Charge asymmetry: a theory appraisal

Germán Rodrigo

Brugge, May 31 - June 4, 2010

The top quark

The top quark is the heaviest known elementary particle: it plays a fundamental role in many extensions of the Standard Model (SM) / alternative mechanisms of EWSB.

Huge statistics from top-antitop quark pair production

Tevatron: $\sigma = 7.6 (5) \text{ pb}$ Integrated luminosity of 10 fb⁻¹: 7x10⁴ top quark pairs **LHC @14 TeV**: $\sigma = 940 (80) \text{ pb}$ with 10 fb⁻¹/year: millions of top pairs per year **LHC @7 TeV**: $\sigma = 160 (10) \text{ pb}$ 200 pb⁻¹ (1fb⁻¹) by the end of 2010 (2011): 10⁵ top quark pairs **Production and decay channels are promising**

probes of new physics.

Charge asymmetry: a theory appraisal

Charge asymmetry in QCD

At O(α_s²): top and antitop quarks have identical angular distributions

A charge asymmetry arises at $O(\alpha_s^3)$

Interference of ISR with FSR LO for ttbar+jet negative contribution

Interference of box diagrams with Born positive contribution

color factor d_{abc}²: pair in color singlet

• Loop contribution larger than tree level top quarks are preferentially emitted in the direction of the incoming quark

Flavor excitation (qg channel) much smaller

Inclusive asymmetry at Tevatron

Charge conjugation symmetry $\left(N_{\bar{t}}(y) = N_{t}(-y) \right)$ Forward-backward

$$A^{p\bar{p}} = \frac{N_t(y>0) - N_{\bar{t}}(y>0)}{N_t(y>0) + N_{\bar{t}}(y>0)} = 0.051(6)$$

$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} = 0.078(9) \quad \Delta y = y_t - 0.078(9)$$

mixed QCD-EW interference: factor 1.09 included

stable to NLL threshold resummations (one per mille) [Almeida,Sterman,Vogelsang, 2008]

NNLL threshold resummations
 [Ahrens,Ferroglia,Neubert,Pecjak,Yang, 2010]
 Not expanding the asymmetry in α_s : the asymmetry decreases by 20% at NLO (K factor), but only by 5% at NLO+NNLL

cos 0

Asymmetry measurements at Tevatron

5

0.8 11 0.7

addn 0.5

0.4

0.3 0.2 0.1

Events

200

160

140 120

100

60

40 20 400

500

 -0.059 ± 0.0079

OF II Preliminar

L = 3.2 fb

600

• **D0** [PRL101(2008)202001] uncorrected

 $A_{FB}^{ppbar} = 0.12 \pm 0.08 \text{ (stat)} \pm 0.01 \text{ (syst)}$ 0.9 fb⁻¹

Limits as a function of the fraction (f) of ttbar events produced via a topcolor leptophobic Z' resonance

• **CDF** [Conf. Note 9724, PRL101(2008)202001]

ppbar rest frame

$$\begin{array}{ll} \mathsf{A}_{\mathsf{FB}}^{\mathsf{ppbar}} = 0.193 \pm 0.065 \; (\mathsf{stat}) \pm 0.024 \; (\mathsf{syst}) & 3.2 \; \mathrm{fb^{\text{-1}}} \\ \mathsf{A}_{\mathsf{FB}}^{\mathsf{ppbar}} = 0.17 \pm 0.07 \; (\mathsf{stat}) \pm 0.04 \; (\mathsf{syst}) & 1.9 \; \mathrm{fb^{\text{-1}}} \end{array}$$

