Some remarks on top

Werner Bernreuther RWTH Aachen

Top 2010, 3rd Int. Workshop on Top Quark Physics, Brugge, May 31 - June 4, 2010

Where do we stand

Significant progress in exploration of top physics since Top2008 ws @ La Biodola/Elba

CDF @ D0 experiments @ Tevatron:

Impressive number of new results, including

improved measurements of $\sigma_{t\bar{t}}$ in the main channels single top production: evidence \longrightarrow observation improved ms. of top mass (value "converges") knowledge about t decay – i.e. its flavour-interactions – refined: $t \rightarrow bW$ still the only decay-mode observed strength & structure of tWb vertex known to $\mathcal{O}(10\%)$ top width recently measured: direct ms. (CDF), indirect ms. (D0) $t\bar{t}$ events: ms. of distributions, including charge asymmetry

 $t\bar{t}$ spin correlations

 $M_{t\bar{t}}$ spectrum and search for resonances $m_X \lesssim 1 \text{ TeV}$

Recent progress in theory/phenomenology (≥ 2008), including

updates of $\sigma_{t\bar{t}}$ (NLO QCD + threshold resumm. (NLL))	
(Moch, Uwer; Cacciari et al.; Kidonakis, Vogt, 2008)	
NNLL extensions (Czakon et al., Beneke et al., Ahrens et al.)	
oduction threshold $\beta = \sqrt{1 - 4m_t^2/\hat{s}} \to 0$ vs. thresh. in P.I.M. kinematics $z = M_{t\bar{t}}^2/\hat{s} \to 1$ (no phase space for hard gluon emise \longrightarrow talk by S. Moch	.s.)
σ_{II} very near prod. threshold (Hagiwara et al., Kivo et al.) \longrightarrow talk by H. Yokova	
$_{FB}$ from threshold resummed cross section (Almeida et al., Ahrens et al.) \rightarrow talk by G. Rodrigo	
partial results towards $\sigma_{t\bar{t}}$ @ NNLO QCD (Czakon, Bonciani et al.,)	
$t\bar{t}$ + jets & NLO; top as important background to Higgs searches: weak boson fusion $W^+W^- \rightarrow H$, and $t\bar{t}H$: $t\bar{t}$ + jet (Dittmaier, Uwer, Weinzierl; Melnikov, Schulze) $pp \rightarrow t\bar{t} + b\bar{b}$ (Bredenstein et al., Bevilacqua et al.) $pp \rightarrow t\bar{t} + 2$ jets (Bevilacqua et al.)	
\longrightarrow talk by M. Worek	
$t\bar{t}$ spin correlations revisited (Mahlon, Parke; W.B., Si) \longrightarrow talk by G. Mahlon	
PDF \longrightarrow talk by A. Guffanti	
new features in NLO MC generators MC@NLO, POWHEG, MCFM \longrightarrow talk by P. Nason	
special programs for $t\bar{t}$ production & decay @ NLO QCD (Melnikov, Schulze), + weak-int. corr. (W.B., Si)	
single top t channel production @ NLO QCD within 4 and 5 flavour scheme (Campbell et al.) \longrightarrow talk by R. Frederix	
Wt production @ NLO QCD within MC@NLO (Frixione et al.) \longrightarrow talk by C. White	
many pheno studies, including	
boosted tops (Almeida et al., Kaplan et al.,) \longrightarrow talk by E. Chabert	
comprehensive det. of anomalous couplings in single t production and t decay (simulation code) (Aguilar-Saavedra et al.)	
many pheno investigations on BSM effects in top production @ decay, including	
BSM contributions to A_{DD}^{t} (~ 30 papers) \rightarrow talk by G. Rodrigo	
effects of a 4th generation or of heavy exotic quarks \longrightarrow talk by G. Hou	
resonance studies. $X_T \rightarrow t\bar{t}$, BSM Higgs, colored resonances, KK states,	
BSM CP violation \longrightarrow talk by G. Valencia	

