Pythia) - removing poor quality data - for the particular set of triggers used - uncertainty: ~ 6 % $N_{data} - N_{bkg}$ $(\epsilon_{bkg1}\sigma_{bkg1} + \epsilon_{bkg2}\sigma_{bkg2} + \dots) \int \mathcal{L}dt$ estimated by: - event counting after selection cuts - signal/background fit of a discriminant variable Channel topological b-tagging counting \mathbf{fit} counting \mathbf{fit} ℓ jets Х Х Х ll Х Х $\ell \tau$ all had Х

b Jet Tagging

- utilize b-jets special properties to separate them from light/gluon jets:
 - long b-hadrons decay length
 - b-hadrons semileptonic decay
- 3 main b-tagging algorithms:
 - impact parameter based
 - secondary vertex reconstruction
 - soft lepton tag

Multijet Background Estimation

the matrix method:

sample with loose isolated lepton: N_{loose} subsample with tight isolated lepton: N_{tight}

$$N_{QCD} = \frac{\epsilon_{signal} N_{loose} - N_{tight}}{\epsilon_{signal} - \epsilon_{QCD}}$$

- templates: multijets (data that fails lepton ID criteria), W+jets (Alpgen) and tt (Pythia)
- fit the low MET part
- extract fraction of multijets in the high MET part

W+jets Normalization

- normalize to data before b-tagging:
 - shape from Algpen
 - $N_{W+jets} = N_{data} N_{t\bar{t}} N_{QCD} N_{EW}$
 - in each jet multiplicity

- normalization of the W+heavy flavor fraction in W+jets:
 - W+HF cross section underestimated in the MC
 - W+HF content measured in data in the 1 or 1-2 jet event sample
 - NN trained to separate W+light from W+HF
 - scale the W+HF fraction to match the data (normalization extrapolated to higher jet multiplicities)

Lepton + Jets Topological Cross Section

- signal/background discrimination:
 - tt more energetic, central and isotropic than W+jets and multijets
 - NN (CDF) or BDT (D0) input variables: Ht, aplanarity, sphericity, ...
- cross section measurement:
 - template fit of $t\overline{t}$ and W+jets to the discriminant output

Discriminant Output

$\Delta \sigma / \sigma in \%$	
Systematic	$t\bar{t}_{ANN}$
Luminosity	5.8
b-tag modeling	-
W+HF correction	-
Jet energy scale	2.9
Monte Carlo generator	2.6
Initial/final state radiation	0.4
PDF	0.9
Background shape model	1.9
Lepton ID/trigger	1.3
Total	7.5

multijets

250

200

150

100

50-

Lepton + Jets Cross Section Using b-tagging

- counting by number of jets and b-tag jets:
 - b-tagging mistag rate measured in data, parametrization applied to W+jets

channel	$\sigma_{t\bar{t}}[\mathrm{pb}]$
e+jets	$7.41^{+1.07}_{-0.96}$ (stat+syst)
$\mu + jets$	$8.60^{+1.27}_{-1.06}$ (stat+syst)
$\ell{+}\mathrm{jets}$	$7.93^{+1.04}_{-0.91}$ (stat+syst)

Mt = 172.5 GeV

Mt = 172.5 GeV

channel	sample	1 <i>b</i> -tag	$\geq 2~b\text{-tags}$
e+3 jets	W+jets	245 ± 25	20 ± 4
	Multijet	49 ± 8	4 ± 1
	Z+jets	20 ± 6	2 ± 1
	Other	29 ± 5	6 ± 1
	$t\bar{t}$	302 ± 25	120 ± 14
	Total	645 ± 33	153 ± 16
	Observed	648	154
e+4 jets	W+jets	41 ± 10	5 ± 1
	Multijet	15 ± 3	1 ± 0.2
	Z+jets	4 ± 2	0.4 ± 0.2
	Other	5 ± 1	1 ± 0.4
	$t\bar{t}$	229 ± 32	136 ± 19
	Total	294 ± 25	144 ± 19
	Observed	289	127

