$W{+}\mathsf{jets}$ as a background to top physics

The quest for many jets

Steffen Schumann

ITP, University of Heidelberg

3

TOP 2010

Bruges 02/06/10

W+jets as a background to top physics: $I^{\pm} + \not \! E_T + \# jets$

W+jets as a background to top physics: $I^{\pm} + \not \! E_T + \# jets$

LO cross section pp -> W(->e/µv) + N_{jet} @ 10 TeV

W+jets as a background to top physics: $I^{\pm} + \not \in_{T} + \#$ jets

- need for higher-order calculations: high jet multiplicities & heavy flavours
 - ⇒ stabilized total cross-sections
 - \Rightarrow reliable differential distributions [partonic]
- improved Monte-Carlo simulations: parton showers matched to fixed order
 - \Rightarrow account for high- p_T emissions
 - \Rightarrow realistic jet profiles incl. hadronisation & UE

• Fixed-Order calculations

- *W* + 3jets @ NLO
- *Wb* @ NLO

• Monte Carlo generators: Showers matched to Fixed Order

- Truncated Shower concept
- inherent merging systematics

≡ nar

Fixed-Order calculations

(E) < E)</p>

	final state	$m_b eq 0$	groups	
	Wj	no	Campbell, Ellis '02 ¹	
	Wjj	no	Campbell, Ellis '02 ¹	
NEW	⇒ Wjjj	no	Berger et al. '09 & Ellis et al. '09	
	Zj	no	Campbell, Ellis '02 ¹	
	Zjj	no	Campbell, Ellis '02 ¹	
NEW	⇒ Zjjj	no	Berger et al. '10	
NEW	⇒ Wb	yes	Cordero et al. '09	
	Wbj	no	Campbell et al. '07	
	Wbb	no	Campbell, Ellis '02 ¹	
	Wbb	yes	Cordero, Reina, Wackeroth '07	
	Zb	no	Campbell et al. '03 ¹	
	Zbj	no	Campbell et al.'06 ¹	
	Zbb	no	Campbell, Ellis '00 ¹	
	$Zb\overline{b}$	yes	Cordero, Reina, Wackeroth '08	

 1 available in McFM

문어 귀문어

æ

W + 3j @ NLO: The challenge

• real emission corrections:

one-loop corrections:

프 () () () (

recently calculated by two groups $[m_q = 0]$

- ROCKET+MCFM: Ellis, Melnikov & Zanderighi [Phys. Rev. D 80 (2009) 094002]
 - generalized D-dim unitarity for one-loop amplitudes [JHEP 0901 (2009) 012]
 - leading colour approximation
- BLACKHAT+SHERPA: Berger et al. [Phys. Rev. Lett. 102 (2009) 222001, Phys. Rev. D 80 (2009) 074036]
 - on-shell methods for one-loop amplitudes [arXiv:0808.0941]
 - all subprocesses, full colour
 - \Rightarrow Z/ γ^* + 3j completed [arXiv:1004.1659]
 - \Rightarrow currently working on W + 4jets [arXiv:1005.3728]

글 > - - 글 >

BLACKHAT+SHERPA: Tevatron results [Phys. Rev. D 80 (2009) 074036]

• consider W
ightarrow e
u and SISCONE jets with $E_T^{n {
m th-jet}} > 25$ GeV & R=0.4

BLACKHAT+SHERPA: LHC predictions [Phys. Rev. D 80 (2009) 074036]

• consider SISCONE jets with $E_T^{nth-jet} > 30$ GeV & R=0.4

# of jets	W ⁻ – LO	$W^ NLO$	W ⁺ – LO	$W^+ - NLO$
1	$343.29(0.18)^{+15.65}_{-15.43}$	$456.60(1.43)^{+16.61}_{-10.10}$	$469.37(0.32)^{+21.86}_{-21.26}$	$615.77(2.04)^{+23.76}_{-14.39}$
2	$99.78(0.09)^{+20.81}_{-15.60}$	$122.71(0.92)^{+5.88}_{-7.41}$	$143.91(0.18)^{+29.92}_{-22.43}$	$174.28(0.48)^{+6.56}_{-10.37}$
3	$22.28(0.04)^{+7.80}_{-5.34}$	$27.52(0.14)^{+1.34}_{-2.81}$	$34.75(0.05)^{+12.06}_{-8.31}$	$41.47(0.27)^{+2.81}_{-3.50}$

