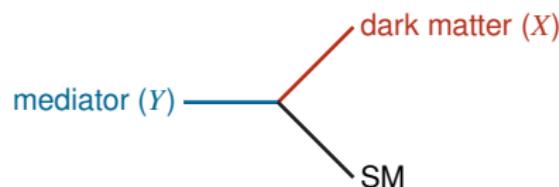


t-channel dark matter and Madanalysis 5


Luca Panizzi

Dark Tools - Torino 16-19 June 2025

Motivation

Study of scenarios based on the schematic interaction

Why is this important?

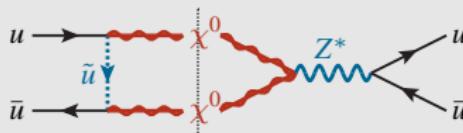
Representative of classes of theoretical scenarios

MSSM

UED

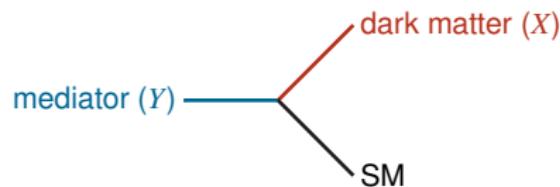
FPVDM

Complementary to s-channel

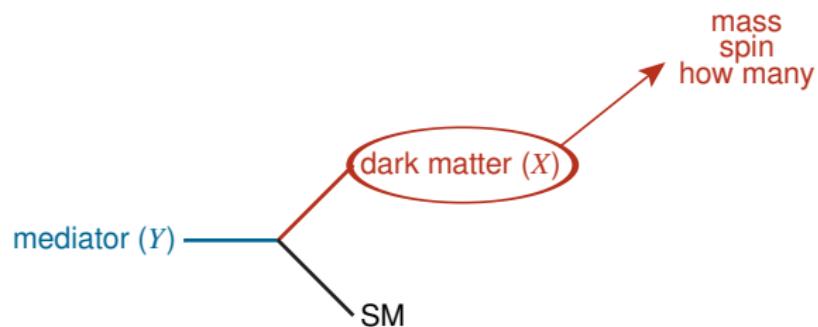

t-channel

mediator always heavier than DM
even number of mediator+DM in interactions

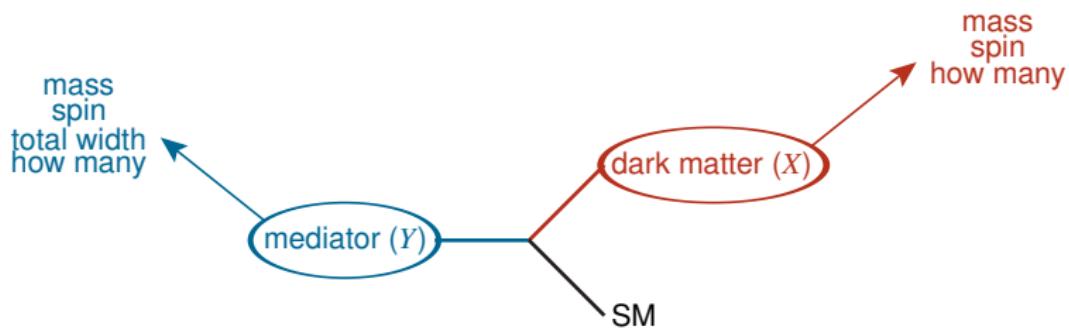
s-channel

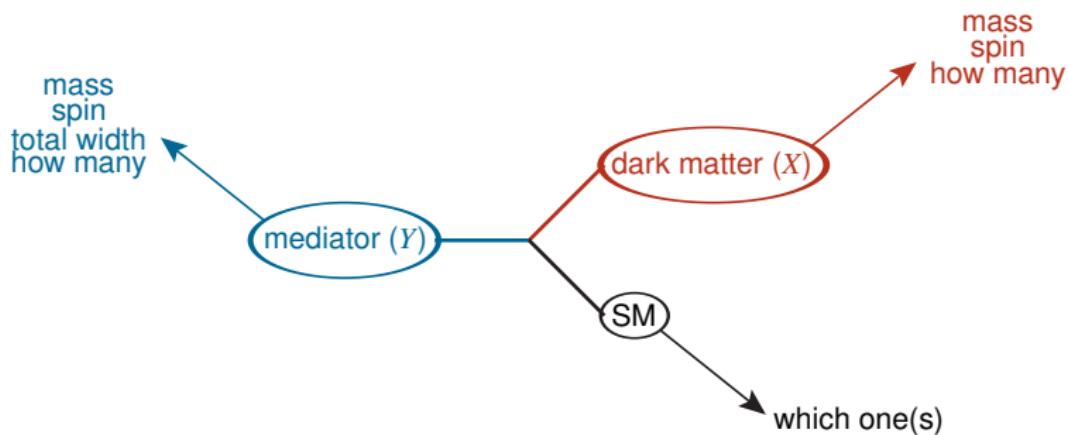

mediator can also be lighter than DM
odd mediators allowed in interactions

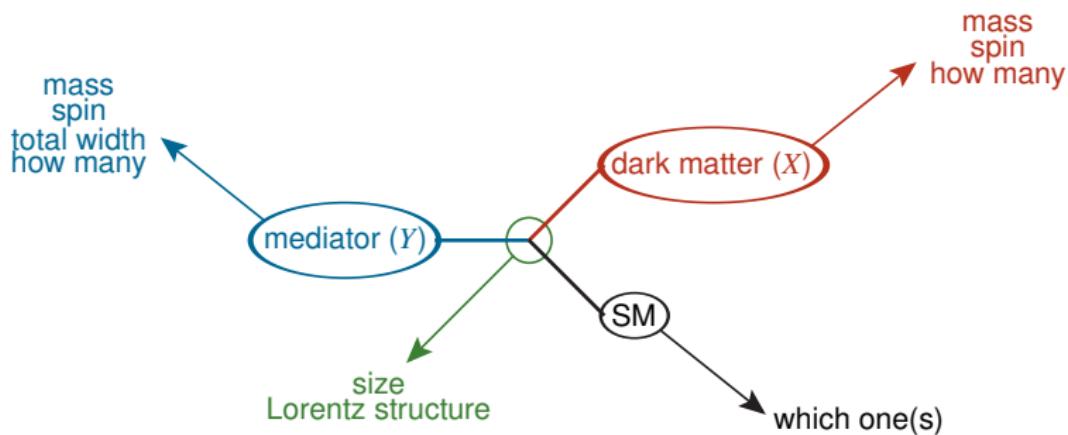
But interferences can happen in non-minimal/full models...