$$\sigma_{t\bar{t}} = 7.22 \pm 0.35 (\text{stat}) \pm 0.56 (\text{sys}) \pm 0.44 (\text{lumi}) \text{pb}$$

tT/Z Cross Section

submitted to PRL

- luminosity largest systematic uncertainty:
 - from luminosity detector acceptance and $p\overline{p}$ inelastic cross section
- remove luminosity uncertainty doing the ratio with the Z cross section:
 - $Z \rightarrow \ell \ell$ cross section measured with the same trigger
 - correlation of systematic uncertainties taken into account
 - multiply by the theoretical Z cross section:

$$\sigma_{t\bar{t}} = \left(\frac{\sigma_{t\bar{t}}}{\sigma_Z}\right)_{exp} (\sigma_Z)_{th} \qquad \qquad (\sigma_{Z/\gamma^* \to \ell\ell})_{th} = 251.3 \pm 5.0 \text{ pb}$$

Fur. Phys. J. **C35**, 325 (2004)

combination of the topological and b-tagging cross sections using BLUE

Systematic	tītee	tī ann	$Z/\gamma^* \rightarrow ll$
Luminosity	6.1	5.8	50
Lummosity	0.1	5.8	5.9
b-tag modeling	4.7	-	-
W + HF correction	4.0	-	-
Jet energy scale	4.1	2.9	-
Monte Carlo generator	2.7	2.6	-
Initial/final state radiation	0.6	0.4	-
PDF	0.6	0.9	1.4
Background shape model	0.2	1.9	0.3
Lepton ID/trigger	1.3	1.3	1.1
Total	10.0	7.5	6.2
Total $\sigma_{t\bar{t}}/\sigma_{Z/\gamma^* \rightarrow ll}$	8.2	4.7	

topo : $\sigma_{t\bar{t}} = 7.82 \pm 0.38(\text{stat}) \pm 0.37(\text{sys}) \pm 0.15(\text{theory}) \text{ pb}$ b - tag : $\sigma_{t\bar{t}} = 7.32 \pm 0.36(\text{stat}) \pm 0.56(\text{sys}) \pm 0.14(\text{theory}) \text{ pb}$ Mt = 172.5 GeV

combined:

$$\sigma_{t\bar{t}} = 7.70 \pm 0.52 \text{ pb}$$

 $\Delta \sigma / \sigma \sim 6.8 \%$

Mass Extraction From the Cross Section

PRD80 071102 (2009)

- indirect mass measurement less sensitive to any difference between pole mass and the mass used in the MC simulation used for direct measurements
- combine experimental and theoretical tt cross section vs top mass:
 - experimental dependency due to kinematics cut (selection efficiency)
 - theoretical: use the most accurate QCD computations (~NNLO)
- joint normalized likelihood function based on the theoretical and the total experimental uncertainty

B

Theoritical prediction	$M_t \; (\text{GeV})$
NLO	$165.5^{+6.1}_{-5.9}$
Cacciari et al.	$167.5^{+5.8}_{-5.6}$
Moch and Uwer <i>et al.</i>	$169.1^{+5.9}_{-5.2}$
Kidonakis et al.	$168.2^{+5.9}_{-5.4}$

compatible with world average: Mt = 173.1 ± 1.3 GeV

Dilepton Channel

Dilepton Cross Section

- signal/background discrimination
 - CDF: Ht and MET significance: MET divided by its error (ee/ μ μ) cuts or b-tagging
 - DO: Ht cut and BDT trained against Z and diboson (ee/ μ μ)

	ee	$e\mu$	$\mu\mu$
$Z \rightarrow \ell \ell$	$8.5^{+3.4}_{-3.4}$	$11.9^{+2.7}_{-2.5}$	$21.7^{+5.6}_{-6.2}$
Dibosons	$2.1^{+0.8}_{-0.8}$	$6.5^{+2.1}_{-2.0}$	$3.3^{+1.1}_{-1.2}$
Instrumental background	$0.1^{+0.2}_{-0.1}$	$10.7^{+4.1}_{-3.9}$	$3.2^{+0.8}_{-0.7}$
$t\bar{t} \rightarrow \ell\ell jj~(\sigma=7.45~{\rm pb})$	$36.9^{+3.8}_{-3.8}$	143.4 ± 14.3	$45.1_{-4.3}^{+4.4}$
Total expected events	47.6 ± 6.2	$172.6^{+16.5}_{-16.4}$	$73.3^{+8.1}_{-8.8}$
Data	55	204	72

