The short term strategy and plan for ttbar and singletop at the LHC

Benedikt Hegner - CERN on behalf of the CMS Collaboration

Pamela Ferrari - Nikhef on behalf of the ATLAS Collaboration

Top decay channels

Top-antitop decay modes

b

- •Di-leptonic channel:
 - low statistics (9%)
 - clean signature S/B 4.5-6.5

•Semi-leptonic channel (e/μ):

- 45% of total
- S/B≈1 (without b-tag)
- Visible top and/or W invariant mass peaks helps

•Fully hadronic(46%):

- high QCD backgrounds.
- Not easy to trigger on (no leptons, need b-tag trigger?)
 Not for early data

First top measurements

The first top measurement to be done with early data is the ttbar x-section determination

Dilepton channel

- 2 opp. charges leptons
- 2 jets or more

• Backgrounds

- 2 real leptons
 - Drell-Yan
 - Dibosons
 - Single-top (Wt)
- fake leptons
 - W+jets, QCD
- Strategy
 - Veto Z window and MET

Lepton+jets channel

- 1 lepton
- 4 jets or more
- Backgrounds
 - combinatorial
 - W+jets
 - single-top
 - fake leptons
- Strategy
 - reconstruct hadronic top
 - cut or fit

Analysis strategy

•Very basic selection:

- > Use unprescaled single lepton triggers
- Very simple/safe object definition
- Consider to use b-tag but with caution
- Also MET is not used in some analysis

•Data-driven background measurements

- Avoid to rely too heavily on simulation:
 - large theoretical uncertainties (QCD-multijet, W+jets about 80-100%)
 - Acceptance uncertainties
 - (lepton fake rate, b-tagging efficiency ...)
- > Use data to measure main backgrounds

All results shown in the next slides are at 10-14 TeV with extrapolations to 7 TeV (where given).

En Route to Top Measurements

Many studies needed before we can look at top physics in real data

- Lepton reconstruction
 - ID and fake rates
 - isolation
 - (trigger) efficiencies via Tag&Probe with Z-events
- Jet and MET reconstruction
 - Efficiencies
 - Jet energy scale
- Electroweak physics
 - Study of W and Z events
- Testing data driven background estimation methods
- Run 133877, Event 28405693 Lumi section: 387 Sat Apr 24 2010, 14:00:54 CEST Electrons p_T = 34.0, 31.9 GeV/c Inv. mass = 91.2 GeV/c²

CMS-DP-2010-012

CMS Experiment at LHC, CERN

With increasing recorded luminosity slowly pushing understanding into the kinematical region of top physics

Flavour Tagging Today

400

200

02

-1.5 -1 -0.5 0

- Both experiments are studying flavour tagging with the data in hand.
 - Many tagged jets have been found, sometimes correlated with nearby leptons or second tags in the event

The emphasis is on "early taggers"

• Not necessarily the ultimate performance, but can be understood quickly.

0.5 1 1.5

3D IP significance

CMS Muons+jets selection @ 10 TeV

- Event selection at 20 pb⁻¹
 - Exactly one high p_{τ} isolated muon >20 GeV
 - 4 high p_T jets of >30GeV
- Top Quark Reconstruction
 - M3: Combine 3 jets (highest pt sum) to form hadr. Top
 - M3': χ^2 sorting using W mass and MET

NO MET

CMS Muons+jets x-section measurement

- Template fit for: M3, M3', Muon η
- Input to the fit are only three templates
 - t+Jets, Single top, W+jets
 (Z+jets has very similar shape
 Expected QCD amount very small)

Source	Uncertainty [%]		
	Fit to $\eta(\mu)$	Fit to M3	Fit to M3'
Statistical Uncertainty (20 pb ⁻¹)	17.7	16.3	11.5
Jet Energy Scale	16.7	15.1	19
tt MC Generator	1.9	14.9	14
tī ISR/FSR	3.3	7.7	2
W+jets Factorization scale	4.4	4.7	4
W+jets Matching threshold	5.5	2.8	4
Single Top Shape	0.1	0.8	1
PDF Uncertainty	5.0	5.0	5.0
Total Systematic Error	19.2	23.8	25.0
Luminosity Error	10.0	10.0	10.0

