

Top Properties at Tevatron with the CDF Detector

Mousumi Datta Fermi National Accelerator Laboratory TOP 2010, 3rd International Workshop on Top Quark Physics Bruges, Belgium, May 31 - June 4, 2010

Outline

Introduction

- Exploring top properties
 - Forward-backward asymmetry
 - ttbar differential cross section $d\sigma/dM_{ttbar}$
 - W-polarization from top decay
 - Single top polarization
 - Top-quark width
 - Top-quark charge
- Summary and prospects

Top Quark Physics

> Existence required by the SM

- Spin 1/2 fermion, charge +2/3, weakisospin partner of the bottom quark
- Discovered in 1995 at Tevatron
- > Mass surprisingly large $\Rightarrow \sim 40x$ heavier than the bottom quark
 - Only SM fermion with mass at the EW scale
- Top decays before hadronization: Γ
 ~1.4 GeV >>ΛQCD
 - Provide an unique opportunity to study a "bare" quark

June 3, 2010

Why Study Top Properties?

Try to address some of the questions:

- > Why is top so heavy ?
- Is top related to the EWSB mechanism?
- Is it the SM top?
- Search for beyond SM physics
 - Does top decay into new particles?
 - Couple via new interactions?

Top Quark Production at Tevatron

Predominantly pair produced via strong interaction

> $\sigma_{tt} = 7.45^{+0.72}_{-0.63} \text{ pb}$ for $m_{top} = 172.5 \text{ GeV/c}^2$ (Nucl. Phys. Proc. Suppl. 183, 75 (2008))

- > EW single top production
 - $\sigma_{\text{s-channel}} = 0.88 \pm 0.11 \text{ pb}$

• $\sigma_{t-channel} = 1.98 \pm 0.25 \text{ pb}$ for $m_{top} = 175 \text{ GeV/c}^2 \text{ (PRD 70,} 114012 \text{ (2004)})$

s-channel

t-channel

Rare at Tevatron: One top pair (ttbar) per 10 billion inelastic collisions

June 3, 2010

Top Quark Decay

- > In the SM: $Br(t \rightarrow Wb) \sim 100\%$
- Decay channels classified by W decays
- ➢ Top pair decay channels (*l=e,µ*)
 ➢ Dilepton (DIL): *lvlvbb* (5%)
 ➢ Lepton+jets : *lvqqbb* (30%)
 ➢ All-hadronic: *qqqqbb* (45%)

Top Pair Decay Channels

June 3, 2010

Tevatron Run II

Tevatron Run II

Proton-antiproton collider (2001-2011)

 $\sqrt{s} = 1.96 \text{ TeV}$

➤ Total integrated luminosity delivered : $\sim 8 \text{ fb}^{-1}$

 $> \sim 7 \text{ fb}^{-1}$ recorded per experiment > Results presented in this talk uses up to 4.3 fb⁻¹

Fiscal Year 10 • Fiscal Year 09 • Fiscal Year 08 • Fiscal Year 07 • Fiscal Year 06 Fiscal Year 05 - Fiscal Year 04 Fiscal Year 03 Fiscal Year 02

Peak Luminosity (1/µb/sec) Max: 402.4 Most Recent: 175.8

Integrated Luminosity 8286.64 (1/pb)

June 3, 2010

The CDF Detector

- Silicon tracking
- Large radius drift chamber (r=1.4m)
- > 1.4 T solenoid
- > Projective calorimetry ($|\eta| < 3.5$)
- > Muon chambers ($|\eta| < 1.0$)
- Particle identification
- Silicon Vertex Trigger

All crucial for top physics!