Thus, state of the art:

CDF and D0: \longrightarrow so far, top behaves pretty much standard $(A_{FB}^t \text{ may point to an exception})$ Theory: main ttX and single t processes computed to NLO in SM gauge couplings, many options for BSM effects studied

Present & future issues:

- ullet sharpen top profile further: mass, charge, spin, decay modes & width
- more detailed ms./investig. of cross sections & distributions
- Hope to gain potentially new insights into flavour physics
 New decay modes ? t → t̃ ..., FCNC decays t → c ?
 or detectable FCNC in top production: pp → tc̄ X ?
 Hints for existence of a new quark generation or exotic heavy quarks?
- Eventually explore:

top's capability to probe mechanism of electroweak gauge-symmetry breaking

Remarks on some topics (subjective choice):

- mass
- strength and structure of tWb vertex, new decay modes
- Charge asymmetry @ Tevatron
- $t\bar{t}$ spin correlations
- Single top production
- new heavy resonances $X_J \rightarrow t\bar{t}$ in "early" LHC phase?

Top quark mass

Precisely measured by exploitation of $t\bar{t}$ event kinematics using matrix element method, template method,

CDF & D0 average (2009): $m_t^{exp} = 173.1 \pm 1.3 \text{ GeV}$

 m_t^{exp} has an error of 0.75 % – but which mass is measured?

Discussion already @ top2008/Elba: (A. Hoang, ...)

Relation to a (well-defined) quark mass parameter?

 $m_t^{exp} \leftrightarrow m_t^{pole}$ is reasonable, but cannot be completely correct.

Exp. determination hard to map onto a QCD calculation

 m_{top} from peak of invariant mass distribution and from fits to Born ME:

from D. Wicke

Color reconnection, i.p. color exchange between t, \bar{t} decay products (i.p. b and \bar{b}) and proton remnants non-perturbative QCD effect

heuristic Monte-Carlo model (Skands, Wicke 2008):

 $\rightarrow \delta m_t \approx 0.5$ GeV (color reconnection), taken into account by D0 and CDF **Challenge:** Ab initio calc. of color reconnection effects in hadronic $t\bar{t}$ production & decay Exploiting that $\frac{\Delta\sigma}{\sigma} \simeq -5 \frac{\Delta m_t}{m_t}$ both for Tevatron & LHC cross section

Computation of $\sigma_{t\bar{t}}$ in terms of a short-distance mass, e.g. $m_t^{\overline{\mathrm{MS}}}$:

$$\sigma^{exp}_{t\bar{t}} \leftrightarrow \sigma^{th}_{t\bar{t}}(m^{\overline{\mathrm{MS}}}_{t})$$

Determination of \overline{MS} mass \overline{m}_t from $\sigma_{t\bar{t}}$ @ Tevatron (Langenfeld, Moch, Uwer):

$$\overline{m}_t(\mu = \overline{m}_t) = 160.0 \pm 3.3 \text{ GeV} \quad \leftrightarrow \quad m_t^{pole} = 168.9 \pm 3.5 \text{ GeV}$$

However, SM production dynamics is assumed!

Other kinematical methods (in high lumi phase of LHC):

•
$$t\bar{t} \rightarrow b (\rightarrow J/\Psi \rightarrow \mu\mu) + \ell\nu_{\ell} + \text{jets}$$

 $m_t \text{ correlated with inv. mass } M_{J/\Psi\ell} \text{ (Kharchilava)}$

similar variable: $M_{\ell+j_b}$. At LO: max $M_{\ell+j_b}^2 = m_t^2 - m_W^2$, NLO dist. by Melnikov, Schulze (sensitivity to m_t studied?)

- m_t from b hadron decay length (Incandela)
- $\langle M_{t\bar{t}} \rangle$ and higher moments sensitive to m_t (assuming SM) (Frederix, Maltoni)

These methods have different theoretical and exp. uncertainties - new studies/ideas?