Luminosity [pb⁻]

CMS data driven background estimate

- In pp collisions W+jets events are charge asymmetric
 - Use these (and other) events with charge asymmetry (ECA) to estimate the EWK background
- Total number of ECA events can be obtained by counting the difference between W⁺ and W⁻ $(N_+ + N_-)_{data} = R_{\pm}(W) \times (N_+ - N_-)_{data}$

using the prediction from MC

$$\mathbf{R}_{\pm}(\mathbf{W}) = rac{\mathbf{N}_{W+} + \mathbf{N}_{W-}}{\mathbf{N}_{W+} - \mathbf{N}_{W-}}$$

Initially statistically limited

9

CMS: QCD background estimate

>4

ets	N(QCD) Predicted	NB	NC	ND	N(QCD) Estimated	
2	327	86625	61	16240	325 ± 26	
3	53	24216	10	5058	48 ± 9	
24	7	5345	3	1148	12 ± 5	

CMS Electron+jets x-section

- Baseline selection at 20 pb⁻¹
 - High p_↑ isolated electron >30 GeV
 - 4 high p_T jets of >30GeV
- Couple of different options to reject γ conversions and Z's

Cross section measurement using M3 template method

	Relative Systematic Uncertainty
Jet Energy Scale	15%
tt MC Generator	10%
tt ISR/FSR uncertainty	3%
W+jets MC Factorization Scale	1%
W+jets MC Matching threshold	5%
Shape uncertainty of Single Top	1%
Shape uncertainty of QCD	2%
PDF uncertainty	5%
Total	20%

ATLAS Lepton+jets selection @ 10 TeV

- Basic event selection
 - high p₁ isolated lepton
 - 4 high p_{τ} jets, 3 of them >40GeV
- Additionally
 - MET>20GeV
 - Combine 3 jets to form hadronic Top (selection that maximizes p_{τ} top)
 - 2 jets satisfy W mass constraint ($m_w \pm 10$ GeV) $\epsilon = 10$ %.

Requiring at least 1 b-tagged jet improves S/B of a factor of 3-4

ATL-PHYS-PUB-2009-087

No b-tagging

4 jets p_⊤> 20 GeV

3 jets p_T**> 40 GeV**

 $P_{T}^{lep} > 20 \text{ GeV}$

E₋miss > 20 GeV

e, µ

@10 TeV 200pb ⁻¹	Signal: electr. ch.	backgrounds	S/N
after selection	1286	598	2.1

ATLAS 2 methods to extract x-sec

- <u>Cut and count method C&C:</u>
 - > Advantage: simple method
 - Disadvantage: Depends on background subtraction. Evaluate backgrounds from data!
 ATL-PHYS-PUB-2009-087

Events

- The fit or template fit to hadronic top mass:
 - Advantage: much less sensitive to the Jet Energy scale and background normalisation
 - Disadvantage: relies on shape of distributions

Electron channel

Method	$\Delta\sigma/\sigma$	Dominant syst.
C&C	3.4(stat) ^{+18.2} _{-21.1} (syst) ± 29.3(lumi)%	JES, ISR/FSR, W+jets
Fit	$14(stat)^{+6}_{-15}(syst) \pm 20(lumi)\%$	JES, ISR/FSR
No MET	3.4(stat) ⁺²³ (syst) ± 34(lumi)%	JES, ISR/FSR, W+jets

ATLAS W+jets data driven estimate

- After event selection (requiring 2 leptons 80<mll<100 GeV for Z's and 1 lepton +MET for W's) use low jet multiplicity region as control region (CR) for Z + jets (W+jets) events
- Extrapolate ratio in the top signal region (SR) : 4 jets or more
- Use ratio W / Z to extrapolate W into signal region

4

ediscover / Tev 102 91 Lepton+Jets

- Few pb⁻¹ gets us to an interesting region
 - Plot for 20 pb⁻¹ at 10 TeV; looks similar to what expected for $\sim 50 \text{ pb}^{-1}$ at 7 TeV
 - At 7 TeV and 10 pb^{-1} , we expect ~60 top events per lepton flavour per experiment over a background of ~40 in the 4 jet, 5 jet and 6+ jet bins.
 - The dijet mass is expected to show a peak near the W: additional confirmation.