ttbar rest frame

IFIC

CSIC

Germán Rodrigo

0.5 .0.5 1.9 fb⁻¹ Q_*y $A_{FB}^{ttbar} = 0.24 \pm 0.13 \text{ (stat)} \pm 0.04 \text{ (syst)}$ CDF II Preliminary L=1.9fb⁻¹ bg subtracted DF Data $A_{FB}^{ttbar} = 0.119 \pm 0.064$ (stat) 0.4 At least 4 jets: Pythia Herwig A_{FB}^{ij} ttbar = 0.132 ± 0.075 (stat) MC@NLO Exact 4 jets: $A_{FB}^{ttbar} = 0.079 \pm 0.123$ (stat) 0.2 At least 5 jets: n 2.8 σ from zero, $(A^{exp} - A^{SM})_{ppbar} = 0.142 \pm 0.069$ -0.2 room for BSM within 2σ 4 >5 N_{jets}

Charge asymmetry: a theory appraisal

DØ. 0.9 fb⁻¹

900

Data

Bkg

Z' mass [GeV]

776 events Signal + Bkc

776 event

167 event

1000

excluded region

700

Reconstructed Top Rapidity

800

Which model BSM

Charge asymmetry: a theory appraisal

Chiral Color Models

[Pati , Salam, PLB58(1975)333; Hall,Nelson, PLB153(1985)430; Frampton, Glashow, PLB190(1987)157; PRL58(1987)2168]

Extend the standard color gauge group to

$SU(3)_L \times SU(3)_R \rightarrow SU(3)_C$

• different implementations with new particles in varying representations (anomaly cancellation requires extra fermions), but

• model-independent prediction: existence of a massive color-octet axial-vector gauge boson: **axigluon**

 couples to quarks with an axial-vector structure and the same strong interaction coupling strength as QCD
 the charge asymmetry that can be generated is maximal.

- because of parity a single axigluon do not couple to gg
- Asymmetric Chiral Color [Cuypers, ZPC48(1990)639]: chiral color with different couplings ξ_1 , ξ_2 : $g_V = g_S \cot 2 \theta$, $g_A = g_S / \sin 2 \theta$

[Hill, PLB266(1991)419; Hill, Parke, PRD 49(1994)4454; Chivukula, Cohen, Simmons, PLB380(1996)92]

Extend the standard color gauge group to

$SU(3)_1 \times SU(3)_2 \rightarrow SU(3)_C$

- with gauge couplings ξ_1 , ξ_2 and $\xi_1 << \xi_2$
- massive gluons / color-octet vector boson (colorons)
- coupling to quarks $g_S \cot \theta = g_S (\xi_2 / \xi_1) > g_S$
- no charge asymmetry

GUT theories

Grand Unified Theories (GUT) based on larger gauge groups,
 e.g., E6 and SO(10), or left-right symmetric models
 often introduce additional gauge bosons, such as W' and Z',
 which decay to f fbar' and f fbar, respectively.

• The E6 GUT model also predicts the presence of a diquark (colored scalars) which decays to qq or qbar qbar.

• colored scalars (singlet, triplet, sextet and octet) in SU(5) GUT $5_{H}=H_{1}+T=(1,2,1/2)+(3,1,-1/3)$ $24_{H}=\Sigma_{i}=(8,1,0)+(1,3,0)+(3,2,-5/6)+(3bar,2,5/6)+(1,1,0)$ $45_{H}=(8,2,1/2)+(6bar,1,-1/3)+(3,3,-1/3)+(3bar,2,-7/6)+(3,1,-1/3)+(3bar,1,4/3)+(1,2,1/2)$

• e.g., scalar color-octet in Adjoint SU(5) [Fileviez et al.,2008]

 $\Phi_1 = (\mathbf{8}, \mathbf{2}, 1/2) \subset 45_H$

Unification and proton decay $M_{\Phi_1} < 440 \text{ TeV}$

Top color assisted technicolor (TC2)

[Hill, PLB345(1995)483; Lane, Ramana, PRD 44 (1991) 2678; Lane, Mrenna, PRD67(2003) 115011]