 \longrightarrow talks by G. Corcella, O. Brandt,

$t \rightarrow bW$ & universality of weak interactions

in 3-gen. SM: $B(t \to bW) \simeq 99.9\%$ D0: $B(t \to bW) = 0.97^{+0.09}_{-0.08}$

Lorentz structure from W-boson helicity fractions: precisely known in SM (Do et al., Piclum et al.)

 $f_0(h_W=0)\simeq 70\%, \qquad f_-(h_W=-1)\simeq 30\%, \qquad f_+(h_W=+1)\simeq 0.1\%$ depend on m_t

Measurements by $\cos heta_\ell^*$, $M_{\ell b}^2$, p_T^ℓ distributions

CDF, D0: 1- and 2-parameter fits $\longrightarrow \delta f_{0,\mp} \sim 10\%$

 \longrightarrow talks by D. Mousumi, A. Harel

Interpretation in terms of form factors/anomalous couplings: Lorentz covariance \Rightarrow

$$\frac{g_W}{\sqrt{2}} \left\{ \ \bar{b}\gamma^{\mu} (f_L P_L + f_R P_R) t W_{\mu} + \bar{b}i\sigma^{\mu\nu} \frac{q_{\nu}}{m_W} (g_L P_L + g_R P_R) t W_{\mu} \right\}$$

• SM with 3 quark generations: $f_L = V_{tb}$, i.e. $|f_L| = 1$, $f_R, g_L, g_R = 0$

(small) admixture of V + A coupling $t_R \to b_R$? chirality flipping couplings $t_R \to b_L$ or $t_L \to b_R$?

• strong indirect constraints on f_R and g_L from decays $B \to X_s \gamma$: $\longrightarrow |f_R|, |g_L| \lesssim \text{few } \times 10^{-3}, \text{ but not fool-proof}$

Studies for LHC, 14 TeV, 10 fb⁻¹: Hubaut et al.; Aguilar-Saavedra et al., • $|\delta f_R| \gtrsim 0.06$, $|\delta g_L| \gtrsim 0.05$, $|\delta g_R| \gtrsim 0.03$

• strength of vertex, i.e. $f_L: \leftrightarrow$ single top production D0: 1.07 ± 0.12 CDF: $0.91 \pm 0.11 \pm 0.07$

(long term) goal for LHC: $|\delta f_L| \sim 0.05$

Sensitivity to these couplings @ LHC (7 TeV) with $< 1 \text{ fb}^{-1}$?

Theoretical expectations for form factors f_L, f_R, g_L, g_R :

• SM extensions with 3 quark generations:

multi-Higgs extensions, SUSY extensions, TC2 models ...

 $\begin{array}{ll} \mbox{1-loop corrections} \to f_R, g_L, g_R \neq 0, \mbox{ but very small, $\lesssim 0.01$} \\ \mbox{i.p. phases due to FSI or non-standard CP violation are small} \\ \mbox{ deviation of f_L from $V_{tb}^{SM} = 0.999..: \lesssim a few \%$} \end{array}$

• deviation $\delta f_L \sim 0.1$ possible if new, heavy Q = 2/3 quarks exist that mix with top. 4th sequential quark generation t', b': $\rightarrow 4 \times 4$ mixing matrix $\rightarrow |f_L| = |V_{tb}| < 1$

scans using imput from B, D, K decays, electroweak precision measurements (S, T): $\rightarrow |f_L| = |V_{tb}| > 0.93$ Eberhardt et al. (2010)

more exotic possibility: new heavy vector-like T quark Little Higgs models; models with extra dim., ... $|f_L|\gtrsim 0.9$

Other top decay modes?

