# CMS Status and first data 

Karl M. Ecklund
Rice University
on behalf of the CMS Collaboration

TOP2010
Brugge, Belgium

## Outline

- CMS detector
- Luminosity
- Detector Performance
- Tracking detectors
- Calorimeters
- Muon detectors
- Physics Performance
- low pt physics objects: tracks, resonances
- Electroweak-like events: W and Z candidate events
- looking towards the top
- Outlook


## Compact Muon Solenoid



Transverse Slice
15 m

## Transverse slice through CMS



## CMS data-taking periods

- Cosmic Ray Run
- months-long commissioning runs in Fall 2008, 2009
- many detector commissioning papers:
- Special issue of JINST 05
- Beam collisions
- $\sqrt{ }$ s=900 GeV @ LHC injection energy
- first LHC collisions December 2009
- $\sqrt{ } \mathrm{s}=2.36 \mathrm{TeV}$
- December 2009
- $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$
- since 30 March 2010

Large Ha

```
BY DENNIS OVERBYE
MARCH 30, 2010
```

PASADENA, Calif. - After 16 years and $\$ 10$ billion - and a long morning of electrical groaning and sweating - there was joy in the meadows and tunnels of the Swiss-French countryside Tuesday: the world's biggest physics machine, the Large Hadron Collider, finally began to collide


## Run/Event: 123596 / 6732761

Candidate Dijet Collision Event

CMS Experiment at the LHC, CERN
Date Recorded: 2009-12-06 07:18 GMT
$\sqrt{ } \mathrm{s}=900 \mathrm{GeV}$
Run/Event: 123596 / 6732761
Candidate Dijet Collision Event

## 7 TeV

CMS Experiment at LHC, CERN
Data recorded: Tue Mar 30 12:58:48 2010 CEST
Run/Event: 132440 / 2737921
Lumi section: 124
Orbit/Crossing: 32323764 /1
 30.03.2010


## Luminosity

- 20107 TeV running since 30 March
- LHC achieved $\mathscr{L}_{\text {peak }}=2 \times 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ with 8 colliding bunches
- CMS data taking efficiency > 90\%

CMS: Integrated Luminosity 2010

$2010-2011$ Run
ICHEP goal: $1-10 \mathrm{pb}^{-1}$
2010 goal: $100 \mathrm{pb}^{-1}$
2011 goal: $1000 \mathrm{pb}^{-1}$

## Detector Performance: Tracker

New! technique from JINST 5 T03007 (2010) and JINST 5 T03008 (2010)

- Basic responses of detectors described well in beam data






## Charged Track Reconstruction

- Data/MC comparison 900 GeV in minimum Bias events
- High purity track selection
- $\chi^{2} /$ ndof and $\mathrm{N}_{\text {hit }}$
- $\left|d_{x y} / \sigma\right|$
- $\sigma_{\mathrm{pt}} / \mathrm{p}_{\mathrm{T}}<0.1$
- $|d z / \sigma|<10$
- Need for some physics tuning
- Pythia simulation






## Primary Vertex Reconstruction

CMS PAS TRK 10-001

## - Adaptive vertex fit to prompt tracks

- using impact parameters \& errors as described in CMS Note 2007/008





PV Position during single fill

- Dominated by beam size
- $x, y: 0.25 \mathrm{~mm}$
- z: 39 mm
-PV Position tracked online -fed to LHC
-PV Resolution well modeled in simulation




## V0 Reconstruction

CMS PAS TRK 10-001

- Look for detached vertexes $\mathrm{K}_{\mathrm{s}} \rightarrow \pi^{+} \pi^{-} \& \Lambda \rightarrow \mathrm{p} \pi^{-}$(ct>1cm)
- Track \& Vertex selection
- $\mathrm{N}_{\text {hit }}>5$ \& track $\chi^{2} / \mathrm{ndof}<5$
- impact parameter $\mathrm{d}_{\mathrm{xy}}>0.5 \sigma$
- vertex $\chi^{2} / \mathrm{ndof}<7$
- $>15 \sigma$ separation in $x-y$ from beam spot
- Clear signals seen
- masses, resolutions \& lifetimes in agreement with expectations
- More $\Lambda$ in data $\rightarrow$ pythia tune
- Normalized to Ks yield

|  |  |  |  | $\sigma\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mass $\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$ | PDG | Data | Simulation |
| $V^{0}$ | Data | Simulation | PDG |  |  |
| $K_{\mathrm{S}}^{0}$ | $497.68 \pm 0.06$ | $498.11 \pm 0.01$ | $497.61 \pm 0.02$ | $7.99 \pm 0.14$ | $7.63 \pm 0.03$ |
| $\Lambda^{0}$ | $1115.97 \pm 0.06$ | $1115.93 \pm 0.02$ | $1115.683 \pm 0.006$ | $3.01 \pm 0.08$ | $2.99 \pm 0.03$ |




