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Where can we search for BSM signals?
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How can we search for light particle BSM signals?

Standard PORTAL

Model <

>

Light
Dark Sector

12




Introduction and Motivations

How can we search for light particle BSM signals?
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How can we search for light particle BSM signals?

Standard PORTAL Light
Model < > Dark Sector

Suppose we have particles y and y in the dark sector

\> natural possibility: couple to the gauge bosons of
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which means that lowering
the DM mass decreases the
— thermal-average cross section
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How can we search for light particle BSM signals?

Standard Light
Model < > Dark Sector

Lee-Weinberg bound

m. > 92 GeV = So, how can we explore sub-GeV dark sectors?
X ~v
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How can we search for light particle BSM signals?

DARK

Standard PORTAL Light
Model < > Dark Sector

Lee-Weinberg bound

= So, how can we explore sub-GeV dark sectors?
m, 2 2GeV

\—> solution: inclusion of new light dark sector mediator states!

These light mediators will act as portals between the dark sector and the SM.

17




Int
oducti
uctio
N and
Moti
otivations
 Hidde
S

\ \ \
SN 0e? Cran e ( 10V
il > @ WL ° (9 S o
ul char™m topP g\uon nig9s
eI A soneVie oA 3
wl - ) - @

dow" sl\’ange potto™ p\‘\olon S

@ andard

e eC! yon uon au 050\'\ M O

oeIe eV eV e

B o 0son ( A L
' > Dar
N k S
ector

/
renor /
Ve 1- r? alizable .
C Or p [I \\
ortal /I (;\6©
£ / //))\\6@
KM — - / N
€ Z, » / s, @
QNVB""V Scala . /O/;\
d r N
5) > |HFISE Neutrino P A
| £ ortal N LP Portal
_yaL H Ion'“ke-p -
o N article
+h a
~ photons
\ |Epton
S

dark Hi
H|g
gs
H
pton

18
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Inelastic Dark Matter

Theoretical Framework

The interaction term with the mediator turns to be off-diagonal

L D gpZou (it — pior ) — L

p _*
int_2

X2
9pZguXx2Y“Xx1 + h.c.
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Inelastic Dark Matter 1

Theoretical Framework

The interaction term with the mediator turns to be off-diagonal
X2

LD gpZou(ia"hr — Yho*s) —> LD = =gpZuXe¥*x1 + h.c.

2

Motivations

Thermal relics: DM abundance can be computed via thermal freeze-out.

23




Inelastic Dark Matter 1

Theoretical Framework

The interaction term with the mediator turns to be off-diagonal
X2

( -
= —gDZQuX2’Y'uX1 —l— hC

LD gpZau(wio"in = vlotys) — L3 =

Motivations

Thermal relics: DM abundance can be computed via thermal freeze-out.

Evades indirect and direct detection experimental limits

The heavier state y, can decay into the DM candidate y;, depleting its abundance

— no present-day population of heavier states to co-annihilate with the DM — avoid indirect detection signals

= similarly, direct detection signals depend on up-scatter of the light state, which is kinematically suppressed
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Inelastic Dark Matter 7

Theoretical Framework NNNN

The interaction term with the mediator turns to be off-diagonal
X2

( -
= —gDZQuX2’Y'uX1 —l— hC

LD gpZau(wio"in = vlotys) — L3 =

Motivations

Thermal relics: DM abundance can be computed via thermal freeze-out.

Evades indirect and direct detection experimental limits

The heavier state y, can decay into the DM candidate y;, depleting its abundance
— no present-day population of heavier states to co-annihilate with the DM — avoid indirect detection signals
= similarly, direct detection signals depend on up-scatter of the light state, which is kinematically suppressed
Evades stringent CMB limits

Since the abundance of x5 is already reduced during recombination era, coannihilations that would inject energy into

the plasma are suppressed.
25
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Theoretical Framework

The interaction term with the mediator turns to be off-diagonal
X2
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What’s new?

* In the literature: only considered the minimal scenario with a secluded dark photon portal Z,
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Theoretical Framework

The interaction term with the mediator turns to be off-diagonal

X2

LD gpZou(ia"hr — Yho*s) —> LD = =gpZuXe¥*x1 + h.c.

What’s new?