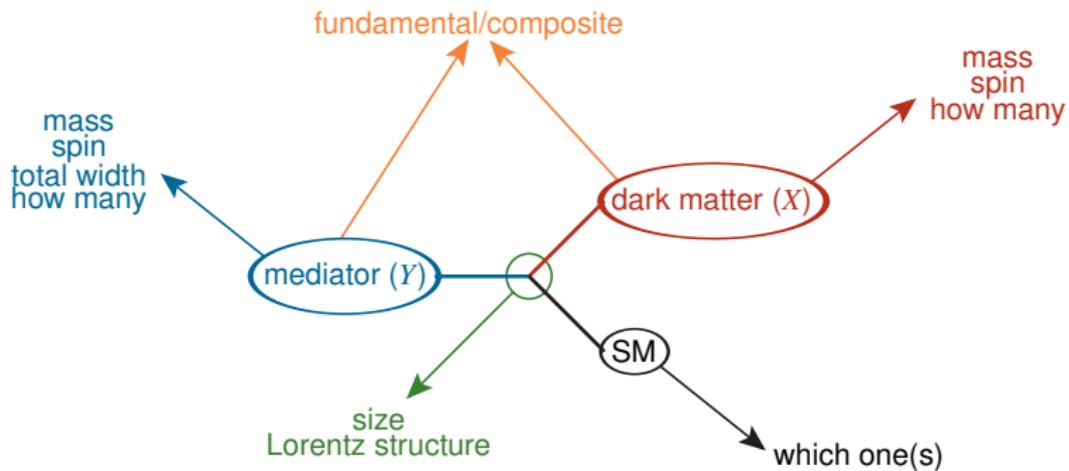


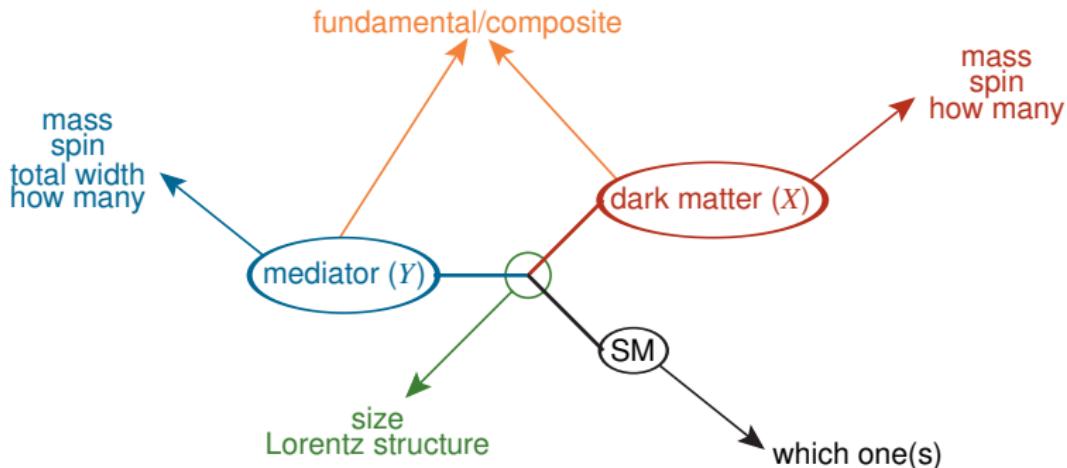
coloured mediators interesting at a hadron collider


Guiding phenomenological questions

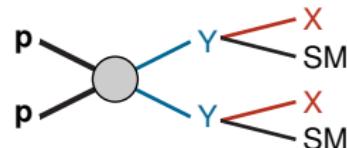
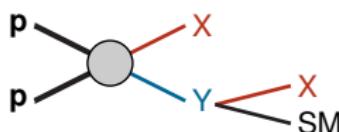
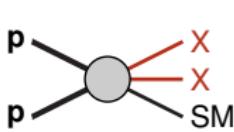

Guiding phenomenological questions


Guiding phenomenological questions


Guiding phenomenological questions


Guiding phenomenological questions

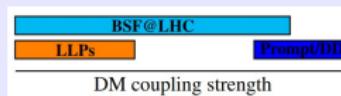
Guiding phenomenological questions




Guiding phenomenological questions

Depending on the possibilities:

- Can we observe a signal? And how?
- How does cosmology constrain the parameters?
- How do we reinterpret results?
- Can we define benchmarks for LHC to cover the widest range of possibilities?

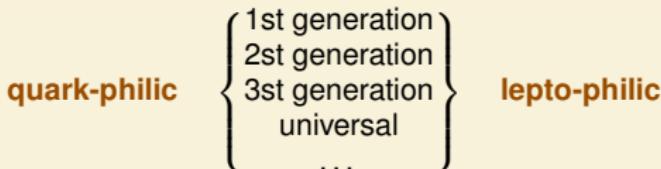
Which signatures



Not all processes might be possible at tree-level

depending on coupling or mass splitting

Long-lived mediators


- Bound states
- Displaced vertices
- Delayed jets/photons

Mediators with prompt decay

MET+SM

depending on which SM particle

Interacting with SM gauge bosons (Z/W) or the Higgs boson

I will focus on quark-philic scenarios with prompt-decay mediators

Putting our hands on it

what do we need?

- 1 A numerical model to perform MC simulations (see Benjamin's talk)

Numerical models

Simplified models suitable for performing MC simulations at NLO in QCD
and testing against cosmological observables

Coloured mediators

DMSimpt : A general framework for t-channel dark matter models at NLO in QCD

Contact Information

Benjamin Fuks

- LPTHE / Sorbonne U.,
- fuks @ lpthe.jussieu.fr

Chiara Arina

- UC Louvain
- chiara.arina @ uclouvain.be

Luca Mantani

- UC Louvain
- luca.mantani @ uclouvain.be

See [arXiv:2001.05024](https://arxiv.org/abs/2001.05024) [hep-ph].

Model Description and FeynRules Implementation

We extend the Standard Model by a dark matter candidate X and a coloured mediator Y . The model includes bosonic dark matter or 0 (fermionic dark matter). The model Lagrangian is given by

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin} + \mathcal{L}_F(X) + \mathcal{L}_F(\bar{X}) + \mathcal{L}_S(S) + \mathcal{L}_S(\bar{S}) + \mathcal{L}_V(V) + \mathcal{L}_V(\bar{V}).$$

The first term consists in the Standard Model Lagrangian, the second one includes gauge-invariant kinetic Dirac fermion, Majorana fermion, complex scalar, real scalar, complex vector and real vector dark matter,

$$\begin{aligned}\mathcal{L}_F(X) &= \left[\lambda_Q \bar{X} Q_L \varphi_Q^L + \lambda_u \bar{X} u_R \varphi_u^L + \lambda_d \bar{X} d_R \varphi_d^L + h.c. \right], \\ \mathcal{L}_S(X) &= \left[\lambda_Q \bar{\psi}_Q Q_L X + \lambda_u \bar{\psi}_u u_R X + \lambda_d \bar{\psi}_d d_R X + h.c. \right], \\ \mathcal{L}_V(X) &= \left[\lambda_Q \bar{\psi}_Q \gamma^\mu X_\mu Q_L + \lambda_u \bar{\psi}_u \gamma^\mu X_\mu u_R + \lambda_d \bar{\psi}_d \gamma^\mu X_\mu d_R + h.c. \right],\end{aligned}$$

where φ and ψ consists in coloured scalar and fermionic mediators.

