Top properties from DØ

Amnon Harel aharel@fnal.gov UNIVERSITY of ROCHESTER

<u>3rd International Workshop on Top Quark Physics - Top2010</u>

A model-independent measurement of *Whelicity* in top decays

So far measurements support the SM prediction: $f(t \rightarrow Wb) = \sim 100\%$ Breaking it down by W helicity states:

SM uncertainties << Experimental uncertainties \rightarrow can't constrain SM parameters \bigcirc Firm SM prediction, in particular: tiny $f_+ \rightarrow$ looking for new physics \bigcirc

Distinguish between helicity states by reconstructing cos θ^* : e

l+jets sample

4 Jets (p_T>20 GeV, |η|<2.5)

Multijet production Estimated from data with leptons that almost pass our ID

• Signal and W+jets templates from MC.

- Matched ALPGEN + Pythia
- V+A and V-A signal MC reweighted to yield desired cos θ* distributions
- Data and MC are compared in control samples; corrections applied for residual discrepancies
- Their amounts from fit to data sample.

Discriminant

Combines kinematic and *b*-ID information Chose variables that:

- discriminate between signal and W+jets
- are well modeled
- are weakly correlated with $\cos \theta^*$

l+jets reconstruction results

Excellent $\cos \theta^*$ reconstruction!

Fitting f_{0} , and f_{+} rather than V-A vs. V+A \rightarrow Can also use the hadronic W to fit f_0

Isolated e, $p_T > 15$ GeV, $|\eta| < 1.1 / 1.5 < |\eta| < 2.5$

A strong experimental signature
→ no MET requirements
→ looser lepton ID requirements

Discriminant construction and fit procedures similar to those in *l*+jets

Top2010

June 3rd, 2010

eµ reconstruction

With two vs, reconstruction is harder.

"resolution sampling"

- smear objects within their resolution
 - 500 times per event
- for each *b*-jet & *l* combination and smearing, solve algebraically for $\cos \theta^*$
 - use the 2 MET components + 4 mass constraints
 - 0-8 solutions
- average all solutions

Results

Consistencies

- first 1fb⁻¹ vs. newer data: 49%
- *e*+jets vs. *μ*+jets: 12%
- *l*+jets vs. di-lepton: 1.6%
- data vs. SM: 23%

Dominant systematics

- Signal modeling
 - underlying event
 - additional collisions
 - MC generator
- Background modeling
 - shape and yield in low discriminant sample

Longitudinal: $f_0 = 0.490 \pm 0.106$ (stat.) ± 0.085 (syst.)

Right handed: $f_{\pm} = 0.110 \pm 0.059$ (stat.) ± 0.052 (syst.)

Combine W helicity + previous single top result ("evidence" using only 1fb⁻¹) into:

Measurement of anomalous top quark couplings

Anomalous coupling

Can combine the W helicity and single-top production rates (separated for s and t channels) to fully specify the Wtb vertex [Chen, Larios, and Yuan, Phys. Lett. B 631, 126 (2005)] DØ published a variation on this idea [Phys. Rev. Lett. 102, 092002 (2009)] as follows:

Start with the most general CP-conserving *Wtb* vertex up to mass dimension 5: $L_{tWb} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{b}^{\circ \mu} \left(f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right) t - \frac{g}{\sqrt{2}M_{W}} \partial_{\nu} W_{\mu}^{-} \bar{b} \sigma^{\mu\nu} \left(f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right) t + \text{h.c.}$ + h.c.

Statistics are low

 \rightarrow Need some assumptions:

- real couplings (CP-conserving)
- *Wtb* dominates single top production and decay
- only one non-SM coupling at a time \rightarrow three scenarios
 - only f_1^L , and f_1^R non-zero (interference taken into account)
 - only f_1^L , and f_2^L non-zero
 - only f_1^L , and f_2^R non-zero

Top2010

Inputs

Modify single-top measurement to use only 2 & 3 jet events
→ independent data sets

Modify W helicity measurement to fit templates as function of f_1^L, f_2^L, f_1^R , and f_2^R , instead of f_0 and f_+

Cross-sections, kinematics, and angular distributions change

f^L|²

1.5

0.5

For each scenario

Train boosted decision tree to distinguish signal $(f_I^L = f_X = 1)$ from background

- "Only" 4 samples, not dividing by N_{iet}
- single top only a " 3σ " effect in these samples \rightarrow very little separation

|**f**_|²

Results - separate

Results – combined

A brief reminder of:

Simultaneous Measurement of the Ratio $B(t \rightarrow Wb)/B(t \rightarrow Wq)$ and the Top Quark Pair Production Cross Section

or for short...