Combine extended technicolor and topcolor assisted technicolor

$G_{ETC} \ge [SU(3)_1 \ge U(1)_1] \ge [SU(3)_2 \ge U(1)_2] \ge SU(2)_L \rightarrow SU(3)_C \ge U(1)_{EM}$

- where $SU(3)_1 \times U(1)_1$ couples preferentially to the third generation, and the weaker $SU(3)_2 \times U(1)_2$ to the first and second
- Z' (leptophobic or not), 8 colorons and 4 color-octet technirho vector mesons (ρ_{T8}) which decays to qqbar or gg

Warped extra dimensions

[Randall, Sundrum, PRL 83, 3370 (1999); Dicus, McMullen, Nandi, PRD65 (2002) 076007]

 The RS model of a warped extra dimension offers a solution for the hierarchy between the electroweak scale and Planck scale M_{Pl} by introducing an extra spacial dimension. Predicts a Kaluza-Klein tower of graviton states (RS gravitons) which decay to ffbar or gg.

• RS Kaluza-Klein gauge bosons (KK g*, Z´,W´): explains mass hierarchy between top and light quarks, with preferential couplings to top quarks, no couplings to gg (odd number of g*), suppression of FCNC

Mass exclusion from Tevatron

Dijet channel CDF arXiv:0812.4036

260-870 GeV/c ²	Excited quark (f=f'=fs=1)
260-1100 GeV/c²	Color-octet technirho [top-color-assisted technicolor (TC2) couplings, $M'_8=0$, $M(pi_{22}^8)=5M(rho)/6$, $M(pi_{22}^1)=M(pi_{22}^8)/2$, $M_8=5M(rho)/6$]
260-1250 GeV/c ²	Axigluon and flavor-universal coloron (mixing of two SU(3)'s, cot(theta)=1)
290-630 GeV/c ²	E ₆ diquark
280-840 GeV/c ²	W' (SM couplings)
320-740 GeV/c ²	Z' (SM couplings)

* Low mass window for axigluons also excluded [Doncheski,Robinet, 97] from hadronic Z-decays

Other channels CDF

WW/WZ (evjj)	m _{z'} > 545 GeV m _{W'} > 515 GeV m _{graviton} > 606 GeV	2.9 fb ⁻¹
ZZ	$m_{graviton} > 491 \text{ GeV} (k/M_{Pl} = 0.1)$	3.0 fb ⁻¹
tb	m _{w'} > 800 GeV for m _{w'} > m _{vR} m _{w'} > 825 GeV for m _{w'} < m _{vR}	1.9 fb ⁻¹

ttbar channel at Tevatron

D0	Lepton+jet	topcolor-assisted technicolor, leptophobic m _{z'} > 820 GeV	3.6 fb ⁻¹
CDF	All hadronic	m _{z'} > 805 GeV (SM couplings)	2.8 fb ⁻¹
CDF	Lepton+jet	Topcolor leptophobic m _{z'} > 720 GeV Out of range of sensitivity to SM Z´	1 fb ⁻¹
CDF	Lepton+jet	Limits on massive gluon coupling $\lambda = g_V^q g_V^t$ as a function of width	1.9 fb ⁻¹

save the axigluon

The FB asymmetry disfavour at 2σ vanishing or negative contributions (axigluons or colorons)

 $m_{\rm G}$ > 1.6 TeV at 99%C.L. (g_V =0, g_A =1)

Larger exclusion limit than dijet channel.