Cross-section scaling

Done without flavour tagging, which can be used to confirm the top content of the W +multijet sample.

 $\sigma(\mathbf{t}\overline{\mathbf{t}})_{7} \cong \mathbf{40\%} \ \sigma(\mathbf{t}\overline{\mathbf{t}})_{10} \qquad \sigma(\mathbf{W} + \mathbf{j}\mathbf{e}\mathbf{t}\mathbf{s})_{7} \cong \mathbf{45\%} \ \sigma(\mathbf{W} + \mathbf{j}\mathbf{e}\mathbf{t}\mathbf{s})_{10}$

ATLAS di-lepton analysis

@10 TeV 200 pb⁻¹

- Basic event selection
 - 2 high p_{τ} (>20 GeV) isolated lepton
 - ≥2 jets p₁ >20 GeV
 - MET>20 (eμ)/35 (ee/μμ) GeV

Profile likelihood ratio **____** final sensitivity

3.1(stat)^{+9.6}₋₈₇(syst)^{+26.2}₋₁₇₄(lumi)%

Signal model, fake rate

veto Z mass window

Simple cut-and-count method

(eμ,ee, μμ combined)

Δσ/σ =

ATLAS: Drell-Yan Bkg and fake rates

<u>Drell-Yan</u> mainly in G,H,I - ttbar in A,C Use Z Monte-Carlo and Data (same for C_{Est})

$$A_{Est} = G_{Data} \left(\frac{A_{MC}}{G_{MC}}\right) \left(\frac{B_{Data}}{H_{Data}}\right) \left(\frac{H_{MC}}{B_{MC}}\right)$$

Systematic uncertainty:

 Shift boundaries of the grid ~15% for both channels

Fake leptons from W+jets and QCD

- Define a "tight(T)" and a "loose(L)" lepton
- Efficiencies for "real (R)" ε and "fake(F)" f leptons from data from a signal and control region, respectively

$$N_{\rm Fake} = \left[\frac{f_2(\epsilon_2 - 1)}{\epsilon_2 - f_2} + \frac{f_1(\epsilon_1 - 1)}{\epsilon_1 - f_1}\right] N_{\rm TT} + \frac{f_2\epsilon_2}{\epsilon_2 - f_2} N_{\rm TL} + \frac{f_1\epsilon_1}{\epsilon_1 - f_1} N_{\rm LT}$$

Rate uncertainty 50-100%

CMS di-lepton analysis

@10 TeV

- Basic event selection for 10 pb⁻¹
 - = 2 high p_{T} (>20 GeV) isolated lepton
 - ≥2 jets p_T >30 GeV
 - MET>20 (eμ) / 30 (ee/μμ) GeV
 - veto Z mass window
 - Alternative scenario: using track jets instead of calorimeter jets
- Event selection for 100 pb⁻¹
 - Taking advantage of b-tagging
 - Tighter MET cut:
 - 30 (eμ) / 50 (ee/μμ) GeV

<u>10/pb data estimates:</u> Δσ/σ = ±15%(stat) ± 10 %(syst) ±10%(lum)

Top "Rediscovery" at 7 TeV - di-lepton

- - Each experiment will have ~30 events with an expected background of 5 or 6.
- Even with 5 pb⁻¹, signal already plausible:
 - Each experiment will have ~15 events over a background of around 3.

With ~10 pb⁻¹ convincing signal Expected 10 pb⁻¹ sensitivity (per experiment)

Channel	N(Signal)	N(background)
e - µ	14	2.5
e – e	4.3	1.1
μ - μ	6.6	1.9
Total	25	5.5

ATL-PHYS-PUB-2009-086 + scaling to 10 pb⁻¹ @ 7 TeV.

