V+jets at the Tevatron

Lucio Cerrito Queen Mary, University of London

(on behalf of the CDF and D∅ Collaborations)

> Top 2010 Bruges, June 2010

V+Jets Production

V+jets are critical for physics at the Tevatron and LHC: top, Higgs, searches.

W+HF normalisation amongst the main systematic uncertainties in measurements of *t*, b-tag *tt*,...

NLO pQCD calculations are available for lower jet multiplicities

Many Monte Carlo tools are available: LO + Parton Shower (PYTHIA, HERVVIG,) Matrix Element + Parton Shower: e.g. ALPGEN, SHERPA

This review is from a top-physics perspective: V+jets measurements are of course important on their own for PDFs, parameters, pQCD testing....

Normalisation vs. shapes? What uncertainties are there?

V+Jets at the Tevatron

W+jets background in top

CDF Method I

Data-driven technique used in CDF I (~1995), but also in our CDF II (2005) Soft Lepton Tags cross section: an overall tag rate comprising heavy and light flavour is used to estimate W/Z +jets background

W+mistags here outnumber the rest by 4:1 (only ~20% W+HF component)

W+jets background in top

CDF Method II (many similarities for D0, see A. Heinson's Talk)

Data+MC technique widely used at CDF-II: W+jets normalised to data, W+hf fraction from ALPGEN (+PYTHIA) calibrated on data (earlier using multijets, because of stat., now W+1 jet).

$$\begin{split} N_{W+Jets}^{pretag} &= N_{pretag} \cdot (1 - F_{QCD}^{pretag}) - N_{ewk}^{pretag} - N_{top}^{pretag} \\ N_{W+HF}^{tag} &= (N_{pretag} \cdot (1 - F_{QCD}^{pretag}) - N_{ewk}^{pretag} - N_{top}^{pretag}) \cdot F_{HF} \cdot K \cdot \epsilon_{tag} \\ N_{W+LF}^{tag} &= (N_{pretag} \cdot (1 - F_{QCD}^{pretag}) - N_{ewk}^{pretag} - N_{top}^{pretag} - N_{W+HF}^{pretag}) \cdot \frac{N_{-}}{N_{pretag}} \end{split}$$

Initially an overall HF calibration term (given
dataset, uncertainty includes b/c, n-Jet,
systematics), e.g. $K=1.5\pm0.3$ 1 Jet - 1 TagNNMore recently K different for Wbb, Wcc, Wc 5_{g_250} 5_{g_250} Cross checked on Z+hf200200

Primary

Vertex

W+jets background in top

CDF Method III

Simultaneous measurement of the top cross section and the W+hf (K) fractions

Sample	Fit Value
$\sigma_{tar{t}}$	$7.64\substack{+0.57 \\ -0.54}$
$K_{Wbar{b}}$	$1.57\substack{+0.28\\-0.22}$
$K_{Wcar{c}}$	$0.94\substack{+0.90\\-0.71}$
K_{Wc}	$1.90\substack{+0.34\\-0.32}$
$K_{Wqar{q}}$	$1.10\substack{+0.34\\-0.25}$
K_{EW}	$1.10\substack{+0.10\\-0.10}$
K_{QCD}	$0.82\substack{+0.26\\-0.26}$
R_{Btag}	$0.31\substack{+0.64\\-0.64}$
R_{Mistag}	$-0.05\substack{+0.98\\-0.98}$
R_{JES}	$0.47\substack{+0.63\\-0.61}$
R_{Q^2}	$0.07\substack{+0.44\\-0.44}$
R_{IFSR}	$0.13\substack{+0.90\\-0.89}$

W+jets background in *tt*

		E	Background	<mark>d table for</mark>	[.] the tt+jets	cross section in	lepton+jets
--	--	---	------------	--------------------------	--------------------------	------------------	-------------