■ It is still possible to generate a positive asymmetry if sign(g_A^q)= -sign(g_A^t)

[Ferrario, GR, arXiv:0906.5541] [Frampton,Shu,Wang, arXiv:0911.2955]

Massive gluon diff cross section

Resonances might produce Charge asymmetry at LO

$$L = g_S T^a \overline{q_i} \gamma^{\mu} (g_V^{q_i} + g_A^{q_i} \gamma_5) G'_{\mu} q_i$$

Quark-antiquark annihilation

Gluon-resonance interference

- generates charge asymmetry \rightarrow FB
- vanishes upon integration over charge
- symmetric regions of phase space
- changes sign (s-m_G²)
- probes axial couplings

$$\frac{d\sigma^{q\bar{q} \to t\bar{t}}}{d\cos\theta} = \alpha_{s}^{2} \frac{T_{F}C_{F}}{N_{C}} \frac{\pi\beta}{2\hat{s}} \left(1 + c^{2} + 4m^{2} + \frac{2\hat{s}(\hat{s} - m_{G}^{2})}{(\hat{s} - m_{G}^{2})^{2} + m_{G}^{2}\Gamma_{G}^{2}} \left[g_{V}^{q}g_{V}^{t}(1 + c^{2} + 4m^{2}) + g_{A}^{q}g_{A}^{t}(2c)\right] + \frac{\hat{s}^{2}}{(\hat{s} - m_{G}^{2})^{2} + m_{G}^{2}\Gamma_{G}^{2}} \left[\left((g_{V}^{q})^{2} + (g_{A}^{q})^{2}\right)((g_{V}^{t})^{2}(1 + c^{2} + 4m^{2}) + (g_{A}^{t})^{2}(1 + c^{2} - 4m^{2})\right) + g_{V}^{q}g_{A}^{q}g_{V}^{t}g_{A}^{t}(8c)\right]\right)$$
where
$$m = \frac{m_{t}}{\sqrt{\hat{s}}} \qquad c = \beta\cos\theta = \sqrt{1 - 4m^{2}}\cos\theta \qquad \frac{\Gamma_{G}}{m_{G}} \approx \frac{\alpha_{s}}{6}\sum_{i=q,t} \left((g_{V}^{i})^{2} + (g_{A}^{i})^{2}\right)$$

• **gluon-gluon fusion** at tree-level the same as in the SM (gauge invariance, parity, orthonormality of field profiles in extra dimensions)

save the axigluon

while keeping dσ/dM_{ttbar} small [PRL102 (2009) 22203]

 $d\sigma/dM_{t\bar{t}}(0.8-1.4\text{TeV}) =$

 $0.07 \pm 0.032_{stat} \pm 0.015_{sys} \pm 0.004_{lumi}$ (fb GeV⁻¹)

The last bin is the most sensible to masses of O(1TeV): sets lower bound on the mass

* RS graviton M=600 GeV, κ/M_{Pl} > 0.16 at 95%C.L.

Flavour universal and non-universal axigluon

[Ferrario, GR, arXiv:0906.5541]

Combining limits on the charge asymmetry (solid lines) and the invariant mass distribution (dashed) $L = g_s T^a \overline{q_i} \gamma^{\mu} (g_V^{q_i} + g_A^{q_i} \gamma_5) G'_{\mu} q_i$

on the mass

 $|g_{A}| = 1$

no overlapping region @ 90 % C.L. m_G >1.2 TeV @ 95 % C.L.

$$\begin{vmatrix} g_A \end{vmatrix} = 1 \quad \{ \begin{array}{c} m_G > 1.44 \text{TeV} \\ g_V > 1.45 \end{vmatrix}$$

Germán Rodrigo

IFIC **CSIC**

TOP2010, Brugge

 $1.33 \text{TeV} < m_G < 2 \text{TeV}$

17

@90% C.L.