Other Talks Covering Top Physics at CDF

- > ttbar cross section measurements at Tevatron
 - F. DELIOT, 31 May 2010
- > Top mass measurements at the Tevatron
 - O. BRANDT, 01 June 2010
- > Multivariate analysis techniques: the Tevatron experience
 - F. CANELLI, 01 June 2010
- > Observation of single top at Tevatron with the CDF detector
 - J. LUECK, 01 June 2010
- > V+jets at Tevatron
 - L. CERRITO, 02 June 2010
- > Spin correlations at Tevatron
 - T. HEAD, 03 June 2010
- > New Physics searches in top events at Tevatron
 - P. SINERVO, 03 June 2010

June 3, 2010

M. Datta, FNAL

Experimental Challenges

Final State from Leading Order Diagram

What we measure

Combinatorial background and jet-parton assignment

- Dilepton (DIL): 2 combinations
- Lepton+Jets: 12 (0 b tag), 6 (1 b tag), and 2 (2 b tags)
- All hadronic: 90 combinations (0 b tag), 30 (1 btag), 6 (2 btags)

June 3, 2010

June 3, 2010

M. Datta, FNAL

Sample Composition

Sample composition based on ttbar cross section measurement

S/B at CDF	Dilepton (≥2 jets)	Lepton+Jets (≥4 jets)	All-hadronic (6-8 jets, after NN Selection)	۸ pr and
0 b-tag	1:1	~1:4	~1:20	
1 b-tag		4:1	1:4	rela
2 b-tags	20:1	20:1	1:1	eve
			TRIAL	

Most top properties analyses use elatively clean event sample

June 3, 2010

Forward Backward Asymmetry (A_{fb}) in Top Pair Production

- Asymmetry caused by interference of ME amplitudes for same final state
- > The SM prediction:
 - In ppbar frame: $A_{fb}^{ppbar} = 0.05 \pm 0.015$ (QCD at NLO)
- Can be significantly enhanced in different BSM models:
 - Z'-like states with parity violating coupling (PLB 387, 113 (1996)), theories with chiral color (PLB 190, 157 (1987), PLB 200, 211(1988))

June 3, 2010

PRL 101, 202001, 2009 3.2 fb⁻¹ Forward Backward Asymmetry (A_{fb}) in Top Pair Production

 \succ Use Lepton+Jets channel

 $>A_{fb}$ measured in the ppbar rest frame

$$A_{fb}^{t\bar{t}} = \frac{N(-Q.Y_{had} > 0) - N(-Q.Y_{had} < 0)}{N(-Q.Y_{had} > 0) + N(-Q.Y_{had} < 0)}$$

 Y_{had} = rapidity of hadronically decaying top Q = lepton charge from leptonically decaying system

> Apply matrix unfolding to go from reconstructed to parton level

Correct for smearing and acceptance effects

$$N_{Corr} = A^{-1}.S^{-1}.N_{bkg-sub}, S_{ij} = N_{reco}^{ij}/N_{gen}^{i}, A_{ij} = N_{sel}^{i}/N_{gen}^{i}$$

$$A_{fb} = 0.193 \pm 0.065 \text{ (stat)} \pm 0.024 \text{ (syst)}$$
SM prediction $A_{fb}^{ppbar} = 0.05 \pm 0.015$
M. Datta, FNAL

June 3, 2010

A_{fb} Dependence on the Invariant

Mass of ttbar

 Scan for A_{fb} above and below 8 different M_{tt} thresholds

0.8

0.6

0.4

-0.2 ||

-0.4

-0.6

-0.8 300

Corrected A^{high}

Parton Level A^{pp}_{FR} Above M_# Edge

CDF II Preliminary L=3.2 fb⁻¹ $A_{FB} \pm \sigma_{stat}$

_____ ± σ_{stat+syst} Integral A_{FE}=19.3%

NLO Model

400

with flat mass dependence

500

600

700

Sensitive to new physics effect

900

M. Datta, FNAL

M₄ edge (GeV/c²)

1000

800

June 3, 2010

2.7 fb⁻¹ Measurement of the ttbar Differential Cross Section $d\sigma/dM_{ttbar}$

> In BSM models new gauge interactions can produce massive particles which may strongly couple to top quark (PRD 49, 4454 (1994), hep-ph/07122355V1)

- Can produce resonances in the ttbar invariant mass (M_{ttbar}) distribution
- Or may interfere with the SM and modify the shape of M_{tthar}

1400

$d\sigma/dM_{ttbar}$ (Cont')

- Check consistency with the SM using the Anderson-Darling statistic
 - Put emphasis on the tail of the distribution
 - No evidence of non-SM physics in the M_{ttbar} distribution
- Set limits on the ratio κ/M_{Pl} for gravitons which decay to top quarks in the Randall-Sundrum model