• CKM-suppressed modes in SM:

$$B(t \to W^+ s) = 1.9 \times 10^{-3}, \quad B(t \to W^+ d) = 10^{-4}$$

• New decay modes, e.g. $t \to b \ H^+$ or $t \to \tilde{t} \ \tilde{\chi}^0$? Searches by CDF and D0 (negative so far) still leave some room for light H^{\pm} or light \tilde{t}

• FCNC decays $t \to c$? most SM extensions predict very small Br (Bar-Shalom et al.,...) CDF (2009): $B(t \to Zq) < 0.037$ (Bar-Shalom et al.,...)

B(t ightarrow cg)	$B(t \to cZ)$	$B(t o c\gamma)$	
10^{-11}	10^{-13}	10^{-13}	SM
$\sim 10^{-4}$	$\sim 10^{-6}$	$\sim 10^{-6}$	₽ SUSY

 $Br\gtrsim 10^{-3}$ would point to mixing of t with exotic (vector-like) quark(s) (Del Aguila et al.,...)

The charge/forward-backward asymmetry @ Tevatron

differential top charge asym. (y= rapidity of t and or \bar{t} in lab. frame)

integrated charge asy.

$$A(y) = \frac{N_t(y) - N_{\bar{t}}(y)}{N_t(y) + N_{\bar{t}}(y)}, \qquad A = \frac{\int\limits_{y>0}^{y>0} N_t(y) - \int\limits_{y>0}^{y} N_{\bar{t}}(y)}{\int\limits_{y>0}^{y>0} N_t(y) + \int\limits_{y>0}^{y} N_{\bar{t}}(y)}$$

pair asym.
$$A^{t\bar{t}} = \frac{\int N(\Delta y > 0) - \int N(\Delta y < 0)}{\int N(\Delta y > 0) + \int N(\Delta y < 0)}, \quad \Delta y = y_t - y_{\bar{t}}$$

Halzen et al. (1998), ..., Kühn, Rodrigo (1999), Bowen et al. (2006), Antunano et al. (2008), Almeida et al. (2008) generated by asym. terms $t \leftrightarrow \bar{t}$ in $\mathcal{O}(\alpha_s^3)$ M.E. of $q\bar{q} \rightarrow t\bar{t}(g)$ and (much smaller) $gq(\bar{q}) \rightarrow t\bar{t}q(\bar{q})$. NLO computation by Kühn, Rodrigo (1999) – actually LO, because asys are $\mathcal{O}(\alpha_s)$ updated by Antunano, Kühn, Rodrigo (2008):

$$A = 0.051(6), \qquad A^{t\bar{t}} = 0.078(9) \qquad \text{with LO PDF}$$

contains factor 1.09 for contrib. of weak-int. corrections to $q\bar{q} \rightarrow t\bar{t}$

QCD computations of A from threshold resummed cross sections: Almeida et al.(2008) (NLL), Ahrens et al.(2010) (NNLL) $A = 7.3^{+1.1}_{-0.7}\%$ i.e. theory uncertainty $\sim 15 - 20\%$ Experimental results ($\ell + j$ final states): D0 (2008): $A^{t\bar{t}} = 0.12 \pm 0.08 \pm 0.01$ (not unfolded) CDF (2008): $A^{t\bar{t}} = 0.24 \pm 0.14$ (unfolded) CDF (2009): $A^t_{FB} = 0.193 \pm 0.065 \pm 0.024$ (unfolded)

- new physics must provide positive contribution
- why no hint of new physics in other distributions?

Lepton charge asymmetries @ Tevatron, $\ell+j$, $\ell\ell'$ final states:

Lepton asymmetry:

pair asymmetry:

$$A^{\ell} = \frac{\int \limits_{y>0} N_{\ell^+}(y) - \int \limits_{y>0} N_{\ell^-}(y)}{\int \limits_{y>0} N_{\ell^+}(y) + \int \limits_{y>0} N_{\ell^-}(y)}, \qquad A^{\ell\ell} = \frac{\int N(\Delta y_{\ell} > 0) - \int N(\Delta y_{\ell} < 0)}{\int N(\Delta y_{\ell} > 0) + \int N(\Delta y_{\ell} < 0)}$$

where $\Delta y_\ell = y_{\ell^+} - y_{\ell^-}$ in lab. frame

 A^ℓ and $A^{\ell\ell}$ should be easier to measure than A and $A^{t\bar{t}}$, but so far not measured (?)