V1: <http://feynrules.irmp.ucl.ac.be/wiki/DMSimpt>

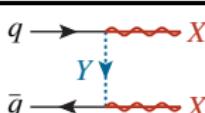
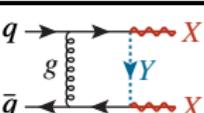
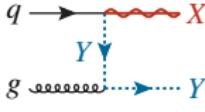
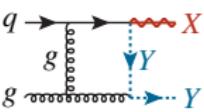
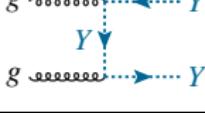
V2: <https://github.com/BFuks/DMSimpt.git>

C. Arina, B. Fuks and L. Mantani, *Eur. Phys. J. C* **80** (2020) no.5, 409, arXiv:2001.05024 [hep-ph].

C. Arina, B. Fuks, L. Mantani *et al.*, arXiv:2504.10597 [hep-ph].

Dark sector particle	Spin	
Mediator	0	1/2
Dark matter	1/2	0 or 1

- DM real or complex
- Couplings with any SM quark (V1/V2) and lepton (V2)
- Restrictions to select representations or coupling hierarchies: only one generation, universal couplings... (available in V1, in progress for V2)






Putting our hands on it

what do we need?

- ➊ A numerical model to perform MC simulations (see Benjamin's talk)
- ➋ Tools to perform the MC simulations (see Olivier's and Sasha's talks)

The processes to simulate

Accurate kinematical description of the signal

Process	LO	NLO
XX		
XY		
YY		

Double-counting between real emission and tree-level processes
Removed through suitable algorithm in MadGraph (MadSTR)

beware of limitations: **narrow width approximation** $\Gamma_Y \ll m_Y$

Putting our hands on it

what do we need?

- ① A numerical model to perform MC simulations (see Benjamin's talk)
- ② Tools to perform the simulations (see Olivier's and Sasha's talks)
- ③ **Tools to process the simulation results**

Putting our hands on it

what do we need?

- ➊ A numerical model to perform MC simulations (see Benjamin's talk)
- ➋ Tools to perform the simulations (see Olivier's and Sasha's talks)
- ➌ **Tools to process the simulation results**
 - Reinterpret experimental data to **constrain** the parameter space of *t*-channel models

Putting our hands on it

what do we need?

- ➊ A numerical model to perform MC simulations (see Benjamin's talk)
- ➋ Tools to perform the simulations (see Olivier's and Sasha's talks)
- ➌ **Tools to process the simulation results**
 - Reinterpret experimental data to **constrain** the parameter space of t -channel models
 - Determine relevant kinematical distributions to optimize targeted analyses and **discriminate** different scenarios

Classification of simplified scenarios

Real DM			
Mediator spin			
	0	1/2	1
DM spin	0	×	F3S
	1/2	S3M	×
	1	×	F3V

Complex DM			
Mediator spin			
	0	1/2	1
DM spin	0	×	F3C
	1/2	S3D	×
	1	×	F3W

Examples of theories which can be described by these simplified models

S3M SUSY: squarks+neutralino (Majorana fermion)

S3D Right-handed neutrino portals with extended scalar sectors

F3S UED: KK quark partners + KK photon (real scalar)

F3C SUSY: sleptons+sneutrinos (not aware of quark-philic models)

F3V ?

F3W FPVDM: vector-like quark + vector DM (non-abelian gauge boson)

Complex DM scenarios excluded by cosmology for interactions with light quarks

Is it true also for non-minimal models?

Is it true also for bottom and top?

Putting our hands on it

what do we need?

- ➊ A numerical model to perform MC simulations (see Benjamin's talk)
- ➋ Tools to perform the simulations (see Olivier's and Sasha's talks)
- ➌ **Tools to process the simulation results**
 - Reinterpret experimental data to **constrain** the parameter space of t -channel models
 - Determine relevant kinematical distributions to optimize targeted analyses and **discriminate** different scenarios

one of such tools is

MadAnalysis 5

MadAnalysis 5

1 Clone

```
$ git clone https://github.com/MadAnalysis/madanalysis5.git
```

github update issue templates 2 years ago

bin update copyright 2 months ago

doc update changelog 2 months ago

madanalysis update copyright 2 months ago

tools update copyright 2 months ago

validation Merge branch 'main' into validation 3 years ago

.gitignore Update of the version of Delphes/DelphesMaStune + co... 2 years ago

.zenodo.json fixing json info 2 months ago

CITATIONS.bib update refs 2 years ago

CODE_OF_CONDUCT.md Create CODE_OF_CONDUCT.md 2 years ago

CONTRIBUTING.md Create CONTRIBUTING.md 3 years ago

COPYING moving COPYING.md5 to COPYING 12 years ago

README.md add zenodo doi 10 months ago

requirements.txt update for spey v0.2.0 3 months ago

[Readme](#) [Code of conduct](#) [GPL-3.0 license](#)

Welcome to MadAnalysis 5

Forecasting PublicAnalysisDatabase Tutorials @HomePage Talks @SeriesPage FAQ @NormalMode DOI 10.5281/zenodo.1527645

3.8 Python 11.1+>

Outline

[madanalysis.irmp.uct.ac.be](#)

recast high-energy-physics hep hc hep-ph hep-ex interpretation/hc-data beyond-standard-model-physics

Readme

GPL-3.0 license

Code of conduct

Cite this repository

Activity

Custom properties

22 stars

4 watching

18 forks

Report repository

Releases 10

v1.11.0 (Latest) on Apr 24

* 9 releases

Contributors 9

Languages

C++ 77.1%	Python 18.9%
Tcl 2.7%	C 0.6%
Fortran 0.6%	
TeX 0.1%	

MadAnalysis 5

1 Clone

```
$ git clone https://github.com/MadAnalysis/madanalysis5.git
```

2 Set python virtual environment (optional)

```
$ python3 -m venv py3_env
$ source py3_env/bin/activate
$ pip3 install -upgrade pip
```

MadAnalysis 5

1 Clone

```
$ git clone https://github.com/MadAnalysis/madanalysis5.git
```

2 Set python virtual environment (optional)

```
$ python3 -m venv py3_env
$ source py3_env/bin/activate
$ pip3 install --upgrade pip
```