Z' and W' in the t-channel

Flavour violating weak vector bosons in the t-channel (mostly):

[Jung,Murayama,Pierce,Wells, arXiv:0907.4112]

$$L = g_X Z_{\mu} (\overline{u} \gamma^{\mu} P_R t + \varepsilon_X \overline{u_i} \gamma^{\mu} P_R u_i)$$

best fit: $m_{Z'} = 160 \text{ GeV}$, $\alpha_X = 0.024$ light to avoid uu \rightarrow tt (same sign dileptons) $\stackrel{\stackrel{\scriptstyle \swarrow}{=}}{\epsilon_X \neq 0}$ to suppress uubar $\rightarrow Z'Z'$ (like sign tt)

■ Third generation enhanced LR model $SU(2)_L x SU(2)_R x U(1)_{B-L}$: uubar $\rightarrow Z' \rightarrow ttbar$ [Cao,Heng,Wu,Yang, arXiv:0912.1447] No u_R -t_R mixing (s-channel) **X**, with mixing (t-channel) **√**

■ Asymmetric LR model SU(2)_L x (SU(2)'x U(1)' →U(1)_Y): Z' (s-channel) and W' (t-channel) [Barger,Keung,Yu, arXiv:1002.1040]: $m_{Z'}$ = 190 GeV , $m_{W'}$ = 175 GeV

[Cao,McKeen,Rosner,Saughnessy,Wagner, arXiv:1003.3461]: W' large couplings and large amount of fine tuning

Requires light Z' and W': O(200 GeV) or large flavour violating couplings

Scalars in the t-channel

R-parity violating MSSM: sleptons (singlet) \boldsymbol{X} , and squarks (triplet) $\boldsymbol{\checkmark}$, in ddbar \rightarrow ttbar

[Cao,Heng,Wu,Yang, arXiv:0912.1447]

GUT: triplet (3bar, 1, 4/3) \checkmark (M_{ttbar} \rightarrow m_{Φ} < O(TeV)), octet (8, 2, -1/2) \varkappa [Dorsner et.al. arXiv:0912.0972]

Triplet ✓ and sextet X [Arhrib,Benbrik,Chen,arXiv:0911.4875]

EFT: singlet \checkmark , triplet \bigstar , sextet \bigstar , octet \checkmark [Jung,Ko,Lee,Nam,arXiv:0912.1105]

Charge asymmetry at LHC

LHC is symmetric <a> no forward-backward

But suppose that there is a charge asymmetry at parton level (QCD predicts that tops are preferentially emitted in the direction of incoming quark, resonance asymmetry positive/negative on $(s-m_G)$ and relative sign of couplings)

quarks carry more momenta than antiquarks

Excess of tops (or antitops) in the forward and backward regions

$$A_{C}(y_{C}) = \frac{N_{t}(|y| < y_{C}) - N_{\bar{t}}(|y| < y_{C})}{N_{t}(|y| < y_{C}) + N_{\bar{t}}(|y| < y_{C})}$$

 $A_{C}(y_{C} >> 1) = 0$

Opposite in sign to the parton asymmetry

 However, top cross section is gg dominated, which is symmetric; but gg can be suppressed by selecting pairs with large invariant mass

TOP2010, Brugge

ttbar@LHC

[Ferrario, GR, arXiv:0809.3354]

 Charge asymmetry suppressed by gg-fusion (90% @14TeV) but statistical significance can be maximized by tuning y_C and m_{tt}^{min}

 smallness of QCD asymmetry compensated by statistics at low m_{tt}^{min}

 Color-octet resonance: maximum statistical significance at about m_G/2 (less boosted tops)

ttbar + jet @ LHC

Charge asymmetry: a theory appraisal

Conclusions

room for BSM within 2 σ at the Tevatron from the measurement of the top quark charge asymmetry (forward-backward), early to claim new physics, but, together with d σ /d M_{ttbar} , allows to set constrains in the top quark sector

- Flavour Universal axigluons with large vector couplings
- ✓ Flavour non-Universal axigluons: $sign(g_A^q) = -sign(g_A^t)$
- ✓ Flavour violating Z' and W' relatively light O(200 GeV)
- Flavour violating scalars in the t-channel: triplet or sextet

(see also Degrande's poster on top compositeness)

statistically dominated, new measurements soon ??

The charge asymmetry can be measured at the LHC too, and is a good observable to discriminate among different models

Backup

Charge asymmetry: an appraisal

