

Physics Reach of LHC with 1 fb⁻¹ at 7 TeV

Hwidong Yoo (Purdue University)

Zuzana Rurikova (Universitaet Freiburg)

On behalf of the ATLAS and CMS Collaborations

- Introduction
- Standard Model
 - Physics analysis with early data
- Higgs
 - Higgs expectation at 7 TeV with 1 fb^{-1}
- Beyond the Standard Model (BSM)
 - BSM expectation at 7 TeV with 1 fb⁻¹

LHC at 7 TeV

- LHC will run at 7 TeV with the goal to reach an instantaneous luminosity of 1.2×10³² during 2010 and 2011
 - Collect up to 1 fb⁻¹ data before the end of 2011

Hwidong Yoo Purdue University Slide 4

Examples

•

- Higgs (gg): pp → H, H→WW and ZZ
 - Factor ~15
 - Top: (85% qq, 15% gg at Tevatron)
 - Factor: 0.85 x 5 + 0.15 x 100
 - **→** ~ 20
- Squarks: ~350 GeV (assume top):
 - Factor: 0.85 x 10 + 0.15 x 1000
 - ~ 150 to 200
- Z': ~1 TeV (qq)
 - Factor: ~ 50 to 100
- We will show plots for $\sqrt{s} = 7$ TeV
 - But some plots are for $\sqrt{s} = 10$ TeV or 14 TeV

Standard Model

- Physics analysis with early data
- Heavy Flavor
- W and Z
- Тор

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

Heavy Flavor Measurement

- We can understand our detector with small amount of early data
- Early heavy-flavor physics measurements at 7 TeV
 - Tracking performance study using low mass resonances
 - − J/ ψ → $\mu^+\mu^-$ cross-section
 - Clean observation possible with only 1 nb⁻¹ of data
 - ~10⁸ / fb⁻¹ at 7 TeV
 - Y → $\mu^+\mu^-$ cross-section
 - We expect ~10K / pb⁻¹ in Y(1S)+Y(2S)+Y(3S) $\rightarrow \mu^+\mu^-$
 - ~10⁷ / fb⁻¹ at 7 TeV
 - bb cross-section
 - MC simulation indicates feasibility with 5-10 pb⁻¹ (~150 events/pb⁻¹)

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

W and Z

- W / Z cross section - ATLAS and CMS expect ~25,000 Z \rightarrow II (e,µ) and ~250,000 W \rightarrow IV (e,µ) per 100 pb⁻¹ individually. Very important for physics calibration with early data W asymmetry - At 7 TeV, we need \sim 150 pb⁻¹ to get the same W yield as 100 pb⁻¹ at 10 TeV With this statistics, the total
 - With this statistics, the tota error is comparable to the PDF uncertainty

W	ATLAS 1 fb ⁻¹	CMS 1 fb ⁻¹
Stat.	0.04%	0.04%
Sys.	2.4%	3.3%
Z	ATLAS 1 fb ⁻¹	CMS 1 fb ⁻¹
Stat.	0.2%	0.13%
Sys.	1.3%	2.3%

W and Z - First Data

• ATLAS

CMS

- Data observed: 6 Ws and 1 Z with 1 nb⁻¹
- MC expectation: 8 Ws and 0.8 Z

CMS Experiment at LHC, CERN Run 133877, Event 28405693 Lumi section: 387 Sat Apr 24 2010, 14:00:54 CEST

Electrons $p_T = 34.0, 31.9 \text{ GeV/c}$ Inv. mass = 91.2 GeV/c²

Hwidong Yoo Purdue University

- Signatures of top pair signal will come fast
- By the end of 2010, the LHC experiments expect to collect samples comparable to the Tevatron experiments

	CDF	LHC at 7 TeV	Ratio
σ _{ttbar} (NLO)	5.5 pb	160 pb	× 30
Luminosity for evidence	20 pb ⁻¹	1 pb ⁻¹	1 / 20
Main background W + ≥3 jets	6.5 pb	240 pb	× 37

~160 k tt pairs are expected with 1 fb⁻¹

May 31st 2010, TOP2010

Top: dilepton channel

- Signature: 2 leptons + 2 jets + MET
 - 9% branching fraction
 - Clean signal
 - Most likely 1st channel to be observed
- With ~10 pb⁻¹, we expect a convincing signal
 - Each experiment will have ~30 events with an expected background of 5 or 6.