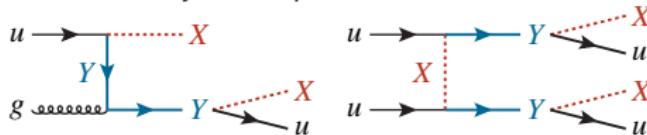
3 Install required packages (be sure that ROOT is already installed)

```
$ python3 -m pip install -r ./madanalysis5/requirements.txt
```

Now MadAnalysis 5 is ready for parton-level analysis

t-channel example

multiple samples / multiple processes


Let's assume the DM is a **real scalar** interacting with the **right-handed up quark**

t-channel example

multiple samples / multiple processes

Let's assume the DM is a **real scalar** interacting with the **right-handed up quark**

- 1 Open MG5_aMC and simulate just two processes: XY and YY with $Y \rightarrow Xu$


```
MG5_aMC> import model DMSimpt_v2_0_4FNS --modelname
MG5_aMC> define excluded = yf3u2 yf3u3 yf3ql1 yf3qu2 yf3qu3 yf3d1 yf3d2
yf3d3 yf3qd1 yf3qd2 yf3qd3
MG5_aMC>
MG5_aMC> generate p p > xs yf3u1, yf3u1 > xs u / excluded
MG5_aMC> output DMtsimp/XY
MG5_aMC>
MG5_aMC> generate p p > yf3u1 yf3u1, yf3u1 > xs u / excluded
MG5_aMC> output DMtsimp/YYt
```

t-channel example

multiple samples / multiple processes

Let's assume the DM is a **real scalar** interacting with the **right-handed up quark**

- 1 Open MG5_aMC and simulate just two processes: XY and YY with $Y \rightarrow Xu$
- 2 Enter in the simulation folders and run `./bin/madevent`, in each of them

```
XY> launch XY_coup1 # or any name, or blank
XY> shower = off
XY> detector = off
XY> analysis = off # we are using MA5 externally
XY> madspin = off
XY> reweight = off
XY> done
XY> set lamf3u1x1 1
XY> set mxs 1000 # and set mxv, mxw and mxc higher than 2000
XY> set myf3u1 2000
XY> set wyf3u1 auto
XY> done
```

For XY let's have two separate samples

```
XY> launch XY_coup1_2 -f
```

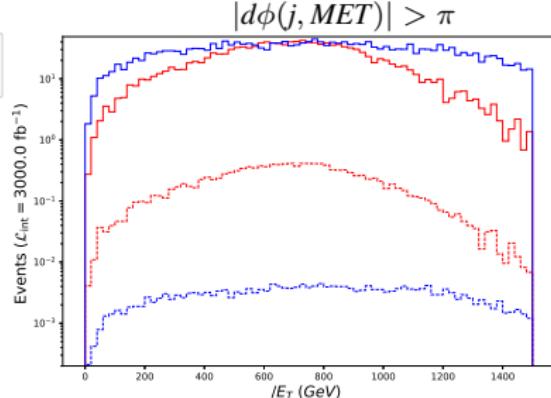
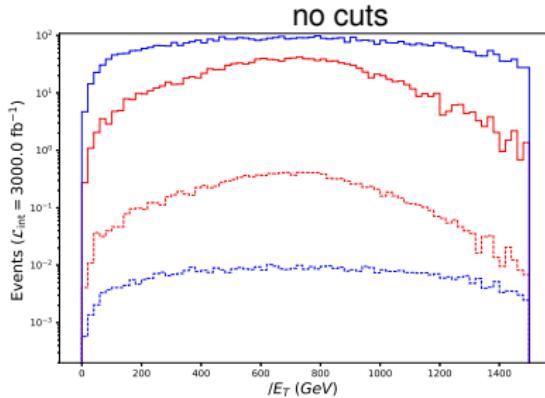
And do the same for a coupling $\lambda = 0.1$

t-channel example

multiple samples / multiple processes

Let's assume the DM is a **real scalar** interacting with the **right-handed up quark**

- 1 Open MG5_aMC and simulate just two processes: XY and YY with $Y \rightarrow Xu$
- 2 Enter in the simulation folders and run `./bin/madevent`, in each of them
- 3 Now let's run `./bin/ma5` in the MadAnalysis 5 folder



```
ma5> define invisible = invisible 51 52 53 56 57 58
ma5> define_region nocuts
ma5> define_region sdPHIpi
ma5> select sdPHI(j[1] met)>3.14 or sdPHI(j[1] met)<-3.14 {sdPHIpi}
ma5> import <MG path>/DMtsimp/XY/Events/XY_coup1/unweighted_events.lhe.gz as XY_coup1
ma5> import <MG path>/DMtsimp/XY/Events/XY_coup1_2/unweighted_events.lhe.gz as XY_coup1 # merging two samples in one dataset
ma5> import <MG path>/DMtsimp/XY/Events/XY_coup1/unweighted_events.lhe.gz as XY_coup1
ma5> import <MG path>/DMtsimp/XY/Events/XY_coup01/unweighted_events.lhe.gz as XY_coup0_1
ma5> import <MG path>/DMtsimp/XY/Events/XY_coup01/unweighted_events.lhe.gz as XY_coup0_1
ma5> set main.graphics_render = matplotlib
ma5> set main.stackting_method = superimpose
ma5> set main.normalize = lumi_weight
ma5> set main.lumi=300
ma5> plot MET 75 0 1500 {nocuts} [logY]
ma5> plot MET 75 0 1500 {sdPHIpi} [logY]
ma5> submit <MG path>/DMtsimp/PartonAnalysis
```

t-channel example

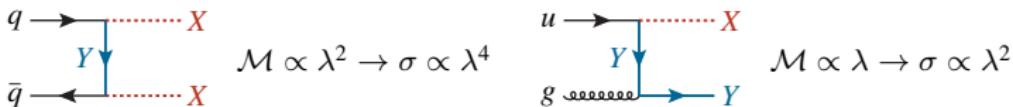
multiple samples / multiple processes

Let's assume the DM is a **real scalar** interacting with the **right-handed up quark**

- 1 Open MG5_aMC and simulate just two processes: XY and YY with $Y \rightarrow Xu$
- 2 Enter in the simulation folders and run `./bin/madevent`, in each of them
- 3 Now let's run `./bin/ma5` in the MadAnalysis 5 folder
- 4 Analyse results

Notice how XX and XY scale differently with the coupling
and how cuts affect distributions in different ways