At 1 pb^{-1} , interesting event displays will start to appear at conferences

Additionally b-tagging might be used

Cross-section scaling $\longrightarrow \sigma(t\bar{t})_7 \cong 40\% \sigma(t\bar{t})_{10} = \sigma(W + jets)_7 \cong 45\% \sigma(W + jets)_{10}$

Effects of new physics

- Physics beyond the Standard Model: Supersymmetry, Large Extra Dimensions, heavy resonances...has often a lot of top activity
- For resonances the cross sections are expected to be small of the order of few picobarns up to 100pb in the most extreme cases.

Effects of new physics on x-section measurement

Effect of Z' on tt-bar x-section measurement Is small: even when assuming Z' coupled to ttbar:

 even in the case of 100% coupling to ttbar, expected cross-section only a few pb number of events passing cuts≈1% of ttbar

- mSugra scenarios give also negligible contributions apart from SU4 which gives sizeable contributions
- indistinguishable from W+jets background

EW-production: single top

ttbar not the only way to produce top quarks. Single top is an interesting alternative:

- Tests directly electroweak production mechanism
- Three different production mechanisms probe different kinematics, and are sensitive to different BSM scenarios
- Large cross section: $\sigma_{t-chan} \sim 1/3\sigma_{tt}$ the large data samples will eventually allow single top to be studies in more detail than at Tevatron

ATLAS 10 TeV single top t-channel

Preselection:

• 1 isolated lepton $P_T > 20$ GeV, MET>20 GeV,

2-4 jets P_{τ} >30 GeV, $M_{t}(W)$ >30 GeV \rightarrow against QCD

- ≥1 b-tag
- only events in 2 jet bin used for x-section

@10 TeV,200 pb ⁻¹	Cut based	Likel.
S	118	112
В	185	127
S/B	0.64	0.89

Overall sensitivity is better for likelihood method (2.7 σ)

Method	$\Delta\sigma/\sigma(\%)$	Dominant syst.
Optimised cuts	15(stat)±34.7(syst)±11(lumi)	b-tag(26%), bkg normalisation, ISR/FSR, Generator
Likelihood	14(stat)±32.1(syst)±11(lumi)	b-tag(22%), bkg normalisation, ISR/FSR, Generator

ATLAS t-chan Background estimation

ATL-PHYS-PUB-2010-003

- Low S/B-> measurement dominated by syst uncertainty on background estimate.
- Need data-driven meas. of ttbar and W+jets rates

Normalization of ttbar and W+jet BKg

- 1 lep, 3 jets, MET, no b-tag
- max likelihood fit of NN discriminant output

constrain 2-jets background using the measurement performed in the 3-jets sample (assuming Alpgen correctly predicts the ratio)

Source		W+jets	$t\bar{t}$
statistical		$\pm 2.0\%$	$\pm 3.5\%$
IFS	+5%	+11.5%	-3.8%
9.53	-5%	-13.4%	+3.7%
PDF		_	$\pm 4.5\%$
Single-top fraction		$\pm 4\%$	$\pm 0.3\%$
Total		$\pm 14.1\%$	$\pm 6.9\%$

CMS Single top in t-channel

CMS PAS TOP-09-005

Selection (muon channel)

==1 isolated lepton (µ) p_T >20 GeV, ==2jets p_T >30 GeV, ==1 b-tag, M_TW >50 GeV (reconstruction using MW constraint and MET variation) 0.1

Cross section measurement

- Tops are almost 100% left-handed polarized
- Polarization measurable in decay products
- Use polarization templates to measure x-section

Source of uncertainty	$\Delta \sigma$ [%]	Expected sensitivity
statistical	± 35	2.8σ
<i>b</i> tagging	± 7.3	2.7σ
mistag	± 0.4	2.7σ
JES	\pm 5.5	2.7σ
MET	\pm 9.9	2.7σ
PDF	\pm 5.5	2.7σ
total	± 39	2.7σ