PRL 100, 192003 (2008)

Top2010

June 3rd, 2010

Amnon Harel

A brief reminder of:

PRL 100, 192003 (2008)

Top2010

June 3rd, 2010

Observable & method

$$R_{b} = \frac{\mathbf{B}(t \to Wb)}{\mathbf{B}(t \to Wq)} = \frac{|Vtb|^{2}}{|Vtd|^{2} + |Vts|^{2} + |Vtb|^{2}}$$

Standard model

- 3 quark generations
- Unitary CKM matrix

New physics can break either premise

 $R_{h} \neq 1$

- *l*+jets channel
- Events with 3 or 4-or-more jets

- Simultaneous fit of σ & R_b
- Poisson likelihood in N_{tag} & D bins
- Systematic effects described with
- nuisance parameters (profile likelihood) Amnon Harel 19

 \boldsymbol{R}_{b}

Results

From fit

Ensemble testing to find limits:

 $R_b > 0.88$ @ 68% C.L. $R_b > 0.79$ @ 95% C.L.

Top2010

 R_b

Combine R_b + single top production in *t*-channel into:

Measuring the top width

Standard model $\Gamma_t = 1.3 \text{GeV} \text{ (for } m_t = 170 \text{GeV} \text{)}$

Difficult to measure directly (but see CDF talk)

Indirect measurement:

Can combine the R_b and single-top t-channel cross section σ_{tbqX} to extract $\Gamma(t \rightarrow Wb)$ [C.-P. Yuan, e.g. arXiv:hep-ph/9604434] • "effective W approximation" \rightarrow The Wtb vertex factorizes

→ σ_{tbqX} proportional to $\Gamma(t \rightarrow Wb)$ even in the presence of anomalous Wtb coupling

Width
Reinterpret the t-channel cross section measurement as:

$$\sigma B = \sigma_{tbqX} \cdot B (t \to Wb) = 3.14^{+0.94}_{-0.80} \text{ pb}$$
Wib also effects
the decay
Yielding: $\Gamma (t \to Wb) = \frac{\sigma B}{B(t \to Wb)} \frac{\Gamma(t \to Wb)_{SM}}{\sigma_{tbqX,SM}}$
and: $\Gamma_t = \frac{\overline{B(t \to Wb)} \frac{\Gamma(t \to Wb)_{SM}}{\sigma_{tbqX,SM}}}{B(t \to Wb)}$
Both calculated at pure NLO QCD

Redo the statistical analysis of t-channel x-section measurement

- same selections, 24 channels, same discriminants, etc. (see A. Heinson's talk)
- extracting the widths instead of σ
- priors flat in the widths
- and....

Top2010

Width

Input systematics

...and...

- systematic uncertainties from both analyses combined in 8 categories
 - each category treated as either fully correlated or uncorrelated

Relative Systematic Uncertainties						
Sources	t-channel	R measurement	Correlations			
Components for Normalization						
Luminosity	6.1%	0.0%				
Single top signal modeling	$3.5 extrm{-}13.6\%$	0.0%				
Top pair production signal modeling		1.0%	Х			
Other background from MC	15.1%	0.6%	Х			
Detector modeling	7.1%	0.1%	X			
Components for Normalization and Shape						
Background from data	13.7 - 54%	1.7%	Х			
b-tagging	2 - 30%	6.3%	X			
Jet Energy Scale	$0.1 extrm{-}13.1\%$	0.0%				

Width

Results

An *indirect* measurement

Assumptions: • No FCNC production • |Vtd|, |Vts| small • $B(t \rightarrow Wq) = 1$ All supported by experiment!

Most precise measurement

Direct measurement of the mass difference between top and antitop quarks

Mass difference

- CPT theorem \rightarrow particle and antiparticle masses are the same
- QCD confinement \rightarrow quark masses are not directly accessible
- ...except for the top mass:

Taken from the previous result ©

 $\tau_t \approx 3 \times 10^{-25} \sec < \frac{1}{\Lambda_{QCD}} \approx 3 \times 10^{-24} \sec \theta$

PRL 103, 132001 (2009), featured in Nature and Physics Today.

Top2010

Amnon Harel

Method

- A variation of the DØ I+jets matrix-element mass measurement with ~1 fb⁻¹ (PRL 101, 182001 (2008), see O. Brandt's talk)
- Separate the top quark from the top antiquark by lepton charge
 - solenoid and toroid polarities routinely reversed
 - unfortunately (?) can't switch detector to anti-matter
 - arguably the trickiest experimental aspect $\overline{b}JES$ vs. bJES studied in data and MC (K⁺ vs K⁻ interact with matter differently)

Angels& Demons Wasted PR opportunity

Δm

∆m enters:

- the matrix elements
 - almost a trivial change
- the MC
 - modified Pythia to generate events with $m_t \neq m_t$
- the acceptance (taken from the MC)

Calibration

8 Calibrations:

- e +jets and μ +jets calibrated separately
- m_{sum} and Δ

• values and uncertainties (jargon: means and pulls)

From ensemble tests w. the modified Pythia

Δm

Summary & outlook

Model-independent measurement of W helicity:

- Longitudinal: $f_0 = 0.490 \pm 0.106$ (stat.) ± 0.085 (syst.)
- Right handed: $f_{+} = 0.110 \pm 0.059$ (stat.) ± 0.052 (syst.)