300

-- LO -- NLO

300

Steffen Schumann W+jets as a background to top physics

ROCKET+MCFM: scale setting discussion [Melnikov, Zanderighi Phys. Rev. D 81 (2010) 074025]

• consider $W^+ + \ge 3j$ @ 10 TeV LHC

• $\mu_0 = \sqrt{p_{T,W}^2 + m_W^2} \rightsquigarrow \sigma_{W^++\geq 3j}^{LO} = 37.6 \text{ pb vs. } \sigma_{W^++\geq 3j}^{NLO,aLC} = 34.2 \text{ pb}$ • shape difference overcome when using local k_T scales for α_S in LO calc. \Rightarrow default in all ME \oplus PS matching schemes [see e.g. Krauss et al. Phys. Rev. D 70 (2004) 114009]

() <) <)
 () <)
 () <)
</p>

ROCKET+MCFM: scale setting discussion [Melnikov, Zanderighi Phys. Rev. D 81 (2010) 074025]

• consider $W^+ + \ge 3j$ @ 10 TeV LHC

• $\mu_0 = \sqrt{p_{T,W}^2 + m_W^2} \rightsquigarrow \sigma_{W^++\geq 3j}^{LO} = 37.6 \text{ pb vs. } \sigma_{W^++\geq 3j}^{NLO,aLC} = 34.2 \text{ pb}$ • shape difference overcome when using local k_T scales for α_S in LO calc. \Rightarrow default in all ME \oplus PS matching schemes [see e.g. Krauss et al. Phys. Rev. D 70 (2004) 114009]

(B) < B)</p>

NLO QCD calculations: Wb

Associated Wb(b) production @ Tevatron: Data vs. Theory

CDF measurement [Phys. Rev. Lett. 104 (2010) 131801]

$$\sigma_{Wb(b)}^{CDF}(W \to l\nu) = 2.74^{+0.50}_{-0.50} \text{ pb}$$

Fixed-Order QCD [Campbell et al. Phys. Rev. D 79 (2009) 034023 & Cordero et al. arXiv:1001.3362]

$$\sigma^{LO}_{Wb(b)}(W \to l\nu) = 0.91^{+0.29}_{-0.20} \text{ pb} \qquad \sigma^{NLO}_{Wb(b)}(W \to l\nu) = 1.22^{+0.14}_{-0.14} \text{ pb}$$

 \Rightarrow consistently combines 4FNS $Wb\bar{b} \ [m_b \neq 0]$ and 5FNS $Wbj \ [m_b = 0]$ @ NLO

・ 同 ト ・ ヨ ト ・ ヨ ト

NLO QCD calculations: Wb(b)

Wb(b) production @ Tevatron: NLO calculation [Campbell et al. Phys. Rev. D 79 (2009) 034023]

- $q\bar{q}' \rightarrow Wb\bar{b}$ tree & one-loop $[m_b \neq 0]$
- $\ \ \, {\bf @} \ \ \, q\bar{q}' \rightarrow Wb\bar{b}g \ \, {\rm tree} \ \, {\rm level} \ \, [m_b \neq 0]$
- $\ \, {\color{black} \bullet} \quad bq \rightarrow Wbq' \ {\color{black} tree} \ \& \ {\color{black} \bullet} \\ \\ {\color{black} \bullet} \\ \\ {\color{black} \bullet} \\ {\color{black} \bullet} \\ \\ {\color$
- bq
 ightarrow Wbq'g tree level $[m_b=0]$
- **()** $bg
 ightarrow Wbq' ar{q}$ tree level $[m_b = 0]$
- $gq \rightarrow Wb\bar{b}q'$ tree level $[m_b \neq 0]$
- \Rightarrow redefined *b*-PDF to avoid double counting
- \Rightarrow fully consistent 5FNS with $m_b \neq 0$

combined calculation can now account for

- Wb and $W(b\bar{b})$ exclusive
- Wb and Wbj inclusive
- $W(b\bar{b})$ and $W(b\bar{b})j$ inclusive
- \Rightarrow further insight from differential distributions

Monte Carlo generators eseeses

Monte Carlo Tools: Matrix Elements and Parton Showers

Parton Shower Monte Carlos [a.k.a. Pythia, Herwig]