W.B., Si (2010): calc. for $\ell\ell'$ final states @ Tevatron with standard acceptance cuts: fixed order NLO (production & decay) with mixed weak-QCD corrections included

	Tevatron ($tar{t}$ correlated)			Tevatron ($tar{t}$ uncorrelated)		
μ	$m_t/2$	m_t	$2m_t$	$m_t/2$	m_t	$2m_t$
A^{ℓ} (NLO')	0.038	0.033	0.031	0.037	0.033	0.030
A^{ℓ} (NLOW')	0.039	0.034	0.032	0.038	0.035	0.032
$A^{\ell\ell}$ (NLO')	0.047	0.042	0.038	0.050	0.045	0.041
$A^{\ell\ell}$ (NLOW')	0.048	0.044	0.040	0.052	0.047	0.043

scale uncertainties underestimate th. error. More realistic etimate: threshold calc. $\longrightarrow \delta A \sim 30\%$

may eventually lead to more conclusive comparison between SM and exp.

$$p\bar{p}, pp \to t\bar{t} \to \ell^+ + \text{jets} + E_T^{miss}$$

non-SM PV interactions \Rightarrow long. pol. $< \mathbf{s}_t \cdot \hat{\mathbf{k}}_t > \Rightarrow$ nontrivial dist. $\sigma^{-1} d\sigma / d \cos \theta_{\ell^+}$ W.B., Si: SM prediction: NLO QCD + mixed weak-QCD corr.

with acceptance cuts for LHC (14 TeV):

- distribution would be flat without cuts & weak int. switched off
- dist. $\sigma^{-1} d\sigma / d\cos \theta_{\ell^{-}}$ identical to this order
- \bullet dist. for Tevatron $\ell+\mathrm{jets}$ events same shape

If top charge asy. receive contrib. from new PV interactions \Rightarrow longitudinal top pol. \Rightarrow expect non-flat dist. for $\cos \theta_{\ell} > 0$.

$t\bar{t}$ spin correlations

```
measured @ Tevatron (2009, 2010):
```

```
\ell\ell' events (~ 200): D0: beam basis, CDF: off-diagonal basis
CDF: helicity basis, \ell + j events (~ 1000)
```

agree within still large exp. errors with SM NLO QCD predictions W.B. et al. (2004), W.B., Si (2010)

 \longrightarrow see talk by G. Head

As SM dynamics @ LHC is dominated by $gg \rightarrow t\bar{t}$ sensitive correlations: helicity correl. and opening angle distrib.

Observables are designed such that they discriminate betw. correlated @ uncorrelated $t\bar{t}$ events require reconstruction of t and \bar{t} rest frames difficult for $\ell\ell'$ events, which have highest sensitivity

Mahlon, Parke (2009,2010): **Dilepton azimuthal angle correlation** $\frac{1}{\sigma} \frac{d\sigma}{d\Delta\phi}$ **@ LHC (14 TeV)**, where $\Delta\phi = \phi^+ - \phi^$ **measured in lab frame** discriminates between correlated & uncorrelated $t\bar{t}$ events for $\ell\ell'$ events with low $M_{\ell\bar{t}}$

discriminates between correlated & uncorrelated $t\bar{t}$ events for $\ell\ell'$ events with low $M_{t\bar{t}}$. useful cut for LHC (14 TeV): $M_{t\bar{t}} < 400$ GeV

W.B., Si (2010) calc. @ NLO QCD (incl. weak int.) with acceptance cuts

event nr. @ LHC (14 TeV): $\sigma_{\ell\ell'}(M_{t\bar{t}} < 400 \,\text{GeV}) / \sigma_{\ell\ell'} \simeq 18.6\% \implies \sim 3200 \text{ dilepton events with 1 fb}^{-1}$

- shapes depend sensitively on how precisely $M_{t\bar{t}}^{\text{cut}}$ can be determined by exp.
- $\frac{1}{\sigma} \frac{d\sigma}{d\Delta\phi}$ looses dicriminating power rapidly for $M_{t\bar{t}}^{\text{cut}} > 400 \text{ GeV}$
- more robust cut variable ? transverse mass ?