* This work: we consider the case of generic charges for the U(1) group

2

U

vector mediator also couples to the SM via
direct terms depending on the choice of charge

.
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x f
B | Te | Ty | Tr Q QQ
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Loy = eeJ® Zou — 9076 Zqu

int
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Inelastic Dark Matter 1

-------------------------------------------------------------------------- ZQ
. 9o
Theoretical Framework
The interaction term with the mediator turns to be off-diagonal
. X2
= o D _ ¢! =
LD gpZou(10% 1 — 30" 1hs) —> Ly = -gpZguX27Xx1 + h.c.

2
What’s new?

* This work: we consider the case of generic charges for the U(1) group Q=3B —z.L.—x,L, — x.L
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Inelastic Dark Matter - Decay Rates
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Inelastic Dark Matter - Decay Rates

Hierarchy mz, > my + my Limit gp > gg
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Inelastic Dark Matter - Relic Density Computation
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Inelastic Dark Matter - Relic Density Computation
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Inelastic Dark Matter - Relic Density Computation
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Inelastic Dark Matter - Relic Density Computation
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Inelastic Dark Matter - Relic Density Computation

dY]_,Q S eqy/€ v, 2
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Inelastic Dark Matter - Relic Density Computation

Boltzmann Equation
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Inelastic Dark Matter - Relic Density Computation
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Inelastic Dark Matter - Relic Density Computation

iDM iDMg
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Inelastic Dark Matter - ReD-DeliVeR code

ReD-DelLiVeR (Relic Density with DelLiVeR)

update of the previous python package DEL IVER (Decays of Light Vectors Revised), which can be used to
compute decay rates and branching ratios for user-defined U(1), charges,

key feature: includes a complete set of hadronic decays (20 channels)

channel resonances ALF, P. Reimitz, R.Z. Funchal [JHEP 04 (2022)119]
my psp,w, ¢
nrm PP p"
channel resonflncis WT — T o, 0, p"
:Z : w/;b;,,w ? il “ hadronic
1" ’ 7/ /" d)ﬂ' p’p,
2; P f;, ’p‘;‘j:p(*;i”;‘)m , ¢ nlﬂ.ﬂ. ’p/ll ) mode
KK Py @,y D, .. N w,w H
KK p, 0. p" b &, P 7’¢ ¢” d)”
pp/nn PP w, W
omm ¢, 9"
K*(892)Km pl, &
67!' plll
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Inelastic Dark Matter - ReD-DeliVeR code

ReD-DelLiVeR (Relic Density with DelLiVeR)

update of the previous python package DEL IVER (Decays of Light Vectors Revised), which can be used to
compute decay rates and branching ratios for user-defined U(1), charges,

key feature: includes a complete set of hadronic decays (20 channels)

new version:
* inclusion of DM candidates

simplified DM models
inelastic DM

* computation of relic density and rates

Cln
Il

BL model tutorial + inelastic DM A= 0.1

10721 —n Y; v
1074 -
10°°
108 1
10-10 N

m; =1.00GeV o
10-24 9= 6.38 x 1074 \\\

ap=0.10 \
10—14 R=3 ‘ \\‘

Qh?=0.12 \
10—16 . \

10° 10! 102
X=my/T
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Inelastic Dark Matter - ReD-DeliVeR code

ReD-DelLiVeR (Relic Density with DelLiVeR)

update of the previous python package DEL IVER (Decays of Light Vectors Revised), which can be used to
compute decay rates and branching ratios for user-defined U(1), charges,

key feature: includes a complete set of hadronic decays (20 channels)

new version: BL model tutorial + inelastic DM A= 0.1

) i ) simplified DM models 10% = -
* inclusion of DM candidates ) P ) — 12-ff  — 21
inelastic DM 1013 2211 (2f1F)uer

* computation of relic density and rates 1071

r/H
2
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Inelastic Dark Matter - ReD-DeliVeR code

ReD-DelLiVeR (Relic Density with DelLiVeR)

update of the previous python package DEL IVER (Decays of Light Vectors Revised), which can be used to
compute decay rates and branching ratios for user-defined U(1), charges,

key feature: includes a complete set of hadronic decays (20 channels)
B model + Majorana DM

new version: 107 5 — ReD-DeLiVeR

simplified DM models :  Batell etal.
] [arXiv:2111.10343]

* inclusion of DM candidates inelastic DM

* computation of relic density and rates

e computation of thermal targets

1072 107! 10° 10!

mZO [GeV]

specially for B-coupled models, it is very important to
compute correctly the hadronic contributions
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Inelastic Dark Matter - ReD-DeliVeR code