Process	1jet	2jets	3jets	4jets	5jets
Pretag Events	7445	10947	6380	2724	782
Wbb	50.2 ± 15.5	176.2 ± 54.3	128.4 ± 39.8	50.9 ± 16.9	10.2 ± 6.9
Wcc	24.4 ± 7.7	76.9 ± 24.3	65.8 ± 20.8	27.3 ± 9.2	6.0 ± 4.0
Wc	32.6 ± 10.3	75.2 ± 23.7	41.6 ± 13.2	13.1 ± 4.4	2.4 ± 1.6
Mistags	111.4 ± 11.2	181.7 ± 26.8	101.2 ± 18.2	33.2 ± 9.4	6.2 ± 7.4
Non-W	41.6 ± 12.5	116.4 ± 34.9	71.7 ± 21.5	25.5 ± 20.4	9.3 ± 7.5
WW	2.9 ± 0.3	19.0 ± 2.5	14.8 ± 2.0	6.1 ± 0.8	2.0 ± 0.2
WZ	1.0 ± 0.1	7.1 ± 0.8	5.0 ± 0.6	1.9 ± 0.2	0.5 ± 0.1
ZZ	0.1 ± 0.0	0.9 ± 0.1	1.2 ± 0.2	0.5 ± 0.1	0.2 ± 0.0
Z+jets	3.8 ± 0.4	16.3 ± 1.9	16.7 ± 2.1	6.6 ± 0.8	1.8 ± 0.2
Single Top (s-channel)	1.2 ± 0.1	32.6 ± 3.2	16.5 ± 1.6	4.1 ± 0.4	0.8 ± 0.1
Single Top (t-channel)	0.4 ± 0.0	32.9 ± 2.9	18.7 ± 1.6	4.9 ± 0.4	0.9 ± 0.1
$tar{t} + 0 \mathrm{j} \; (5.5 \; \mathrm{pb})$	8.6 ± 1.7	179.3 ± 35.0	534.4 ± 104.2	555.1 ± 108.1	105.7 ± 20.6
$t\bar{t} + j$ (1.6 pb)	0.5 ± 0.3	16.4 ± 10.3	86.7 ± 54.5	163.1 ± 102.6	182.1 ± 114.5
Total Prediction	278.6 ± 37.2	930.9 ± 117.3	1102.8 ± 144.6	892.3 ± 157.0	328.2 ± 118.1
Observed	304	917	1115	882	329
CDF Bun II Preliminary $\mathcal{L} = 4.1 \text{ fb}^{-1}$					

±~30%

V+ jets (inclusive) Measurements

W+jets

$Z(\rightarrow \mu\mu)$ +jets

- Data corrected to particle-jet
- Theory corrected for fragmentation and UE (PYTHIA)

Agreement with NLO within 10%
LO factor (~1.4) independent on N jets

Agreement with NLO within ~10%
LO factor (~1.4) independent on N jets

$Z(\rightarrow \mu\mu)$ +jets

1.0 fb⁻¹ Pl

Phys. Lett. B 669 (2008), 278

Agreement with NLO within ~15% (! pt,z)
 ALPGEN & PYTHIA within ~60% but good for shapes
 SHERPA closer normalisation

$Z(\rightarrow \mu\mu)$ +jets: Angular Distributions

I.0 fb⁻¹ Phys. Lett. B 682 (2010), 370

Variables particularly sensitive to QCD radiation

$Z(\rightarrow \mu\mu)$ +jets: Angular Distributions

 $Z(\rightarrow ee)$ +jets (1st jet)

▶Agreement with NLO within ~15%

 $Z(\rightarrow ee)$ +jets (2nd jet)

PYTHIA & HERWIG worsen for higher pT
 ME+PS within ~40%

 $Z(\rightarrow ee)$ +jets (3nd jet)

1.0 fb⁻¹ Phys. Lett. B 678 (2009), 45

▶ ME+PS within ~40%

Photon+jets

▶ Good overall. Simultaneous description of these four regions in agreement only to within ~30-40%

V+ heavy flavour jets Measurements

W+bb+X

$$\sigma_{b \text{ jets}} \times \mathcal{B}(W \to \ell \nu) = \frac{\log \nu - \log}{\sum_{i=e,\mu} (\mathcal{L} \cdot \mathcal{A}_{W+b}^{b \text{ jets}} \cdot \epsilon_{\text{tag}}^{b} \cdot \epsilon)_i}$$

S:B (tt,t,non-W,..) ~ 2.7

 $\sigma_{WbX}(p_{Te\mu}>20 \text{ GeV/c}, |\eta_{e,\mu}|<1.1, p_{Tv}>25 \text{ GeV}, E_T$ bjet >20 GeV, $|\eta_{bjet}|<2.0$)×BR(W→Iv) = 2.74 ± 0.27(stat) ± 0.42(syst) pb

Recent NLO calculation: $\sigma \cdot BR = 1.22 \pm 0.14 \text{ pb}$ (J. Campbell, F. Febres Cordero, L. Reina, 2009)