CMS Preliminary

Single top perspectives at 7 TeV

Single top production is quite challenging

The top pair background is enormous! W+jets is large (large uncertainties)

ATLAS t-channel:

Significance similar to the one at 10TeV with a 2-3 times larger luminosity Needs a lot of preparation work concentrating on b-jet ID, precise measurement of the backgrounds, validation of multi-variate methods

> 30 excess with ~500 pb⁻¹ Observation: ~1 fb⁻¹

ATLAS top mass prospects via Template Method

<u>]</u> – D

1-d analysis based on minimal event information: exploits m_{top}^{stab} estimator sensitive to m_{top} changes, but stable with respect to JES

 $m_{top}^{stab} = \frac{m_{top}^{reco}}{m_W^{reco}} \cdot m_W^{PDG}$

2-d analysis, requiring detailed understanding of detector performances, uses b-tagging and kinematic fit to simultaneously determines m_{top} and the JES from the data, using both the reconstructed top and W boson masses.

Expectations 100pb⁻¹ fb⁻¹] @ ~/S=10 Tev

Exp uncertainties (e+m comb)	stat	syst	total	
1-D analysis @ 100 pb ⁻¹	2 Gev	4 GeV	4.5 GeV	main syst: ISR/FSR b-jet scale
2-D analysis @ 1fb ⁻¹	0.6 GeV	2 GeV	2.1 GeV	28

CMS - rare Top Decays

- The limits on the FCNC decays $t \rightarrow qZ$ and $t \rightarrow q\gamma$ are driven by the top quark pair yield: more tops implies a better limit
- The measurement of BR(t → Wb)/BR(t → Wq) (=R) is driven by the knowledge of the b-tagging efficiency.
 - Measure R/ϵ_b in a data-driven manner:

- Select dilepton (e- μ) events as pure as possible:
 - not to be affected by non top contamination in the sample
- Measure the number of events with 0, 1 and 2 tags.
 - The ratios N_2/N_1 and N_1/N_0 depend differently on R and ϵ_b (i.e. not only on their product)
- Correct for misassignment of jets

CMS- rare Top Decays

- With 250 pb⁻¹ of 10 TeV data, ±9% syst. (mainly b-tag), measurement of R
 - This is the present PDG uncertainty
 - The systematic uncertainties are uncorrelated wrt Tevatron'

@7 TeV this corresponds to ~600 pb⁻¹ (mid-2011)

 Given that LHC is expected to give us many top events: measurements can be performed in different way wrt Tevatron. we can restrict to the cleanest e-µ channel

> adds robusteness and makes combination easier Independent systematic uncertainties

7TeV:How will things look like with few hundred po-

Each experiment expects top yields of

- Dilepton: ~400 per 100 pb⁻¹
- Lepton (e & μ) + Jets: ~1400
 per 100 pb⁻¹ (with large variations depending on selection requirements)
- By the end of 2010, the LHC we may have samples comparable to Tevatron's.

- By the end of 2011, the top samples will be substantially larger
- The physics program with a few hundred pb⁻¹ will look very familiar
 - Top cross-section (at a new energy)
 - Top mass (at the end of the 2011 we might have a determination competive with Tevatron, also averages over 4 experiments, not 2 will be possible)
 - Single Top
 - Rare decays

Conclusions

@LHC the high production rate will allow very rich top quark physics

- Probing Standard Model
- Hints of new physics?
- Our roadmap will be
 - strict collaboration with performance and reconstruction groups
 - Concentrate on simple selections, eventually using b-tagging.
 - First estimate backgrounds from data: QCD, W/Z+jets

Perspectives for early data

- Exciting results already with few ten of pb⁻¹: top re-discovery
- Use top event to calibrate and understand the detector:
 - trigger and lepton ID
 - b-tag
 - Light jet b-jet energy scale
 - MET..