2.7 fb⁻¹

tbW coupling

> The SM top decays via EW interaction: $Br(t \rightarrow bW) \sim 100\%$

- Top decays as a bare quark \Rightarrow spin info transferred to final states
- ▶ V-A coupling in the SM \Rightarrow
 - longitudinal fraction $f_0 \sim 70\%$
 - left-handed fraction $f_{-} \sim 30\%$
 - right-handed fraction $f_+ \sim 0\%$
- > The SM prediction modified in various new physics models
- > W-helicity fractions are sensitive to non-SM tWb couplings
- Use cosθ* : Angle between lepton (down-type quark) in W rest frame and the momentum of the W in the top-quark rest frame

June 3, 2010

Results

- Use event-by-event probability densities based on matrix elements of ttbar and dominant background (W+jets)
- Simultaneous measurement:
 - > $f_0 = 0.88 \pm 0.11 \text{ (stat)} \pm 0.06 \text{ (sys)}$
 - > $f_{+}=-0.15 \pm 0.07 \text{ (stat)} \pm 0.06 \text{ (syst)}$
- Model dependent measurements:
 - > $f_0 = 0.70 \pm 0.07$ (stat) ± 0.04 (stat) constraining $f_+=0.0$
 - > $f_+ = -0.01 \pm 0.02$ (stat) ± 0.05 (syst), constraining $f_0=0.7$

> Upper limit at 95% CL : $f_+ < 0.12$

> Most precise measurement of f_0 so far

Will be systematically limited with full Tevatron dataset and current understanding of systematic uncertainties

Accepted for PRL publication FERMILAB-PUB-10-041-E, arXiv:1003.0224v1 [hep-ex]

June 3, 2010

Single-Top Polarization

> In the SM expected to be produced 100% polarized along d-type quark axis

➤ Test model where top is produced with opposite polarization, but decay according to SM

Compute two likelihood function for SM-like and exotic model (XM) like scenarios

➤ Use likelihood discriminant method used for single top observation

June 3, 2010

Single-Top Polarization (Cont')

Divide the samples in two subsets:

- $\cos\theta_{ij}$ >0 (SM like) and
- $\cos\theta_{ij} < 0$ (XM like)

 $cos \theta_{ij}$: the angle between lepton and down-type quark

Measure two cross sections as independently as possible

Cross Section Measurment

 $\sigma_{\text{SM(V-A)}} = 1.72 \text{ pb}$, $\sigma_{\text{Exotic(V+A)}} = 0 \text{ pb}$ (2.864pb "SM prediction" : hep-ph/0207055 B.W.Harris at al.)

$$polarization = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = -1^{+1.5}_{-0}$$

June 3, 2010

> In the SM top decay width ~1.4 GeV, at NLO for $m_{top}=172.5 \text{ GeV/c}^2$

> Deviation from SM prediction may indicate significant decays of t \rightarrow bH⁺ or t \rightarrow dW⁺, t \rightarrow sW⁺

≻ Previous upper limit Γ_t < 13.1 GeV at 95% CL (PRL 102, 042001(2009))

- ➤ Use lepton+jets channel: template based on 2D distributions
 - $> M_t^{reco}$: reconstructed top mass
 - > m_{ii}: invariant mass of the jets from the hadronically decaying W

Top Quark Width (cont')

Liklihood fit to data

June 3, 2010

- $\Gamma_{top} = 1.9^{+1.9}_{-1.5} \text{ GeV} \text{ and } \Delta_{JES} = 0.07^{+0.2}_{-0.2}$
- Apply Feldman-Cousins construction to build 95% confidence interval
- > Upper limit $\Gamma_{top} < 7.5$ GeV at 95% CL
 - Central limit at 68% CL: 0.4 GeV $< \Gamma_{top} < 4.4$ GeV
 - A lower limit on the top quark lifetime $> 8.7 \times 10^{-26}$ s

Top Charge

- > Is the observed particle with mass ~ 172.5 GeV really the SM top?
 - The SM predicts top charge of 2e/3
- > Other top physics measurements DO NOT check the flavor of the b-jet

• Ambiguity in W and b-jet pairing \Rightarrow 2e/3 or -4e/3?