tt Signal Events with the tight SecVtx b-tag					
Source	ee	$\mu\mu$	eμ	ll	
WW	0.08 ± 0.03	0.09 ± 0.04	0.21 ± 0.06	0.37 ± 0.10	
WZ	0.02 ± 0.01	0.03 ± 0.01	0.03 ± 0.01	0.08 ± 0.02	
ZZ	0.08 ± 0.06	0.07 ± 0.06	0.02 ± 0.02	0.17 ± 0.14	
DY+LF	0.51 ± 0.05	0.60 ± 0.05	0.28 ± 0.03	1.39 ± 0.12	
DY+HF	0.51 ± 0.04	1.41 ± 0.11	0.37 ± 0.03	2.28 ± 0.18	
Fakes	$1.17 {\pm} 0.48$	$0.90 {\pm} 0.39$	$3.39{\pm}1.12$	5.46 ± 1.59	
Total background	2.36 ± 0.51	$3.10 {\pm} 0.46$	4.29 ± 1.13	9.75 ± 1.68	
$t\bar{t} \ (\sigma = 7.4 \text{ pb})$	$30.22{\pm}1.91$	$29.63 {\pm} 1.87$	70.10 ± 4.38	$129.96{\pm}8.10$	
Total SM expectation	$32.59{\pm}2.32$	$32.73 {\pm} 2.25$	$74.39{\pm}5.42$	$139.71 {\pm} 9.66$	
Observed	22	44	71	137	

 $\sigma_{t\bar{t}} = 8.4 \pm 0.5 \text{ (stat)} ^{+0.9}_{-0.8} \text{ (syst)} ^{+0.7}_{-0.6} \text{ (lumi) pb.} \quad \mathbf{b} - \mathrm{tag} : \sigma_{t\bar{t}} = 7.25 \pm 0.66 \text{(stat)} \pm 0.47 \text{(sys)} \pm 0.44 \text{(lumi) pb.}$

Mt = 172.5 GeV

Lepton + τ Cross Section

- τ recontruction:
 - 3 NN depending of the τ decay types to separate from jets faking τ
 - 1 additional NN to separate τ type 2 from electron
- main background after b-tagging:
 - W+jets (normalized to data), Z+jets, diboson from MC
 - Multijets from data (same sign events)

2.2 fb⁻¹

$$\sigma(t\bar{t}) = 7.32^{+1.34}_{-1.24}(\text{stat})^{+1.20}_{-1.06}(\text{syst}) \pm 0.45(\text{lumi}) \text{ pb.}$$

Mt = 175 GeV

1 track

EM subcluster

> 1 track

EM subcluster

15%

atrix Predicted Bk

clusive top tasec=7.99 pb

MET + Jets Cross Section

- MET + jets:
 - alternative way to select τ channels: large contribution from W $\rightarrow \tau \nu$
 - complementarity with channels with one identified lepton
- selection:

+ Tagged Jets / 0.02

- at least 3 strict identified jets
- at least one b-tagged jet
- NN trained against background, NN > 0.8
- background estimation:
 - b-tag rate/misrate evaluated from data in a
 - 3 jet sample (small signal contamination)

sample composition	Tot.
all hadronic (%)	2.29
e +jets (%)	32.08
μ +jets (%)	22.71
dileptonic (%)	1.45
had. τ +jets (%)	27.73
lep. τ +jets (%)	10.76
$\tau \tau$ (%)	0.77
$e/\mu + \tau$ (%)	2.16

 $\sigma_{t\bar{t}} = 7.99 \pm 0.55 \text{ (stat)} \pm 0.76 \text{ (syst)} \pm 0.46 \text{ (lumi)} pb$