 \longrightarrow talk by G. Mahlon

While $\sigma^{-1}d\sigma/d\Delta\phi$ probes $t\bar{t}$ spin dynamics only in low-energy tail of $M_{t\bar{t}}$ spectrum, for high energy tail - possible (non)resonant new physics effects – helicity and opening angle correlation $\sigma^{-1}d\sigma/d\cos\varphi = (1 - D\cos\varphi)/2$ can be used

In addition: measure CP-odd angular correlations/asymmetries (due to CP-odd $t\bar{t}$ spin correlations) \leftarrow generated by non-SM CPV interactions

 \longrightarrow talk by G. Valencia

Expectations for measuring spin correlations @ LHC (7 TeV) with $< 1 \ { m fb}^{-1}$?

a few hundred to $10^3 \ \ell \ell'$ events selected (?) obviously: $\ell + j$ events should also be used: sensitivity smaller by factor \sim 2, but 6 \times more statistics

Single top production:

- •weak interactions involved in production; in SM: $\sigma_t \propto |V_{tb}|^2$
- source of **polarized** tops
- possible **new physics effects** (charged resonances, FCNC) different from $t\bar{t}$
- may eventually allow determination of *b*-quark distribution

3 production channels in SM:

D0 & CDF (2009): evidence → observation SM cross sect. known to NLO + weak corr. (Harris et al., Campbell et al., Cao et al., Kidonakis (resumm.),, Beccaria et al.)

Expectations for LHC @ 7 TeV?

uncert. of cross-sect. predictions? 4- vs. 5-flavour scheme \longrightarrow talk by R. Frederix expectations for improving on ms. of f_L ? \longrightarrow talk by D. Hirschbuel polarization ms. ?

.

Search for heavy resonances that strongly couple to $t\bar{t}$

Extensions of SM and/or alternatives to Higgs mechanism e.g. supersymmetric extensions, top-condensation, extra dim. models ... \rightarrow heavy resonances that couple (strongly) to top quarks could be a non-SM Higgs boson, a bound state, a KK excitation... or a heavy top T, ... Many investigations

$q_e = 0$ bosonic resonances φ_J that couple to $t\bar{t}$:

 $\varphi_{\mathbf{J}}$: a non-SM Higgs boson (2HDM, SUSY,...), leptophobic Z' (top-color models), massive J = 1 color-octet state (KK gluon, axigluon), massive J = 2 KK state, ...

Exclusion limits from Tevatron: Search for $p\bar{p} \rightarrow \varphi_J \rightarrow t\bar{t}$:

D0, CDF: leptophobic Z' with $M_{Z'} < 820$ GeV (assumption: $\Gamma_{Z'} = 0.012M_{Z'}$) massive KK gluon with $M_G \lesssim 1$ TeV, \longrightarrow talk by P. Sinervo

will take a while to be superseded @ LHC

perhaps most conservative speculation: $\varphi = heavy Higgs boson$

$$H$$
 $(J^{PC} = 0^{++})$ or A $(J^{PC} = 0^{-+})$, $M \gtrsim 2m_t$
(2HDM, MSSM,)

Specific feature of pseudoscalar $A: A \not\rightarrow W^+W^-, ZZ$ in lowest order, but A can strongly couple to top quarks

interference of amplitudes leads to typical peak-dip resonance structure in $M_{t\bar{t}}$ spectrum Dicus, Stange, Willenbrock (1994); W.B., Flesch, Haberl (1998), Frederix, Maltoni (2009),

If φ exists, with 300 GeV $\lesssim m_{\varphi} \lesssim \mathcal{O}(600 \, {
m GeV})$ & strong coupling to top

 $\rightarrow t\bar{t}$ resonance bump conceivable @ LHC, but not at Tevatron !