- There is a BSM theory that predicts an exotic particle with charge -4e/3 and the same other properties as "top" (D.Chang et al. PRD 59, 09153(99)):
- Discriminate between 2e/3 (SM-like) and -4e/3 (Exotic Model-like) scenarios

Use Lepton+Jets channel

- b-jet flavor using soft lepton tag
- Require two b tagged jets per event , one SECVTX and the other one SLT
- Reconstruct event with kinematic fitter to determine W and b-jet pairing

Top Charge (Cont')

Use normalized asymmetry as test statistics

$$A \equiv \frac{1}{D_S} \frac{N_{SM} - N_{XM} - \langle B \rangle D_B}{N_{SM} + N_{XM} - \langle B \rangle}$$

- 29 Standard Model-like (SM) and 16 Exotic Model-like (XM) pairs in data
- Calculate two P-values assuming SM and XM. P-values compared with a-priori type-I error rates
 - ➢ For exclusion of XM use 5%.
 - For exclusion of the SM use 0.27% (3 σ) and 5.7·10-5% (5 σ), for evidence and exclusion.
- Result:

Measure XM p-value of 0.0094, and the SM p-value of 0.69.

Exclude charge -4e/3 hypothesis at 95% CL

June 3, 2010

M. Datta, FNAL

2.7 fb⁻¹

Summary and Outlook

- Recent top properties results from CDF are shown
 - All the measurements are consistent with the SM prediction so far
- All the top properties measurement presented here are currently statistics limited
 - ~1K reconstructed ttbar events in ~4 fb⁻¹ of dataset
- > Results will be updated with 6-8 fb⁻¹data soon
 - Plan to combine with D0 measurement
 - Combination based on 6-8 fb⁻¹ data results will make some of the properties measurements systematically limited
- > LHC is expected to deliver ~100-200 pb⁻¹ by end of 2010
 - CDF is expected to have 8.5 fb⁻¹ recorded by that time
 - The Tevatron will offer the world's largest ttbar sample for analyses
- For some of the properties measurements: Tevatron combination based on full dataset will become systematically limited
 - More effort on understanding the systematic effects in future
- Tevatron's top physics program and understanding of systematic effects will continue to play a significant role for years to come

June 3, 2010

Backup Slides

June 3, 2010

M. Datta, FNAL

Kinematical Reconstruction of Lepton+Jets

Minimize a χ² describing the over constrained kinematics of Lepton+Jets channel

• Require consistency with identified b-jet assignments

June 3, 2010

Kinematical Reconstruction of Dilepton : Spin Correlation

- > Two neutrinos in the final state
 - Six unknown variables and six constraints
- Define a likelihood

$$\mathcal{L}\left(\vec{p}_{\nu}, \vec{p}_{\bar{\nu}}, E_{b}^{\text{guess}}, E_{\bar{b}}^{\text{guess}}\right) = P\left(p_{z}^{t\bar{t}}\right) P\left(p_{T}^{t\bar{t}}\right) P\left(M_{t\bar{t}}\right) \times \\ \frac{1}{\sigma_{b}} \exp\left[-\frac{1}{2}\left\{\frac{E_{b}^{\text{meas}} - E_{b}^{\text{guess}}}{\sigma_{b}}\right\}^{2}\right] \times \frac{1}{\sigma_{\bar{b}}} \exp\left[-\frac{1}{2}\left\{\frac{E_{\bar{b}}^{\text{meas}} - E_{\bar{b}}^{\text{guess}}}{\sigma_{\bar{b}}}\right\}^{2}\right] \times \\ \frac{1}{\sigma_{x}^{\text{MET}}} \exp\left[-\frac{1}{2}\left\{\frac{\underline{\mathcal{E}}_{x}^{\text{meas}} - \underline{\mathcal{E}}_{x}^{\text{guess}}}{\sigma_{x}^{\text{MET}}}\right\}^{2}\right] \times \frac{1}{\sigma_{y}^{\text{MET}}} \exp\left[-\frac{1}{2}\left\{\frac{\underline{\mathcal{E}}_{y}^{\text{meas}} - \underline{\mathcal{E}}_{y}^{\text{guess}}}{\sigma_{y}^{\text{MET}}}\right\}^{2}\right]$$