TL-PHYS-PUB-	Channel	N (Sig)	N (Bkg)	
Scaled to 7 TeV)	e-μ	14	2.5	
	е – е	4.3	1.1	
	μ – μ	6.6	1.9	
	Total	25	5.5	

• With 100 pb⁻¹, ~400 events

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

Top: lepton+jets channel

- Signature: one lepton + 4 jets
 - 45% branching fraction
 - More statistics than dilepton channel
- At 7 TeV with 10 pb⁻¹, we expect ~60 top events per lepton flavour over a background of ~40 events in the 4 jet, 5 jet and 6+ jet bins per experiment
- ~1400 events per 100 pb⁻¹
 - With large variations depending on selection requirements

10 TeV \rightarrow 7 TeV

Process	$\sigma_{7\text{TeV}}/\sigma_{10\text{TeV}}$
t channel	0.48
s channel	0.92
top pair	0.43
W+jets	0.65
QCD	0.58

Need ~2 times more integrated luminosity to obtain the same expected sensitivity as 10 TeV

• 1.4 fb⁻¹ is needed for 5σ discovery at 7 TeV

Branching Ratio

• $R = B(t \rightarrow Wb)/B(t \rightarrow Wq)$

The limits on the FCNC (flavour changing neutral current) decays t \rightarrow qZ and t \rightarrow q γ

To reach current PDG precision

- CMS expects a ±9% measurement of R
 - ~600 pb⁻¹ of 7 TeV data

May 31st 2010, TOP2010

- SM Higgs: $H \rightarrow WW$, ZZ, $\gamma\gamma$
- SM Higgs: Combined
- SM Higgs: 2 Experiments
- MSSM Higgs

Hwidong Yoo Purdue University

- gg \rightarrow H is the dominant production mode at $\sqrt{s} = 7$ TeV
- $H \rightarrow WW$ is the dominant decay mode (in high mass)

SM Higgs: $H \rightarrow WW$

CMS

- Single experiment
- The expected exclusion mass range is $150 < m_{\rm H} < 185$ GeV with 1 fb⁻¹
- The discovery level sensitivity (~5 σ) is expected for the mass range 160 < m_{\rm H} < 170 GeV

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

- Single experiment
- The SM Higgs (H \rightarrow ZZ, H $\rightarrow \gamma\gamma$) can not be excluded anywhere in the entire mass range with 1 fb⁻¹ at 7 TeV
 - Have similar sensitivity for $m_{\rm H} \sim 200$ GeV to compare with H \rightarrow WW in H \rightarrow ZZ

•

SM Higgs: combined

All channels combined for single experiment 95% C.L. exclusion: 145-190 GeV
Discovery sensitivity: ~160 GeV

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

SM Higgs: 2 experiments

Tevatron CDF+D0

Tevatron excluded 162-166GeV with CL 95%

95% C.L. exclusion: 140-200 GeV
Discovery sensitivity: 160~170 GeV

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

MSSM Neutral Higgs

Expect to reach discovery level covering: $tan\beta \sim 20$ at low m_A Exclusion range without signal: down to $tan\beta \sim 15$ at low m_A

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

Beyond the Standard Model

• b' Search

- Large Extra Dimensions
- Randall-Sundrum Gravitons
- W' and String Balls
- Heavy Stable Charge Particles

- Z' Resonances
- Long-lived Heavy Gluino
- Leptoquarks
- SUSY

b' Search

- b' \rightarrow Wt
- Scale using LO PYTHIA cross section for signal and background
- Our sensitivity is expected to surpass the current Tevatron lower b' mass limit of 325 GeV (CL 95%)

Large Extra Dimensions

CMS

- Diphoton channel
 - Sensitivity of the search surpasses the current Tevatron limits with 50 $\rm pb^{-1}$
 - $M_s = 2$ TeV, ED = 2, 4 reach 5σ discovery level with 100, 150 pb⁻¹
 - We expect to probe M_s up to ~3 TeV with 1 fb⁻¹
- Monojets channel
 - Missing ET + single-jet
 - We can probe the search with same sensitivity at the Tevatron if we have 10 pb⁻¹ of integrated luminosity
 - With 200 pb⁻¹ data, M = 2 TeV, δ = 4 reaches 5 σ discovery sensitivity