ReD-DelLiVeR (Relic Density with DelLiVeR)

update of the previous python package DEL IVER (Decays of Light Vectors Revised), which can be used to
compute decay rates and branching ratios for user-defined U(1), charges,

key feature: includes a complete set of hadronic decays (20 channels)
B model + Majorana DM

new version: 107 5 — ReD-DeLiVeR
) ) ) simplified DM models ] Batell etal.
* inclusion of DM candidates inelzstic DM ] == larXiv:i2111.10343]

* computation of relic density and rates
e computation of thermal targets

publicly available on GitHub together with a Tutoriall

https://github.com/anafoguel/ReD-DeliVeR

1072 107! 10° 10!

ReD-DeLiVeR mz,[GeV]
by Ana Luisa Foguel, Peter Reimitz, and Renata Zukanovich Funchal specially for B-coupled models, it is very important to
compute correctly the hadronic contributions
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Inelastic Dark Matter - Bounds
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Inelastic Dark Matter - Bounds
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Inelastic Dark Matter - Bounds
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Inelastic Dark Matter - Bounds
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Inelastic Dark Matter - Bounds
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Inelastic Dark Matter - Bounds
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Conclusions

* Light Feebly Interacting Particles can shed light in several unanswered questions of the SM

As experiments increase their luminosities, and we enter the intensity frontier era of particle physics, we increase
the capabilities to probe new light sectors.

As a guiding principle, we consider different portals between the Dark Sector and the SV

In this work we considered a vector portal to a fermionic inelastic Dark Matter sector general vector mediators

iDMq

thermal relics
evade indirect and evade CMB

direct detection bounds

We developed a code that computes the relic density ReD-DeLiVeR

 With general mediators, we showed that we can unlock new
regions of the parameter space of the vanilla dark photon model
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Conclusions

* Light Feebly Interacting Particles can shed light in several unanswered questions of the SM

* As experiments increase their luminosities, and we enter the intensity frontier era of particle physics, we increase
the capabilities to probe new light sectors.

* As aguiding principle, we consider different portals between the Dark Sector and the S

general vector mediators

* |In this work we considered a vector portal to a fermionic inelastic Dark Matter sector

thermal relics
evade indirect and evade CMB

direct detection bounds

* We developed a code that computes the relic density ReD-DelLiVeR

* With general mediators, we showed that we can unlock new /(/nOI
regions of the parameter space of the vanilla dark photon model atten t/.O
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Inelastic Dark Matter

DM Thermal Freeze-out - WIMP miracle

We know that freeze-out happens when ' ~ H

My ~ Qo \/ TeqMp1 ~ aog X 30 TeV

WIMP miracle
For couplings similar to the electroweak coupling (ctet ~ 107%) = EW scale emerges naturally

However, this also implies that

2
my

DM ~v (Teq mPl)1/2

~ GeV.

m

Hence, sub-GeV DM motivates the presence of new light mediators
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Inelastic Dark Matter

virialization of DM in

* the Milky Way
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Inelastic Dark Matter

- Decay Rates

Decay rates - Mediator

Hierarchy mgz, > mj + mq

Limit gp > gg
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Inelastic Dark Matter - Decay Rates

X1
Decay rates - Dark fermion y- .
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Inelastic Dark

Matter - Decay Rates

Decay rates - Dark fermion y-
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Simulation Checks
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Fixed Dark Charges
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Details on the Experimental Limits

* |nvisible searches

BaBar, Belle II, LDMX, NA62 and NA64-¢

Uz,y

szt — e_LOUt/)‘XZ
u

recast from invisible Dark photon limits

* Semi-visible searches

E137, CHARM, NuCal and LSND

o)
~22 {BR(Zq — x1x2)[BR(x2 = x17v) + PX2, BR(x2 — x1 + vis)] + BR(Zq — #v)}—1 =0

€Q (TX2)

0z, BR(Z,Y — X1X2)

recast from the original iDM limits

020 (BR(Zq = x1x2)\ / BRO2 = Zg — xiete™)
BR(x2 — Z% — xiete™)

)-1-0

5’7 (TX2)
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Details on the Experimental Limits

e 4usearches from BaBar and CMS

constrained L, — L, mediators,
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X2 __ —Lin/)\
Pin =€ *2

* Meson decays

J/¥ and T invisible decay searches
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