Relevance of the different processes


Master equation to reconstruct signal for any flavour hypothesis

$$\begin{aligned}\sigma_{\text{Tot}}^{\text{eff}}(\lambda; M_Y, M_X) = & \lambda^0 \hat{\sigma}_{Y\bar{Y}_{QCD}}(M_Y) \epsilon_{Y\bar{Y}_{QCD}}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{YY_t}(M_Y, M_X) \epsilon_{YY_t}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{Y\bar{Y}_t}(M_Y, M_X) \epsilon_{Y\bar{Y}_t}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{\bar{Y}\bar{Y}_t}(M_Y, M_X) \epsilon_{\bar{Y}\bar{Y}_t}(M_Y, M_X) \\ & + \lambda^2 \hat{\sigma}_{Y\bar{Y}_i}(M_Y, M_X) \epsilon_{Y\bar{Y}_i}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{XX}(M_Y, M_X) \epsilon_{XX}(M_Y, M_X) \\ & + \lambda^2 \hat{\sigma}_{XY}(M_Y, M_X) \epsilon_{XY}(M_Y, M_X)\end{aligned}$$

$\hat{\sigma}$ are the cross-sections after factorizing the new coupling

ϵ are the efficiencies associated with a given experimental signal region

Example with XX and XY (decays are factorised via branching ratios)

The kinematic properties are driven **only** by the masses
 λ just **rescales** the cross-sections without affecting the shape of distributions

Relevance of the different processes

Master equation to reconstruct signal for any flavour hypothesis

$$\begin{aligned}\sigma_{\text{Tot}}^{\text{eff}}(\lambda; M_Y, M_X) = & \lambda^0 \hat{\sigma}_{Y\bar{Y}_{QCD}}(M_Y) \epsilon_{Y\bar{Y}_{QCD}}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{YY_t}(M_Y, M_X) \epsilon_{YY_t}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{Y\bar{Y}_t}(M_Y, M_X) \epsilon_{Y\bar{Y}_t}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{\bar{Y}\bar{Y}_t}(M_Y, M_X) \epsilon_{\bar{Y}\bar{Y}_t}(M_Y, M_X) \\ & + \lambda^2 \hat{\sigma}_{Y\bar{Y}_i}(M_Y, M_X) \epsilon_{Y\bar{Y}_i}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{XX}(M_Y, M_X) \epsilon_{XX}(M_Y, M_X) \\ & + \lambda^2 \hat{\sigma}_{XY}(M_Y, M_X) \epsilon_{XY}(M_Y, M_X)\end{aligned}$$

$\hat{\sigma}$ are the cross-sections after factorizing the new coupling

ϵ are the efficiencies associated with a given experimental signal region

Now let's deal with the efficiencies

- 1 We need to include parton-showering and hadronization/fragmentation

```
XY> launch XY_coup1 # or any name, or blank
XY> shower = Pythia8
XY> ...
```

Relevance of the different processes

Master equation to reconstruct signal for any flavour hypothesis

$$\begin{aligned}\sigma_{\text{Tot}}^{\text{eff}}(\lambda; M_Y, M_X) = & \lambda^0 \hat{\sigma}_{Y\bar{Y}_{QCD}}(M_Y) \epsilon_{Y\bar{Y}_{QCD}}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{YY_t}(M_Y, M_X) \epsilon_{YY_t}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{Y\bar{Y}_t}(M_Y, M_X) \epsilon_{Y\bar{Y}_t}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{\bar{Y}\bar{Y}_t}(M_Y, M_X) \epsilon_{\bar{Y}\bar{Y}_t}(M_Y, M_X) \\ & + \lambda^2 \hat{\sigma}_{Y\bar{Y}_i}(M_Y, M_X) \epsilon_{Y\bar{Y}_i}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{XX}(M_Y, M_X) \epsilon_{XX}(M_Y, M_X) \\ & + \lambda^2 \hat{\sigma}_{XY}(M_Y, M_X) \epsilon_{XY}(M_Y, M_X)\end{aligned}$$

$\hat{\sigma}$ are the cross-sections after factorizing the new coupling

ϵ are the efficiencies associated with a given experimental signal region

Now let's deal with the efficiencies

- 1 We need to include parton-showering and hadronization/fragmentation

```
XY> launch XY_coup1 # or any name, or blank
XY> shower = Pythia8
XY> ...
```

- 2 Now we need to reconstruct the objects in the final state and pass them through the detector before applying the experimental selections and cuts

Relevance of the different processes

Master equation to reconstruct signal for any flavour hypothesis

$$\begin{aligned}\sigma_{\text{Tot}}^{\text{eff}}(\lambda; M_Y, M_X) = & \lambda^0 \hat{\sigma}_{Y\bar{Y}_{QCD}}(M_Y) \epsilon_{Y\bar{Y}_{QCD}}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{YY_t}(M_Y, M_X) \epsilon_{YY_t}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{Y\bar{Y}_t}(M_Y, M_X) \epsilon_{Y\bar{Y}_t}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{\bar{Y}\bar{Y}_t}(M_Y, M_X) \epsilon_{\bar{Y}\bar{Y}_t}(M_Y, M_X) \\ & + \lambda^2 \hat{\sigma}_{Y\bar{Y}_i}(M_Y, M_X) \epsilon_{Y\bar{Y}_i}(M_Y, M_X) \\ & + \lambda^4 \hat{\sigma}_{XX}(M_Y, M_X) \epsilon_{XX}(M_Y, M_X) \\ & + \lambda^2 \hat{\sigma}_{XY}(M_Y, M_X) \epsilon_{XY}(M_Y, M_X)\end{aligned}$$

$\hat{\sigma}$ are the cross-sections after factorizing the new coupling

ϵ are the efficiencies associated with a given experimental signal region

Now let's deal with the efficiencies

- 1 We need to include parton-showering and hadronization/fragmentation

```
XY> launch XY_coup1 # or any name, or blank
XY> shower = Pythia8
XY> ...
```

- 2 Now we need to reconstruct the objects in the final state and pass them through the detector before applying the experimental selections and cuts
- 3 Let's use analyses for which a **recast** is already available (or do our own recast)

MadAnalysis 5

1 Clone

```
$ git clone https://github.com/MadAnalysis/madanalysis5.git
```

2 Set python virtual environment (optional)

```
$ python3 -m venv py3_env
$ source py3_env/bin/activate
$ pip3 install --upgrade pip
```

3 Install required packages (be sure that ROOT is already installed)

```
$ python3 -m pip install -r ./madanalysis5/requirements.txt
```

4 Install the Public Analysis Database (PAD) in MadAnalysis 5

```
ma5> install PAD
```

this should install automatically Fastjet and Delphes, otherwise do it manually

```
ma5> install fastjet
ma5> install delphes
```