## More long-lived particles

- Combine $\Lambda^{0}$ with displaced track: $\mathrm{d}_{0}>0.5 \sigma$
- $m\left(p \pi^{-}\right)$within 8 MeV of $\Lambda$
- kinematic fit to $\Lambda$ improves $\mathbf{p}_{\Lambda}$ determination
- $\pi^{-}$hypothesis: $\Xi^{-} \rightarrow \Lambda^{0} \pi^{-}$
- K-hypothesis: $\Omega^{-} \rightarrow \Lambda^{0} \mathrm{~K}^{-}$
- All tracks d ${ }^{3 D}>3 \sigma$ from refit primary vertex
- common vertex for $\Lambda$ and $\pi / K: P\left(\chi^{2}\right)>1 \% ~ \& ~ v t x>4 \sigma$
- Clear signals seen
- Mass and width in agreement with MC \& PDG
- Yields higher than MC $\rightarrow$ improving pythia tune
- more strangeness, worse agreement


Demonstration of tracking \& vertexing in CMS


$\Omega$ Candidates
7 TeV data


## Candidate $\Xi^{+} \rightarrow \bar{\Lambda}^{0} \pi^{+}$


$\cdot \Xi^{+} \rightarrow \bar{\Lambda}^{0} \pi^{+}$

- $\bar{\Lambda}^{0} \rightarrow \overline{\mathrm{p}} \pi^{+}$
- Additional $\mathrm{K}_{\mathrm{s}} \rightarrow \pi^{+} \pi^{-}$



## Detector Performance: B tagging

- Using 0.919 nb-1 of 7 TeV data
- anti-kT jets R=0.5 (particle flow)
- $\mathrm{p}_{\mathrm{T}}>40 \mathrm{GeV}$ and $\mathrm{I} \mid>1.5$

CMS DPS 2010/015

- MC sample: QCD and minbias mix
- 3D impact parameter (signed)



## Event with 2 b-tagged jets



Electromagnetic Calorimeter: $\pi^{0} \& \eta$ peaks
$0.43 \mathrm{nb}^{-1}$

- Light diphoton resonances in $0.43 \mathrm{nb}^{-1}$ of minimum bias data
- $\pi^{0} \rightarrow \gamma \gamma$ selection
- barrel $\gamma$ only
- $\gamma$ shower shape
- $\mathrm{p}_{\mathrm{T}}(\gamma)>0.4 \mathrm{GeV}$
- $\mathrm{p}_{\mathrm{T}}(\gamma \gamma)>1 \mathrm{GeV}$
- $\eta \rightarrow \gamma \gamma$ selection
- $\mathrm{p}_{\mathrm{T}}(\gamma)>0.5 \mathrm{GeV}$
- $\mathrm{p}_{\mathrm{T}}(\gamma \gamma)>2.5 \mathrm{GeV}$
- Agreement on energy scale at $\sim 1 \%$ level
- width well modeled
- Now used in dedicated stream for ECAL calibration \& monitoring


CMS Status - Karl.Ecklund@rice.edu


## Detector Performance: Jets

CMS DPS 2010/014

- Dijet Mass distributions at 7 TeV
- Event selection: good primary vertex $|z|<15 \mathrm{~cm}$, minBias
- Jet selection: $|\eta|<3, p_{T}>25 \mathrm{GeV}$, Njet=2, $\Delta \phi>2.1$

。 anti-kT jet algorithm with cone size $\Delta \mathrm{R}=0.5$

- initial jet calibrations (eta uniformity and absolute scale) applied
- Three types of jet reconstruction applied





## Detector Performance: Missing $\mathrm{E}_{\top}$

- Missing $\mathrm{E}_{\mathrm{T}}$ in dijet sample

CMS DPS 2010/014

- Noise cleaning applied to correct detector effects
- Status:
- Core described well
- Tails reduced by cleaning, but still more tails in data
- Ongoing work on noise removal




## Missing ET resolution: Data vs MC

CMS DPS 2010/014



- Good agreement in $\sigma\left(\mathrm{ME}_{\mathrm{T}}\right)$ in data/MC comparisons
- example shown for track corrected missing $\mathrm{E}_{\mathrm{x}, \mathrm{y}}$ vs $\Sigma \mathrm{E}_{\mathrm{T}}$
- Jet, Missing ET performance: CMS DPS 2010/014 (available on CDS)


## Muons $\mathrm{J} / \psi \rightarrow \mu \mu$

- $1 \mathrm{nb}^{-1}$ data sample
- $J / \psi \rightarrow \mu \mu$ candidates
- Single $\mu$ pT> 3 GeV trigger
- Track selection
- $\mathrm{d}_{0}<5 \mathrm{~cm} \mathrm{~d}_{\mathrm{z}}<20 \mathrm{~cm}$
- $\mathrm{N}_{\text {nit }}>10$
- Vertex $P\left(\chi^{2}\right)>1 \%$
- Global Muon (GM)