Mt = 1725 GeV

Cross Section Ratio and Charged Higgs Searches

- cross section with different number of b-tag jets:
 - ljets with 0, 1 or 2 b-tag jets: $R = \frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)}$
- cross section in different channels sensitive to new physics:
 - number of events in ljets, ll and $l\tau$:
 - in SM extension with extended Higgs sector (like MSSM or HDM) $t \rightarrow H^{+}b$ can compete with $t \rightarrow Wb$

Search here for $H^{+} \rightarrow \tau \nu$ or cs

140

150 160

M_{H*} [GeV]

I+jets 1 tag I+jets 2 tag dilepton

t+lepton

F. Déliot, Top 2010, 31-MAY-2010

interpretation in the CPX scenario (strangephilic MSSM Higgs) Eur.Phys.J **C66** 261-269,2010

120

110

100

130

All Hadronic Channel

signature:

- 6 jets (2 b-jets)

- main background:
 - Multijets: ~ cross section 3 orders of magnitude
 - estimated from data
 - b-tagging essential

<u>signal sample:</u> CDF: 6 ≤ N_{jets} ≤ 8 D0: 6 ≤ N_{jets} CDF: tag rate per jet evaluated using 4 jets events DO: adding 1 jet to 5 jets events after 2 b-tags

All Hadronic Cross Section

- built a discriminant:
 - CDF: NN, DO: Likelihood
 - input variables: Ht, invariant masses, centrality, ...

Summary of the Tevatron $t\overline{t}$ Cross Section

- measurements in all the possible channels
- consistent with SM expectation
- CDF/D0 Combination:

- work in progress based on the example of the mass combination

tt + jets Cross Section

- test of QCD prediction, sensitive to NLO effects, different FB asymmetry than inclusive tt
- lepton + jets selection:
 - W+jets: normalized to data before tagging
 - Multijets: estimated by a fit at the low MET
- simultaneous fit of tt+0j and tt+1j

 $\sigma_{t\bar{t}jets} = 1.6 \pm 0.2 (\text{stat}) \pm 0.5 (\text{sys}) \text{ pb}$ Mt = 175 GeV

SM :
$$\sigma_{t\bar{t}jets} = 1.79^{+0.16}_{-0.31}$$
 pb
Mt = 174 GeV, EPJ C59 625 (2009)

Systematic	$\Delta \sigma_{0j}$ pb	$\Delta \sigma_{0j} / \sigma_{0j} \%$	$\Delta \sigma_{+j}$	$\Delta \sigma_{+j} / \sigma_{+j} \%$
JES	0.27	4.9	0.48 pb	30.2
BTag SF	0.25	4.6	0.07	4.6
C Tag SF	0.01	0.2	0.01	0.4
Mistag Matrix	0.01	0.2	0.01	0.6
Heavy Flavor Correction	0.36	6.7	0.06	3.4
Luminosity	0.32	5.6	0.10	6.1
QCD Fraction	0.01	0.2	0.01	0.4
ISF/FSR	0.11	2.1	0.07	3.3
MC Generator	0.19	3.5	0.04	2.3
Trigger Eff	0.03	0.6	0.01	0.6
PDF	0.06	1.0	0.01	1.0
Total	0.65 pb	11.8 %	0.47 pb	36.5 %

Differential Top Pt and $M_{t\bar{t}}$ Cross Sections

- New physics can distort differential top spectra:
 - deeper investigation than inclusive cross sections
- lepton + jets selection
 - full reconstruction of the $t\overline{t}$ events
 - subtract background contribution
 - unfold distributions from detector effects
- no deviation from SM expectation observed in data

Conclusion

- the Tevatron experiments have measured the tt cross sections in all possible top decay channels
 - well understood tt samples
 - a lof of the measurements are now systematics limited
 - precision ~ 6.5 % using $t\overline{t}/Z$ cross section ratio
 - allow to search for many deviations from SM expectations
- expect soon a Tevatron tt cross section combination
- will continue to scrutinize the top sector with more than 7 fb⁻¹ on tape
 - decay channels with low statistics
 - cross section ratio, differential cross sections

See following talks for other Tevatron top properties results