ALPGEN (LO): $\sigma \cdot BR = 0.78 \text{ pb}$ PYTHIA (LO): $\sigma \cdot BR = 1.10 \text{ pb}$

NLO and LO are factors of 2.5–3 (σ) lower

W+bb+X Shapes

ALPGEN+PYTHIA shapes, good description

W+c+X

g+s~90%, g+d~10%

• Sensitivity to $|V_{cs}|$, s-PDF, scale: $\Delta \sigma_{TH} \approx \pm 30\%$ • Important background to top and Higgs analyses

We use the semileptonic decay (Soft Lepton Tag) of the charm:

I.8 fb⁻¹ Phys. Rev. Lett 100, 091803 (2008)

W+c+X - Backgrounds

Backgrounds

TABLE I: Summary of data and charge-asymmetric background in the SLT-tagged W + 1, 2 jet sample.

Source	Events	Asymmetry	OS–SS events
Drell-Yan			41.6 ± 5.4
Non- W (e PL)	200.0 ± 41.5	0.179 ± 0.046	35.8 ± 11.8
Non- W (μ PL)	30.2 ± 6.5	0.252 ± 0.066	7.6 ± 2.6
W + LF (e PL)	695.5 ± 75.7	0.057 ± 0.002	39.6 ± 4.9
$W + LF (\mu PL)$	491.4 ± 53.3	0.019 ± 0.002	9.3 ± 2.0
Single top			7.6 ± 1.1
$Z \to \tau \tau, WW$			7.2 ± 1.2
Total Background			148.7 ± 15.4
Data	1824		298

Main OS-SS backgrounds

- Fake W
- W+light flavor jets

• Drell-Yan

Wbb, Wcc etc. ~OS/SS symmetric

W+c+X - Results

W+c+X

D0 uses both e and muon soft leptons For jets with $p_T > 20$ GeV, $|\eta| < 2.5$

Measure the ratio $\sigma_{W+c}/\sigma_{W+jets}$.

 $\frac{\sigma \left[W + c\text{-jet}\right]}{\sigma \left[W + \text{jets}\right]} = 0.074 \pm 0.019 (\text{stat.})^{+0.012}_{-0.014} (\text{syst.}).$

LO (Alpgen+Pythia): 0.044 ± 0.003

Agreement within the uncertainty $(\Delta \sigma \sim 30\%)$

4.3 fb⁻¹ new SLT-e CDF Run II Preliminary

 $\sigma_{Wc}(p_{Tc}>20 \text{ GeV/c}, |\eta_c|<1.5) \times BR(W \rightarrow |\nu)=$ =21.1 ± 7.1 (stat) ± 4.6(syst) pb

Agreement with NLO within $\Delta\sigma$ ~30%

Z+b+X

Z+b+X

Υ + HF jets

Sensitive to HF-content of proton Bkgd for many BSMs

Photon p_T: 30 - 150 GeV Jet p_T > 15 GeV, cone 0.5, b-ANN Rapidities: $|y^{\gamma}| < 1.0$, $|y^{jet}| < 0.8$

<u>Photon+b:</u> Agreement over full p_T^{γ} range

Photon+c:

Agree only at p_T^{γ} <50 GeV, then a factor 2 (σ) larger Disagreement increases with p_T^{γ} .

Summary

- AllV+jets measurements agree with NLO pQCD to within the calculation uncertainties (15-20%) and for most relevant distributions
- Many shapes (not all) of ME+PS are in agreement, normalisation typically lower by ~40-60%
- Working to improve the Wbb and Wc cross section measurements

V+jets in Top analyses "Method I, II, III" ±~30%

V+jets (inclusive)

NLO within ~10-15% NLO within ~10-15% NLO within ~10-15% NLO good; y_I·y_j 40-50%

V+ heavy flavor jets

	8	W+bb+X	NLO x2-3 (σ) low
9	10	W+c+X	NLO within $1\sigma_{exp}$ (~30%)
	П	W+c+X/W+jets	NLO within $1\sigma_{exp}$ (~30%)
12	13	Z+b+X	NLO within $1\sigma_{exp}$ (~15%)
	14	γ+b/c+X	NLO <i>b</i> ok, <i>c</i> x2 (σ) larger

Jet production and measurement

Unfold measurements to the hadron (particle) level (+dead material - MI energy)

Correct parton-level theory for non-perturbative effects (hadronization & underlying event)

Jets are collimated spray of particles originating from parton fragmentation. ->To be defined by an algorithm