Of course, exp. resolution and understanding of non-resonant background crucial How well can $M_{t\bar{t}}$ spectrum be measured after 1st LHC (7 TeV) running period?

However, we – especially many theorists among us – have to face reality:

We have the LHC @ 7 TeV and perhaps an int. lumi $\sim 200~{\rm pb}^{-1}$? at the end of 2011

Needless to say: ATLAS @ CMS first have to calibrate their detectors & software tools, etc.

```
What kind of top physics can we expect? (with \sim 200 \text{ pb}^{-1})

\sigma_{t\bar{t}} \simeq 150 \text{ pb} \rightarrow 30 \text{ k} t\bar{t} \text{ before sel.} \sigma_t \simeq 65 \text{ pb} \rightarrow 13 \text{ k} t

after sel. \sim 200\ell\ell', 2\text{ k} \ell j

cross sections, \delta \sigma_{t\bar{t}}?

distributions ?

.....

When will the first single Euro tops be detected? the TEUROs

What will come more from CDF @ D0 ?
```

Backup slides

Top quark width

In the SM: t quark decays almost 100 % into

$$t \to b + W^+$$

Top decay width: precisely known in SM $(\mathcal{O}(\alpha_s^2))$: $\Gamma_t^{SM} = 1.3 \text{ GeV} \rightarrow \text{lifetime } \tau_t \simeq 4 \times 10^{-25} \text{ sec}$ Exploration of top interactions so far: $\rightarrow \Gamma_t$ can't differ much from Γ_t^{SM} ! D0 2010: $\Gamma_t = 2.1 \pm 0.6 \text{ GeV}$ CDF 2010: 0.3 GeV $< \Gamma_t < 4.4 \text{ GeV}$

t and $ar{t}$ decay before they can form hadronic bound states $(tar{q})$, (tqq')

top quark \sim quasi-free, instable particle \rightarrow top-quark spin effects are calculable and measurable – remains to be fully explored.

. .

 $tar{t}$ spin correl. in $\ell\ell'$ and $\ell+j$ final states :

With acceptance cuts, use instead the estimators (esp. for double dist.):

$$\hat{C} = -9\langle\cos\theta_1\cos\theta_2\rangle$$
$$\hat{D} = -3\langle\cos\varphi\rangle$$

 $\hat{C}=C$, $\hat{D}=D$ when no cuts are applied

(W.B., Brandenburg, Si, Uwer 2004; W.B., Si 2010)

 $\mu=m_t$ (solid), $m_t/2$ (dashed), $2m_t$ (dotted)

helicity correl. @ LHC (14 TeV)

Opening angle distribution @ LHC (14 TeV)

solid = $t\bar{t}$ correlated, dashed = $t\bar{t}$ uncorrelated

 $\frac{1}{\sigma}\frac{d\sigma}{d\Delta\phi}$ with no cut on $M_{t\bar{t}}$: LHC (14 TeV)

LHC (14 TeV) solid = correlated, dashed = uncorrelated

LHC: $pp \rightarrow A + X \rightarrow t\bar{t} + X \rightarrow \ell + \text{ Jets}$ Example: $m_A = 400 \text{ GeV}$, $\Gamma_A = 12 \text{ GeV}$, $\tan \beta = 3$

 $M_{t\bar{t}}$ [GeV] (W.B., Flesch, Haberl)

exp. resolution and understanding of non-resonant background crucial If resonance φ will be found, \rightarrow spin from polar angle dist., CP parity/properties from spin correlations W. B., Brandenburg, Schmidt, Peskin,