New top property measurements possible by using both the electroweak single top production and the strong top pair production

constraints on anomalous Wtb coupling

• $\Gamma_t = 2.05^{+0.57}_{-0.52} \,\mathrm{GeV}$

First direct measurement of quark antiquark mass difference: • $m_t - m_{\bar{t}} = 3.8 \pm 3.7 \text{GeV}$

More top property measurements to come this summer

Back up slides

Anomalous coupling

Can combine the W helicity and single-top production rates (separated for s and t channels) to fully specify the Wtb vertex [Chen, Larios, and Yuan, Phys. Lett. B 631, 126 (2005)] DØ published a variation on this idea [Phys. Rev. Lett. 102, 092002 (2009)] as follows:

Start with the most general CP-conserving *Wtb* vertex up to mass dimension 5: $\overline{L_{tWb}} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \overline{b}^{\circ\mu} \left(f_{1}^{L} P_{L} + f_{1}^{R} \overline{P}_{R} \right) t - \frac{g}{\sqrt{2}M_{\mu\nu}} \partial_{\nu} W_{\mu}^{-} \overline{b} \sigma^{\mu\nu} \left(f_{2}^{L} P_{L} + f_{2}^{R} \overline{P}_{R} \right) t$ + h.c. SM has: $f_1^{L} \approx l$, $f_2^{L} = f_1^{R} = f_2^{R} = 0$ $L_{tWb} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{b}^{\circ \mu} \left(f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right)$ \rightarrow Need some assumptions: real couplings (CP-conserving) As in V_{tb} measurement • Wtb dominates single top production and decay • only one non-SM coupling at a time \rightarrow three scenarios • only f_I^L , and f_I^R non-zero (interfe $\frac{g}{\sqrt{2}M_W}\partial_
u W_\mu^- \bar{b}\sigma^{\mu\nu} \left(f_2^L P_L + f_2^R P_R\right) t$ • only f_1^L , and f_2^L non-zero • only f_1^L , and f_2^R non-zero $P_R t - \frac{g}{\sqrt{2}M_W} \partial_{\nu}$ + h.c. Top2010 Annon Hare

R_b discriminant

- e+jets: the leading jet pT, the maximum DR between two of the four leading jets, A(aplanarity), C(surface area), and D(volume) from the momentum tensor
- mu+jets: A, D, HT(4 jets+muon), pT3+pT4, MT(jets), M(3jets)/M(4jets+I+MET)

Results

From fit

Ensemble testing to find limits:

 $R_b > 0.88$ @ 68% C.L. $R_b > 0.79$ @ 95% C.L.

Top2010

 R_b

More on R_b

•	Text				Source	δ σ (pb)	δR
					Statistical	+0.67-0.64	+0.067-0.065
					Lepton identification	+0.32-0.27	n/a
					Jet energy calibration	+0.32-0.23	n/a
mber of events	600	L=0.9 fb ⁻¹ • D			W+jets background	+0.21-0.23	n/a
	-				Multijet background	<u>+</u> 0.17	<u>+</u> 0.016
	_			tt.	Signal model	+0.12-0.25	n/a
	400-	ļ		other	B-tagging	+0.10-0.09	+0.059-0.047
	_			W+jets	Other	+0.24-0.13	+0.015-0.014
Ž	_			Multijet	Total	+0.90-0.84	+0.092-0.083
	200-		ė				
	_		Ĩ				
	-	-		•			
	0_	0	-1	>2			
		0	י Number	of tagged jets			
Тор	2010			June 3rd, 20 ⁻	10 Amnon	Harel	36

Measuring the top width

Standard model $\Gamma_t = 1.3 \text{GeV} \text{ (for } m_t = 170 \text{GeV} \text{)}$

Difficult to measure directly (but see CDF talk)

Indirect measurement:

Can combine the R_b and single-top t-channel cross section to extract $\Gamma(t \rightarrow Wb)$ [C.-P. Yuan, e.g. arXiv:hep-ph/9604434] • "effective W approximation" \rightarrow The Wtb vertex factorizes $\rightarrow \sigma_{tbqX}$ proportional to $\Gamma(t \rightarrow Wb)$ even in the presence of anomalous Wtb coupling