- tracker and muon system jointly fit (outside $\rightarrow$ in)
- Tracker Muon (TM)
- track matched to hits in muon system (inside $\rightarrow$ out)
- Sample for early muon studies ; Upsilon to follow soon \& Z's


## Muon Candidate



## First Physics Papers: $\frac{d N_{c h}}{d \eta}$

- Understanding of hadron production at 7 TeV
- backgrounds to physics of interest at LHC
- First hour of collisions: $1.1 \mu \mathrm{~b}^{-1}$
- Minimum bias trigger from beam scintillation counters
- require PV \& forward HCAL > 3 GeV
- Count charged tracks with 3 methods
- pixel clusters, pixel tracklets \& tracks
- Corrected to non-single diffractive cross section (NSD)
- Rise in particle density at 7 TeV
- above frequently used models
- new tune for PYTHIA

CMS-QCD-10-006 arXiv:1005.3299 (7 TeV )
JHEP 02 (2010) 041 (0.9, 2.36 TeV)
CMS Status - Karl.Ecklund@rice.e


## Status of High pт Physics

## With $20 \mathrm{nb}^{-1}$ we can expect some W \& Z candidate events. Here's what's publicly released by CMS:

## First look taken with only $1 \mathrm{nb}^{-1}$

## $\mathrm{W} \rightarrow \mu \nu \& \mathrm{~W} \rightarrow$ evselection

- muon
- $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$ track pointing at mu hits
- Inl>2.1
- electron
- high pT track matched to ECAL
- track+calorimeter isolation for lepton
- Large Missing $\mathrm{E}_{\mathrm{T}}$
- acoplanarity of $\mathrm{ME}_{\mathrm{T}}$ and lepton
- Expect 8-9 W candidates in $1 \mathrm{nb}^{-1}$
- Found $3 W \rightarrow \mu \nu$ and $3 W \rightarrow$ ev candidates


## $Z \rightarrow e e \& Z \rightarrow \mu \mu$ selection

- same lepton ID as for W
- lepton ID predetermined with MC
- $\mathrm{p}_{\mathrm{T}}>10 \mathrm{GeV}$ (two leptons!)
- invariant mass near the $Z$
- Expect $\sim 1$ event in $1 \mathrm{nb}^{-1}$
- Found 1 candidate

After this "hunting" phase, work has moved to statistical analysis of distributions, i.e. the familiar physics analysis methods.
That said, here are event displays of some vector boson candidates.


CMS Experiment at LHC, CERN Run 133875, Event 1228182 Lumi section: 16
Sat Apr 24 2010, 09:08:46 CEST

Muon $\mathrm{p}_{\mathrm{T}}=38.7 \mathrm{GeV} / \mathrm{c}$ $\mathrm{ME}_{\mathrm{T}}=37.9 \mathrm{GeV}$
 $M_{T}=75.3 \mathrm{GeV} / \mathrm{c}^{2}$


CMS Experiment at LHC, CERN Run 133874, Event 21466935 Lumi section: 301
Sat Apr 24 2010, 05:19:21 CEST

```
Electron \(\mathrm{p}_{\mathrm{T}}=35.6 \mathrm{GeV} / \mathrm{c}\) \(\mathrm{ME}_{\mathrm{T}}=36.9 \mathrm{GeV}\) \(M_{\mathrm{T}}=71.1 \mathrm{GeV} / \mathrm{c}^{2}\)
```



CMS Experiment at LHC, CERN Run 133877, Event 28405693 Lumi section: 387
Sat Apr 24 2010, 14:00:54 CEST
Electrons $\mathrm{p}_{\mathrm{T}}=34.0,31.9 \mathrm{GeV} / \mathrm{c}$


## Top Expectations

- Data samples are approaching soon where t tbar signals will be seen in CMS at the LHC
- $20 \mathrm{nb}^{-1}$ now, but expecting $1000 \mathrm{nb}^{-1}$ by ICHEP
- I have shown you many ingredients needed for top:
- Missing $\mathrm{E}_{\mathrm{T}}$, b tagging, leptons, jets
- Additional details on CMS performance in first data to be presented by J. Maes on Wednesday
- CMS Top analysis presentations at TOP 2010 :
- "Background Strategies" M. Barrett, on Wednesday
- "Jets in top events" R. Wolf, on Thursday


## Conclusion \& Outlook

- LHC commissioning is in progress at 7 TeV , with geometric growth to the luminosity
- Expect $\_\sim 1 \mathrm{pb}^{-1}$ by ICHEP, $100 \mathrm{pb}^{-1}$ by end of 2010
- First run at 7 TeV (2010-11): $1 \mathrm{fb}^{-1}$ goal
- The CMS experiment is off and running!
- cosmic ray and beam collision data shows expected performance
- tracking, calorimetry, lepton ID \& physics performance studies with data are well underway
- High pt physics commissioning
- W and Z candidates recorded, detailed studies underway
- First top candidate events are likely on "tape"
- Early measurements expected for ICHEP