Back-up

tt-bar x-section dependence from ECM

CME(TeV)	σ _{tot} (pb)	$\sigma_{gg/}\sigma_{tot}$	$\sigma_{qq/}\sigma_{tot}$
14	839.9	89%	10%
10	379.8	86%	13%
7	150 .8	55 %	18%

NLO+NLL top pair production cross-section arXiv:hep-ph/0804.2800

errors consist of factorisation and rinormalisation scales and on the parton distribution functions

Trigger commissioning

What can we expect with different integrated luminosities:

- few tens pb⁻¹= verify detection of top, get single efficiency number with 5%-10% accuracy
- @50-100 pb⁻¹ = we get enough events to see turn on curves.
- An important check is to evaluate the absolute fraction muons versus electrons in semileptonic ttbar events: Check that can be done without depending on acceptances etc..
- <u>Verify electron trigger in Z→ ee</u>: the environment and kinematics are different, at present the differences are within few %, but this has to be verified with data. The isolation of electrons could play a different role.
- Commissioning of MET and jets trigger: By using events triggered by lepton trigger and verify that jet trigger and MET fired at proper thresholds.

Systematic uncertainties: electron channel

@10TeV 200 pb-1	Cut & count Error (%)	Fit method Error (%)		
Lepton id	±1	±1		
Lepton trigger	±1	±1		
20% W+jets	±17.4	±3.3		
JES(+5%-5%)	+8.6-9.3 -3.7			
PDF	±1.9	±1.9		
ISR/FSR	+7.6-8.2 -12.9			
Signal MC	±4.4	±4.5		
Bkg uncertainty	±0.4	-		

Cut & count

 $\Delta \sigma / \sigma = 3.4(stat)^{+18.2}_{-21.1}(syst) \pm 29.3(lumi)\%$

Fit

 $\Delta \sigma / \sigma = 14(stat)^{+6}_{-15}(syst) \pm 20(lumi)\%$

Fake lepton rate for dileptons

- Define a "tight(T)" and a "loose(L)" lepton, which contains higher rate of fake leptons.
- Efficiencies for "real(R)" ε and "fake(F)" f leptons from data
 - > $\epsilon_{12} = N_{T|R} / (N_{T|R} + N_{L|R})$: tag and probe in Z window
 - > $f_{12} = N_{T|F}/(N_{T|F}+N_{L|F})$ from low MET (<15 GeV) or low $\Delta \phi$ <1 rad(angle between lepton and MET) fake enriched samples
- Extract number of fake events from matrix inversion

where $N_{RR/RF/FR}$ is the number of events with 2 Real and 1 Real and 1 Fake(F) leptons from Truth. Where ε_1 and ε_2 (f_1 , f_2) are the eff. for the first and the second lepton to be reconstructed as a tight lepton.

Rate uncertainty 50-100%

$$N_{\text{Fake}} = \left[\frac{f_2(\epsilon_2 - 1)}{\epsilon_2 - f_2} + \frac{f_1(\epsilon_1 - 1)}{\epsilon_1 - f_1}\right] N_{\text{TT}} + \frac{f_2\epsilon_2}{\epsilon_2 - f_2} N_{\text{TL}} + \frac{f_1\epsilon_1}{\epsilon_1 - f_1} N_{\text{LT}}$$

JES calibration

Select pure sample of W's in semi-leptonic channel.

1 isol. lepton pT > 20 GeV, 4 jets p_T > 40 GeV,

Etmiss > 20 GeV, 2 b-tags, 150 GeV < mt < 200 GeV

- <u>Iterative method :</u>
 - > find the ratio $\alpha i = M_W^{PDG}/M_i$ where M_i =peak value of dijets forming W the for the Energy interval i.
 - Reiterate procedure few times, with new calibration (converges after few iterations)

Template method: ensemble test with

scale variations

- Template histograms of mjj=mW with different E scales a and relative E resolutions b (PYTHIA tt events)
- $^{\succ}$ compared with MC@NLO tt events. Fit each template histogram to mjj in the « data », find best $\chi 2$
- Systematics 1-2% = given by the stability of the result when changing the combinatorial background
- > Stability of the method with lower luminosities < 2%

RMS of 16 values ~ 1.9 %

» precision of ~ 2 % with 50 pb⁻¹

10

12

14

Measurement number

0.92

0.9

0

16

JES calibration

Select pure sample of W's in semi-leptonic channel.