May 31st 2010, TOP2010

Randall-Sundrum Gravitons

- 50 pb⁻¹ of 7 TeV data is required to surpass the sensitivity of the search at the Tevatron
- We expect 5σ discovery with M = 750 GeV with 300 pb⁻¹

W' and String Balls

95% CL limit per channel: O(10/pb) at M =1 TeV @ 7 TeV

For 10 TeV: exclude M_{th} below 4.8 TeV For 7 TeV: exclude M_{th} below ca. 4 TeV

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

Dilepton Resonances (Z')

- Predicted in many SM extensions (Extra Dimensions, Technicolour, Little Higgs)
 - Background dominated by DY
- 95% CL exclusion O(100/pb) at 1 TeV
- Sensitivity beyond the Tevatron (1 TeV SSM Z') with ~100 pb⁻¹

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

- Long lived particles predicted by several models
 - e.g. GMSB, split SUSY
- Scale using LO PYTHIA cross section for signal
 - Background is not scaled because it is almost negligible
- The reach beyond the Tevatron limits is achieved with just a few pb⁻¹ of 7 TeV data

Long-lived Heavy Gluino

- Look for gluino decays during periods of no beam including
- 30-day long (~260 pb^1) 7 TeV run at instantaneous luminosity of $10^{32}\,cm^{-2}s^{-1}$
 - We can expect 5σ discovery with all lifetime senarios with $M_g = 300$ GeV
 - The discovery beyond the Tevatron limits is possible with just a couple of weeks of data

Leptoquarks

Purdue University

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

SUSY: jets+leptons+missing E_T

- Search in 0-lepton, 1-lepton and 2-lepton +Njets with missing Et channels (Meff= Σ Pt_jets + Σ Pt_lep +Et_miss)
 - Sys. uncertainty on SM background ~50%
- R-parity conserving SUSY signals with squark and gluino masses less than 600 700 GeV can be discovered at $\sqrt{s}=10$ TeV , L=200 pb⁻¹

mSUGRA Discovery reach

 For 7 TeV need a factor 2.5-3 more integrated luminosty to achieve similar reach

(SUSY points close to Tevatron bound)

May 31st 2010, TOP2010

•

Hwidong Yoo Purdue University

SUSY: jets + missing E_T

- "Classic" all hadronic search
- Systematic uncertainty of 50% assumed on Standard Model background
- Sensitivity significantly beyond previous experiments (~50/pb to surpass Tevatron)

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

Summary

- At the LHC at 7 TeV, we get a gain of a factor of 10 or more compared with Tevatron
- Standard Model physics is observable with very early data
- Top quark can be rediscovered with only 10 pb⁻¹
- The LHC will surpass Tevatron's sensitivity for several SM and MSSM Higgs searches with 1 $\rm fb^{-1}$
- The LHC will have discovery potential with as little as 10 to 100 pb⁻¹ for many new physics models
- We still need more than 1 fb⁻¹ in particular physics analysis
 - SM Higgs H \rightarrow ZZ, $\gamma\gamma$ can not be excluded anywhere in the entire mass range

Stay tuned: We will be back with new discoveries soon!

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

Backup

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

LHC Kinematic Reach

 7 TeV LHC run will substantially increase the available kinematic range for physics analysis
 – e.g., QCD, EWK with jets and photons

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

Inclusive Jet Cross Section

- NLO QCD jet spectrum no detector effects included
- We expect to reach jets with E_T 's of around 1.4 TeV after the first 100 pb⁻¹
- Also, jets with E_T's of around 1.7 TeV after the first fb⁻¹ <dr/><dr/dP_Jdn> (nb/GeV)

May 31st 2010, TOP2010

Hwidong Yoo Purdue University

Hwidong Yoo Purdue University Slide 40

Rescaling 10 TeV to 7 TeV

- Scaling of 10 TeV results to 7 TeV by using parton luminosities ratio for gg and qq
 - Obtain using MSTW2008NLO PDF
 - Should be considered as conservative rough estimates of the true reach at 7 TeV
- Use LO PYTHIA cross section for the scaling in some results
- ATLAS results scaled to 7 TeV work in progress
 May 31st 2010, TOP2010

SM Expectation

May 31st 2010, TOP2010

Hwidong Yoo Purdue University