Now MadAnalysis 5 is ready to recast

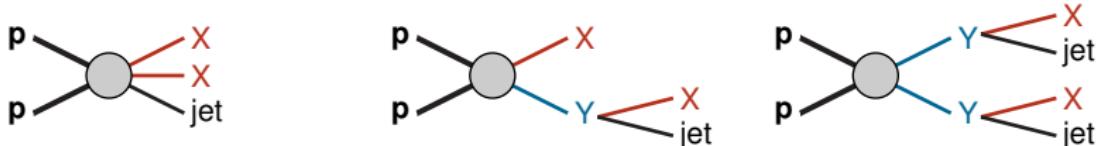
Recasting with MadAnalysis 5

- 1 Now let's run `./bin/ma5 -R` in the MadAnalysis 5 folder, to enter in the reconstructed-level mode

```
ma5> set main.recast = on
ma5> set main.recast.store_events = False
ma5> define invisible = invisible 51 52 53 56 -56 57 -57 58 -58
ma5> import <your filename>.hepmc.gz as DMtsimp
ma5> set DMtsimp.xsection = <cross-section value>
ma5> set main.recast.card_path = <your path>/recasting_card.dat ma5> submit
<name of your run>
```

Recasting with MadAnalysis 5

- 1 Now let's run `./bin/ma5 -R` in the MadAnalysis 5 folder, to enter in the reconstructed-level mode


```
ma5> set main.recast = on
ma5> set main.recast.store_events = False
ma5> define invisible = invisible 51 52 53 56 -56 57 -57 58 -58
ma5> import <your filename>.hepmc.gz as DMtsimp
ma5> set DMtsimp.xsection = <cross-section value>
ma5> set main.recast.card_path = <your path>/recasting_card.dat ma5> submit
<name of your run>
```

What is inside the recasting_card.dat?

```
# AnalysisName          PADType   Switch   DetectorCard
# Detector cards must be located in the PAD(ForMA5tune/ForSFS) directory
# Switches must be on or off
atlas_susy_2018_17      v1.2      on       delphes_card_atlas_susy_2018_17.tcl          # ATLAS - 13 TeV - At least 8 jets + met (139/fb)
cms_exo_20_004           v1.2      on       delphes_card_cms_exo_20_004.tcl          # CMS - 13 TeV - Mono-jet (137/fb)
cms_susy_19_006           v1.2      on       delphes_card_cms_susy_19_006.tcl          # CMS - 13 TeV - SUSY In the HT / missing HT channel (137/fb)
atlas_conf_2019_040       vSF5     on       sfs_card_atlas_susy_2016_07.m05      # ATLAS - 13 TeV - multijet + met (139/fb)
atlas_exot_2018_06        vSF5     on       sfs_card_atlas_exot_2018_05.m05      # ATLAS - 13 TeV - multijet + met [inclusive] (139/fb)
```

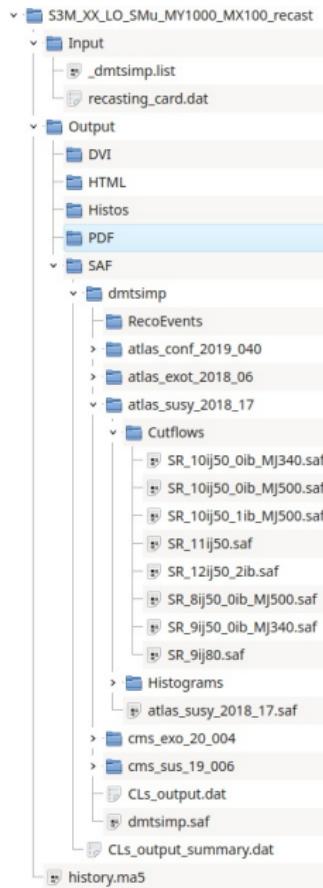
A list of searches (among those available) targeting final states with jets and MET

Why? Because our DM is quark-philic

The list depends on the final state

The longer the list, the longer it takes to do the recast
(large statistics takes several hours, choose wisely)

Recasting with MadAnalysis 5


- 1 Now let's run `./bin/ma5 -R` in the MadAnalysis 5 folder, to enter in the reconstructed-level mode

```
ma5> set main.recast = on
ma5> set main.recast.store_events = False
ma5> define invisible = invisible 51 52 53 56 -56 57 -57 58 -58
ma5> import <your filename>.hepmc.gz as DMtsimp
ma5> set DMtsimp.xsection = <cross-section value>
ma5> set main.recast.card_path = <your path>/recasting_card.dat ma5> submit
<name of your run>
```

- 2 Let's look at the result

MA5 recasting output

the main parts at least

MA5 recasting output

the main parts at least

• The cutflows

```
<SAHeader>
</SAHeader>

<InitialCounter>
  "Initial number of events"      #
  300000      0      # nentries
  1.504815e-03    0.000000e+00  # sum of weights
  7.548232e-12   0.000000e+00  # sum of weights^2
</InitialCounter>

<Counter>
  "<= 4 pt_50 jets"           # 1st cut
  91      0      # nentries
  4.564607e-07    0.000000e+00  # sum of weights
  2.289630e-15   0.000000e+00  # sum of weights^2
</Counter>

<Counter>
  "no leptons with pt >= 10"    # 2st cut
  91      0      # nentries
  4.564607e-07    0.000000e+00  # sum of weights
  2.289630e-15   0.000000e+00  # sum of weights^2
</Counter>

<Counter>
  "<= 11 pt_50 jets"           # 3st cut
  0      0      # nentries
  0.000000e+00    0.000000e+00  # sum of weights
  0.000000e+00    0.000000e+00  # sum of weights^2
</Counter>
```


With this information we can investigate which cuts are killing or keeping the signal and/or the background

- S3M_XX_LO_SMu_MY1000_MX100_recast
- Input
 - _dmtsimp.list
 - recasting_card.dat
- Output
 - DVI
 - HTML
 - Histos
 - PDF
 - SAF
 - dmtsimp
 - RecoEvents
 - atlas_conf_2019_040
 - atlas_exot_2018_06
 - atlas_susy_2018_17
 - Cutflows
 - SR_10ij50_0ib_MJ340.saf
 - SR_10ij50_0ib_MJ500.saf
 - SR_10ij50_1ib_MJ500.saf
 - SR_11ij50.saf
 - SR_12ij50_2ib.saf
 - SR_8ij50_0ib_MJ500.saf
 - SR_9ij50_0ib_MJ340.saf
 - SR_9ij80.saf
 - Histograms
 - atlas_susy_2018_17.saf
 - cms_exo_20_004
 - cms_sus_19_006
 - CLS_output.dat
 - dmtsimp.saf
 - CLS_output_summary.dat