Assuming the above production mechanism • no FCNC \$\G • |Vtd|, |Vts| small

\$\Gamma_t=\frac{\Gamma\left
 (t\to Wb\right)}{{\rm
 B}\left(t\to Wb\right)}

 $= \frac{\mathbf{B}(t \rightarrow Wb)}{\mathbf{B}(t \rightarrow Wa)}$

Assume: B $(t \rightarrow Wq) = 1$

Amnon Harel

Width

Method

Reinterpret the t-channel cross section measurement as:

 $\sigma \mathbf{B} = \sigma_{tbqX} \cdot \mathbf{B} (t \to Wb) = 3.14^{+0.94}_{-0.80} \,\mathrm{pb}$

Wtb also effects the decay

Yielding:
$$\Gamma(t \to Wb) = \frac{\sigma B}{B(t \to Wb)} \frac{\Gamma(t \to Wb)_{SM}}{\sigma_{tbqX,SM}}$$

and:
$$\Gamma_t = \frac{\frac{\sigma B}{B(t \to Wb)} \frac{\Gamma(t \to Wb)_{SM}}{\sigma_{tbqX,SM}}}{B(t \to Wb)}$$

Both calculated at (pure) NLO QCD

Redo the statistical analysis of t-channel x-section measurement

- same selections, 24 channels, same discriminants, etc. (see A. Heinson's talk)
- extracting the widths instead of σ
- priors flat in the widths
- and....

Top2010

Width

Results

An *indirect* measurement

Assumptions: • No FCNC production • |Vtd|, |Vts| small • B $(t \rightarrow Wq) = 1$ All supported by experiment!

Most precise measurement

Top2010

Top width systematics

Relative Systematic Uncertainties					
Sources	t-channel	R measurement	Correlations		
Components for Normalization					
Luminosity	6.1%	0.0%			
Single top signal modeling	$3.5 extrm{-}13.6\%$	0.0%			
Top pair production signal modeling		1.0%	Х		
Other background from MC	15.1%	0.6%	Х		
Detector modeling	7.1%	0.1%	Х		
Components for Normalization and Shape					
Background from data	13.7 - 54%	1.7%	Х		
b-tagging	2 - 30%	6.3%	Х		
Jet Energy Scale	0.1 - 13.1%	0.0%			

$$\begin{split} \Gamma_t &= 2.05^{+0.57}_{-0.52}\,{\rm GeV} \\ \Gamma\left(t \to Wb\right) &= 1.90^{+0.58}_{-0.48}\,{\rm GeV} \end{split}$$

Method

- A variation of the DØ I+jets matrix-element mass measurement with ~1 fb⁻¹ (PRL 101, 182001 (2008), see O. Brandt's talk)
- Separate the top quark from the top antiquark by lepton charge
 - solenoid and toroid polarities routinely reversed
 - unfortunately (?) can't switch detector to anti-matter
 - arguably the trickiest experimental aspect $\overline{b}JES$ vs. $\overline{b}JES$ studied in data and MC (K⁺ vs K⁻ interact with matter differently)

Δm enters:

- the matrix elements (incl. decay terms)
- the acceptance, and

the MC

 modified Pythia to generate events with $m_{t} \neq m_{t}$

integrate

2D likelihood in $m_t \& m_{\bar{t}}$

1D likelihood in $\Delta = m_t - m_{\bar{t}}$

or m_{sum}

Amnon Harel

opportunity

 Δm

Delta m systematics

Source	Uncertainty (GeV)
Physics modeling	
Signal	± 0.85
PDF uncertainty	± 0.26
Background modeling	± 0.03
Heavy flavor scale factor	± 0.07
b fragmentation	± 0.12
Detector modeling:	
b/light response ratio	± 0.04
Jet identification	± 0.16
Jet resolution	± 0.39
Trigger	± 0.09
Overall jet energy scale	± 0.08
Residual jet energy scale	± 0.07
Muon resolution	± 0.09
Wrong charge leptons	± 0.07
Asymmetry in $b\overline{b}$ response	± 0.42
Method:	
MC calibration	± 0.25
b-tagging efficiency	± 0.25
Multijet contamination	± 0.40
Signal fraction	± 0.10
Total (in quadrature)	± 1.22

Delta m in matrix elements

$$\frac{d\hat{\sigma}}{dt}(q\bar{q} \to t\bar{t}) = \frac{4\pi\alpha_s^2}{9\hat{s}^4} \left[(m_1^2 - \hat{t})^2 + (m_2^2 - \hat{u})^2 + 2m_1m_2\hat{s} \right]$$

$$|\mathscr{M}|^{2} = \frac{g_{s}^{4}}{9}F\overline{F}\frac{2}{s}\left[(E_{1} - p_{1}\cos\theta)^{2} + (E_{2} + p_{2}\cos\theta)^{2} + 2m_{1}m_{2}\right]$$

Decay terms (F) take into account the corresponding mass