1 isol. lepton pT > 20 GeV, 4 jets p_T > 40 GeV,

Etmiss > 20 GeV, 2 b-tags, 150 GeV < mt < 200 GeV

- <u>Iterative method :</u>
 - > find the ratio $\alpha i = M_W^{PDG}/M_i$ where M_i =peak value of dijets forming W the for the Energy interval i.
 - Reiterate procedure few times, with new calibration (converges after few iterations)

Template method: ensemble test with

scale variations

- Template histograms of mjj=mW with different E scales a and relative E resolutions b (PYTHIA tt events)
- $^{\succ}$ compared with MC@NLO tt events. Fit each template histogram to mjj in the « data », find best $\chi 2$
- Systematics 1-2% = given by the stability of the result when changing the combinatorial background
- > Stability of the method with lower luminosities < 2%

Light JES and b-Jet Energy Scale

- Apply light jet energy calibration done using W→jj in tt events to b-JES: rely on MC to parametrize JES & b-JES difference
- Use the data to cross-check:
 - > P_T balance in Z+jet events (Z-)leptons): it allows for b-jet calibration and is the most promising channel to provide the corrections, but for the bJES,

only small % of the events contain a b-jet: large systematics coming from bmistag

- A cross check channel would be extremely useful. One can use Zj→bb+j : it would be a powerful tool for the cross check of the b-jet calibration. CDF experience (~2% @0.6fb⁻¹).
 - Special SVT trigger sample: require a leading high PT non-b jet: 120 GeV. This decreases the LVL1 rate, allows to strongly reduce the contribution from direct bb production.

Data Driven b-tag efficiencies and systematics

Systematic	Counting		Topological	Likelihood	Kinematic
	lepton+jet	dilepton			
Light jets and τ	0.1	0.7	0.5	5.2	0.6
Charm jets	0.0	0.8	0.7	4.6	2.2
Jet energy scale	0.9	0.5	0.5	2.5	1.1
b-jet labelling	1.4	1.4	-	-	-
MC generators	0.1	2	0.2	5.9	5.5
ISR/FSR	2.7	2	1	2.2	0.5
W+jet background	1.2	0.3	2.8	9.6	0.3
Single top background	0.1	0.1	1.2	-	1.2
Top quark mass	0.3	0.5	-	4.1	-
Total systematic	3.4	3.5	3.4	14.2	6.2
Statistical (100 pb ⁻¹)	2.7	4.2	-	5.0	7.7
Statistical (200 pb ⁻¹)	1.9	3.0	6.4	4.4	5.5

ATLAS di-lepton x-section

The likelihood function can be maximized to determine the maximum likelihood estimate of all the parameters σ sig. L, α j, where α are different sources of systematics. We then consider the likelihood ratio

$$r(\sigma_{sig}) = \frac{L(\sigma_{sig}, \hat{\mathcal{L}}, \hat{\alpha}_j)}{L(\hat{\sigma}_{sig}, \hat{\mathcal{L}}, \hat{\alpha}_j)}$$

and the profile likelihood ratio $\lambda(\sigma_{sig}) = \frac{L(\sigma_{sig}, \hat{\mathcal{L}}, \hat{\hat{\alpha}}_j)}{L(\hat{\sigma}_{sig}, \hat{\mathcal{L}}, \hat{\alpha}_j)}$

where \hat{L} and $\hat{\Lambda}\alpha_j$ represent the conditional maximum likelihood estimates of L and α_j holding σ_{sig} fixed.

Note, the profile likelihood is always greater than the likelihood ratio, except at the maximum likelihood estimate where they are equal. This means that the curve of $-2 \log \lambda$ is broader than $-2 \log r$, and the difference in the intervals can be attributed to systematics.