- account for intra-jet radiation (plus hadronisation, underlying event, ...)
- based on soft- & collinear factorisation
- leading-order leading-log accuracy

ways to improve

- match parton shower to full one-loop process [MC@NLO, POWHEG]
- use tree-level matrix elements for first few emissions [CKKW, MLM]
 - ALPGEN+HERWIG/PYTHIA: original MLM [Mangano et al. JHEP 0701 (2007) 013]
 - MADGRAPH+HERWIG/PYTHIA: modified MLM [Alwall et al. Eur. Phys. J. C 53 (2008) 473]
 - SHERPA: $< v1.2.0 \mbox{ CKKW}$ [Catani et al. '01]
 - \Rightarrow extensive comparison for W+jets [Alwall et al. Eur. Phys. J. C 53 (2008) 473]
 - \geq v1.2.0 Truncated Shower (ME \oplus TS) [Höche et al. JHEP 0905 (2009) 053]

ME+PS common features

- ullet emission phase space sliced / 'jet' measure $Q_{
 m cut}$ regulates matrix elements
- attach (vetoed) shower to multi-parton matrix elements
- inclusive samples with up to N_{\max} ME initiated jets [excl. 0, ..., N_{\max} 1, incl. N_{\max}]

Matrix Elements and Truncated Showers: ME⊕TS

How to attach shower to an N-parton ME?

A new merging algorithm [Höche, Krauss, S., Siegert JHEP 0905 (2009) 053]

- ME legs pre-determined shower emissions determined by clustering inverse to the shower
 - \rightarrow pseudo shower history for MEs
- PS starts off a reconstructed 2 → 2 core can radiate gluons off "intermediate" lines → Truncated Shower
- ME branchings must be respected evolution-, splitting- & angular variables {k²_⊥, z, φ} preserved
- veto event if shower emission above $Q_{
 m cut}$

 \rightsquigarrow preserves the log-accuracy of the shower

implemented in SHERPA-1.2

- Catani-Seymour dipole shower [S., Krauss JHEP 0803 (2008) 038]
- MEs from COMIX [Gleisberg, Höche JHEP 0812 (2008) 039]

pseudo shower history

ME \oplus TS: Z^0 +jets at Tevatron – jet multiplicities

Jet rates and -spectra improved compared to pure PS simulation due to exact real emission ME's

< ∃ >

ME \oplus TS: Z^0 +jets at Tevatron – jet spectra

Variation of Q_{cut} should affect distributions only beyond (N)LL But Q_{cut} must be in range where PS approximation is valid!

Example: All-jets p_T 's in DY-pair production CDF Data: PRL 100 (2008) 102001 [SHERPA normalized to $\sigma_{e^+e^-+1_{jet}}$]

Steffen Schumann W+jets as a background to top physics

ME \oplus TS: Z^0 +jets at Tevatron – jet spectra

Variation of Q_{cut} should affect distributions only beyond (N)LL But Q_{cut} must be in range where PS approximation is valid!

Example: Differential \mathbf{k}_{T} jet rates

ME \oplus TS: Z^0 +jets at Tevatron – jet spectra

Variation of Q_{cut} should affect distributions only beyond (N)LL But Q_{cut} must be in range where PS approximation is valid!

Example: Differential \mathbf{k}_{T} jet rates

 \Rightarrow 'old' SHERPA CKKW for W+jets [Alwall et al. Eur. Phys. J. C 53 (2008) 473]

Summary/Outlook

Summary

- new NLO results for W/Z + 3jets
 - largely reduced dependence on unphysical scales
 - good agreement with data from Tevatron
- NLO calculation for Wb combining 4FNS Wbb and 5FNS Wbj
- ME-PS merging sustainable approach to describe multijet events
 - hard emissions through exact tree-level matrix elements
 - intra jet evolution through (truncated) QCD parton showers
 - $\bullet\,$ reduced inherent "merging" systematics
- ongoing validation against Tevatron data [light & heavy flavours]

Outlook

- W/Z + 4jets @ NLO from BLACKHAT
- $W/Zb\bar{b}+ \leq 3$ jets @ NLO from HELAC-NLO \Rightarrow see Malgorzata's talk
- MENLOPS [Hamilton, Nason arXiv:1004.1764] \Rightarrow see Paolo's talk