MA5 recasting output

the main parts at least

• The cutflows

```
<SAHeader>
</SAHeader>

<InitialCounter>
  "Initial number of events"      #
  300000      0      # nentries
  1.504815e-03    0.000000e+00  # sum of weights
  7.548232e-12   0.000000e+00  # sum of weights^2
</InitialCounter>

<Counter>
  ">= 4 pt_50 jets"           # 1st cut
  91      0      # nentries
  4.564607e-07   0.000000e+00  # sum of weights
  2.289630e-15   0.000000e+00  # sum of weights^2
</Counter>

<Counter>
  "no leptons with pt >= 10"   # 2st cut
  91      0      # nentries
  4.564607e-07   0.000000e+00  # sum of weights
  2.289630e-15   0.000000e+00  # sum of weights^2
</Counter>

<Counter>
  ">= 11 pt_50 jets"          # 3st cut
  0      0      # nentries
  0.000000e+00   0.000000e+00  # sum of weights
  0.000000e+00   0.000000e+00  # sum of weights^2
</Counter>
```

With this information we can investigate which cuts are killing or keeping the signal and/or the background

• The CLs summary

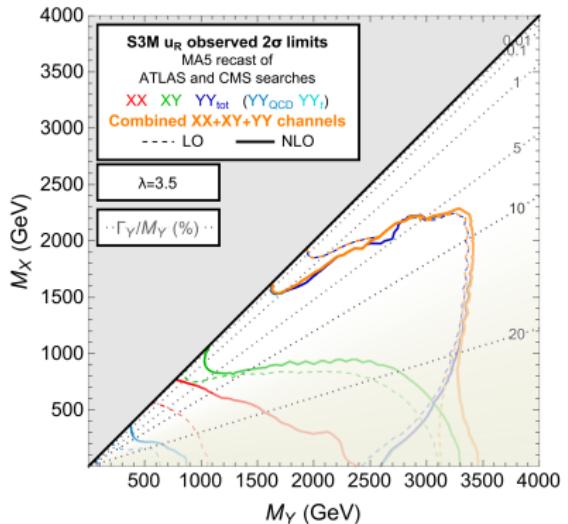
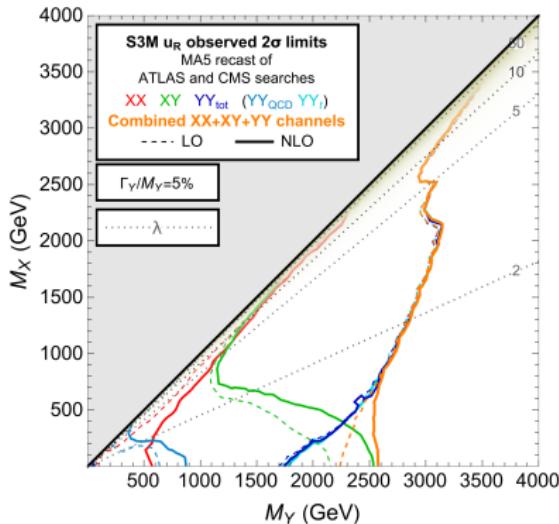
# dataset name	analysis name	signal region	best?	sig95(exp)	sig95(obs)	1-CLs	efficiency	stat
atlas_susy_2018_17	SR-10ij50-0ib_MJ340	0	-1	0.000000000	0.000000000	1.000000000	0.800000000	0.800000000
dmstup	atlas_susy_2018_17	SR-9ij50-0ib_MJ340	0	-1	0.000000000	0.000000000	1.000000000	0.800000000
dmstup	atlas_susy_2018_17	SR-10ij50-0ib_MJ500	0	-1	0.000000000	0.000000000	1.000000000	0.800000000
dmstup	atlas_susy_2018_17	SR-10ij50-1lb_MJ500	0	-1	0.000000000	0.000000000	1.000000000	0.800000000
dmstup	atlas_susy_2018_17	SR-11ij50	0	-1	0.000000000	0.000000000	1.000000000	0.800000000
dmstup	atlas_susy_2018_17	SR-12ij50_2lb	0	-1	0.000000000	0.000000000	1.000000000	0.800000000
dmstup	atlas_susy_2018_17	SR-8ij50_0ib_MJ500	0	-1	0.000000000	0.000000000	1.000000000	0.800000000
dmstup	atlas_susy_2018_17	SR-12ij50-2lb	0	-1	0.000000000	0.000000000	1.000000000	0.800000000
dmstup	atlas_susy_2018_17	SR-9ij80	0	-1	0.000000000	0.000000000	1.000000000	0.800000000
dmstup	atlas_susy_2018_17	IM0	0	35.8406065	45.4360687	0.000000000	0.8157900	0.2727575
dmstup	atlas_exot_2018_06	IM1	0	24.1427386	30.3295550	0.0000132638	0.893833	0.2108050
dmstup	atlas_exot_2018_06	IM2	0	20.9770386	28.7532592	0.0002287806	0.8854000	0.1662485
dmstup	atlas_exot_2018_06	IM3	0	18.4955612	27.3896549	0.000000000	0.8936000	0.1287665
dmstup	atlas_exot_2018_06	IM4	0	18.4812883	29.4397034	0.0019372435	0.8917707	0.8928890

With this information we can reinterpret our results for any value of the DM coupling*

* conditions apply, do not exceed recommended doses of approximation

Some results

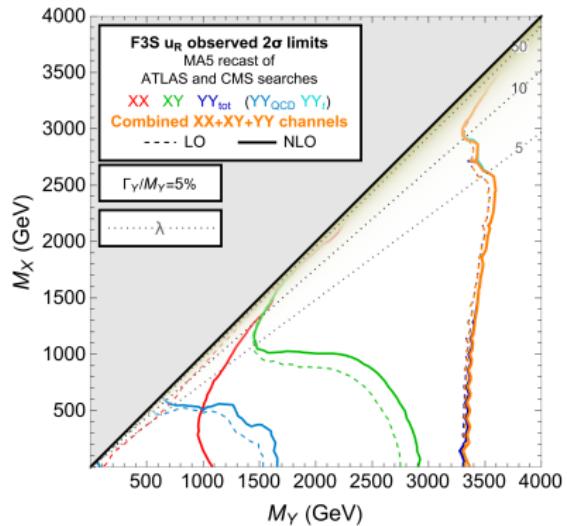
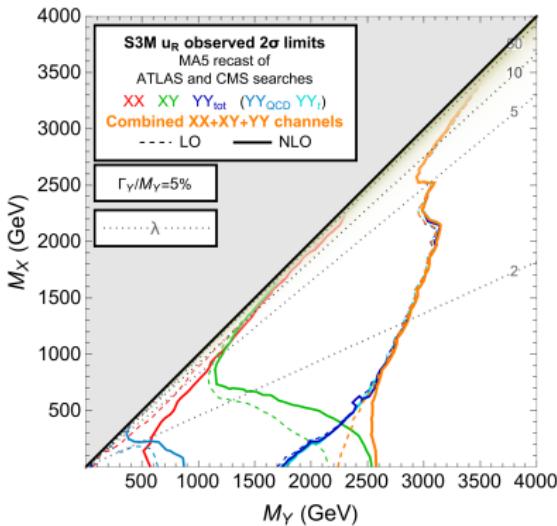
based on