Choose the combination with maximum likelihood value

June 3, 2010

Event-by-Event Likelihood : W Polarization from Top Decay

- Use probability densities based on matrix elements of signal (ttbar) and dominant background (W+jets)
- Construct probability density for each event and multiply all the event probabilities to obtain likelihood

$$L(C_{s}, f_{0}, f_{+}) = \prod_{i=1}^{N_{events}} C_{s} \frac{P_{signal,i}(x; f_{0}, f_{+})}{\langle Acc_{sig}(x; f_{0}, f_{+}) \rangle} + (1 - C_{s}) \frac{P_{bkg,i}}{\langle Acc_{bkg}(x) \rangle}$$
$$P_{signal}(x; f_{0}, f_{+}) = \sum_{perm.} \int \frac{d\delta(y; f_{0}, f_{+})}{dy} W(x, y) dq_{1} dq_{2} f(q_{1}) f(q_{2})$$

- > $d\sigma$ is the differential ttbar cross section
- W(x,y) models detector resolution effects

Relates a set of observable x to corresponding parton level quantities y

f(q) is from the parton distribution function
 June 3, 2010
 M. Datta, FNAL

Spin Correlation

- SM ttbar produces a characteristic spin correlation
- Can be modified by new production mechanisms such as Z' bosons or Kaluza-Klein gluons
- Observed though correlations between the flight directions of the decay products
- Choose an optimal quantization basis
- Measure correlation co-efficient κ
- > Two spin correlation measurements:
- Lepton+jets channel
 - Use helicity basis
- Dilepton channel
 - Use off-diagonal basis

Spin Correlation : Lepton+Jets

- Spin correlation described by four helicity states
- > In ttbar rest frame same spin (S = 1) \Rightarrow opposite helicity
- > Measure opposite helicty fraction f_0 and extract κ

$$f_o = \frac{\sigma(\bar{t}_R t_L) + \sigma(\bar{t}_L t_R)}{\sigma(\bar{t}_R t_R + \bar{t}_L t_L + \bar{t}_R t_L + \bar{t}_L t_R)} = \frac{N_o}{N_o + N_s}$$

$$\kappa = \frac{\left[\sigma(\bar{t}_R t_L) + \sigma(\bar{t}_L t_R)\right] - \left[\sigma(\bar{t}_R t_R) + \sigma(\bar{t}_L t_L)\right]}{\sigma(\bar{t}_R t_R) + \sigma(\bar{t}_L t_L) + \sigma(\bar{t}_R t_L) + \sigma(\bar{t}_L t_R)} = \frac{N_o - N_s}{N_o + N_s}$$

- > Use the helicity angles of the lepton θ_{lep} , and the d-quark θ_{down} and b-quark θ_{bhad} from hadronically decaying top
 - *θ*: angle between the decay product momentum in the top rest frame and the top quark momentum in the ttbar rest frame

June 3, 2010

June 3, 2010

M. Datta, FNAL

Spin Correlation : Lepton+Jets (Cont')

- Identifying down quark
 - Jet closest to the b jet in W rest frame is the d-jet ~60% of the time

> Likelihood fit to data based on 2D templates $\cos\theta_{\text{lep}} \cos\theta_{\text{down}}$ vs. $\cos\theta_{\text{lep}} \cos\theta_{\text{bhad}}$

 $f_{o} = 0.80 \pm 0.25_{stat} \pm 0.08_{syst}$ Converting to κ $\kappa = 0.60 \pm 0.50_{stat} \pm 0.16_{syst}$ SM prediction : $\kappa = \sim 0.4$

Spin Correlations : Dilepton

2.8 fb⁻¹

- > Use off-diagonal basis : $\tan \xi = \operatorname{sqrt}(1-\beta^2) \tan \theta^*$. In ttbar frame: $\beta = \operatorname{top} \operatorname{velocity}$ and $\theta^* = \operatorname{top} \operatorname{flight} \operatorname{direction} w.r.t.$ proton direction.
- > Templates: angular distribution of ($\cos \theta_{l+}$, $\cos \theta_{l-}$) and ($\cos \theta_{b}$, $\cos \theta_{bbar}$)