t-channel dark matter models – a whitepaper

Chiara Arina^{*, 1} Benjamin Fuks^{*^a, 2} Luca Panizzi^{*, 3, 4} Michael J. Baker^{†, 5} Alan S. Cornell^{†, 6} Jan Heisig^{†, 7}
Benedikt Maier^{†, 8} Rute Pedro^{†, 9} Dominique Trischuk^{†, 10} Diyar Agin,² Alexandre Arbey,¹¹ Giorgio Arcadi,^{12, 13}
Emanuele Bagnaschi,¹⁴ Kehang Bai,¹⁵ Disha Bhatia,¹⁶ Matthias Becker,^{17, 18, 19} Alexander Belyaev,^{20, 21} Ferdinand Benoit,²
Monika Blanke,^{22, 23} Jackson Burzynski,²⁴ Jonathan M. Butterworth,²⁵ Antimo Cagnotta,²⁶ Lorenzo Calibbi,²⁷
Linda M. Carpenter,²⁸ Xabier Cid Vidal,²⁹ Emanuele Copello,¹⁷ Louie Corpe,³⁰ Francesco D'Eramo,^{18, 19} Aldo Deandrea,^{6, 11}
Aman Desai,^{31, 32} Caterina Doglioni,³³ Sunil M. Dogra,³⁴ Mathias Garny,³⁵ Mark D. Goodsell,² Sohaib Hassan,³⁶
Philip Coleman Harris,³⁷ Julia Harz,¹⁷ Alejandro Ibarra,³⁵ Alberto Orso Maria Iorio,^{38, 39} Felix Kahlhoefer,²²
Deepak Kar,^{40, 41} Shaaaban Khalil,⁴² Valery Khoze,⁴³ Pyungwon Ko,⁴⁴ Sabine Kraml,⁴⁵ Greg Landsberg,⁴⁶ Andre Lessa,⁴⁷
Laura Lopez-Honorez,^{48, 49} Alberto Mariotti,^{50, 49} Vasiliki A. Mitsou,⁵¹ Kirtimaan Mohan,⁵² Chang-Seong Moon,³⁴
Alexander Moreno Briceño,⁵³ María Moreno Llácer,⁵¹ Léandre Munoz-Aillaud,² Taylor Murphy,^{2, 54} Anele M. Ncube,⁶
Wandile Nzuzi,⁴⁰ Clarisse Prat,⁴⁰ Lena Rathmann,⁷ Thobani Sangweni,⁵⁵ Dipan Sengupta,⁵⁶ William Shepherd,⁵⁷
Sukanya Sinha,³³ Tim M.P. Tait,⁵⁸ Andrea Thamm,⁵ Michel H.G. Tytgat,⁴⁸ Zirui Wang,⁵⁹ David Yu,⁶⁰ and Shin-Shan Yu⁶¹

arXiv:2504.10597

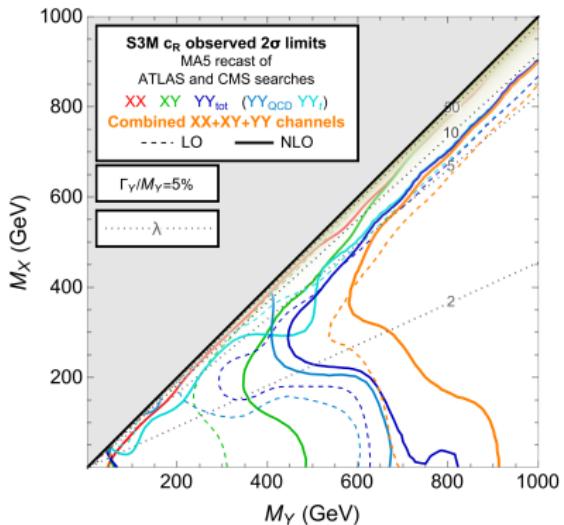
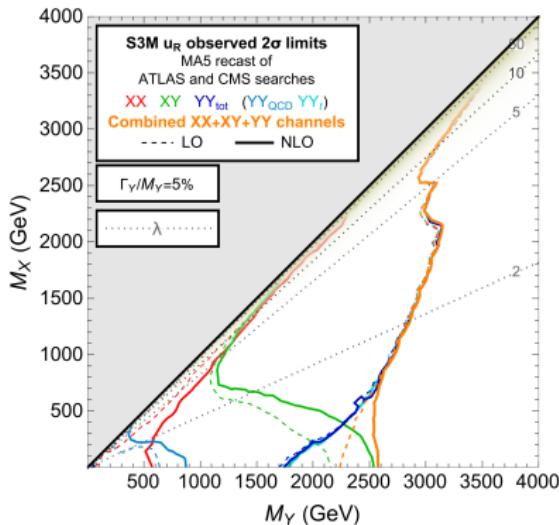
Different coupling assumptions



DM interacting with the up quark

- Validity of narrow width approximation
- Different functional dependence of coupling-dependent constraints
- Mild differences NLO vs LO

Different spin configurations

DM interacting with the up quark

- Different reach (depending on degrees of freedom)
- Different dependence on masses (related to the structure of the amplitudes)

(see [Phys. Rev. D 108 \(2023\) no.11, 115007](#) for details)

Different quark interactions

same spin configuration

- Huge role of valence quarks in same-charge mediator production
- Completely different interplay of contributions
- Different NLO/LO K-factors

Conclusions

Extremely flexible analysis for t -channel DM models through MA5

Conclusions

Extremely flexible analysis for t -channel DM models through MA5

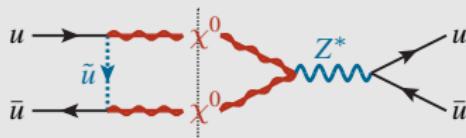
All MA5 output from the WP is **available**
around 6.5 GB of data for all quarks and all spin combinations
(now upon request, planning to make it public soon)

Conclusions

Extremely flexible analysis for t -channel DM models through MA5

All MA5 output from the WP is **available**
around 6.5 GB of data for all quarks and all spin combinations
(now upon request, planning to make it public soon)

Many possible **extensions and follow ups** of this analysis


Conclusions

Extremely flexible analysis for t -channel DM models through MA5

All MA5 output from the WP is **available**
around 6.5 GB of data for all quarks and all spin combinations
(now upon request, planning to make it public soon)

Many possible **extensions and follow ups** of this analysis

We are **generalising** the treatment to s -channel and its interplay with t -channel

