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] How could we observe a DM halo? Laura Eisenb

DM - a new particle? DM annihilation signals

N\

Ao, 1 |{(ov) dN, |
dE 47 2m3; dE X[ ()

Indirect detection
DM > SM

High energy photon, neutrino,
anti-matter

Direct
detection particle physics:

Nuclear recoil  CrOSS section, DM mass, annihilation spectrum

New Physics

astrophysics:
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Collider detection
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Image credit: The 2023 Bulletin of the Chinese Academy of Sciences
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] Why should we look for DM in M317? Laura Eisenb
The MW-M31 Field
150.0° 120.0° 90.0°

* proximity: dvs: = 761 kpc (Li et al. 2021)

15.0°
* 68% DM of total dynamical mass '

(Hammer et al. 2025) § +00.0
* entire halo observable from the outside E o, e
v TSI i S S Mél‘CIoud.l
* relatively high Galactic latitude - .
— less foreground from MW plane g 300 ‘;-'&f; .

Al

* excess y-ray signal (Fermi/LAT) 45.0°
towards M31’s outer halo (Karwin et al. 2019)

(300 kpc)yj g,

Galactic Longitude
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v-Ray Counts 3

— Cosmic ray interaction or DM?

Image credit: Karwin et al. 2021
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-] Why is the MeV range interesting also for WIMPs?

e.g. scotogenic WIMP (m = 1 TeV)

Example DM multiwavelength photon spectrum
(Alvarez et al. 2023)
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(Eisenberger et al. 2024), arXiv:2310.10421 4
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What MeV observations do we have of M31?

INTEGRAL operated from Oct 2002 to Feb 2025
-~ 1.7 Ms of SPI observations of M31 region

SPI Exposure Map M31
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SPI: N\ energy: 5
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Image credit: ESA
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-] What is the DM distribution in M31? Laura Eisenb
e.g. NFW density profile (Navarro et al. 1997)
+ local substructure boost B(r) (Kamionkowski et al. 2010) w4 \ o 210
5 (dark matter)
10 \
i iral disk
103 - fg — (S\ﬁgﬁllelztars)
€ 107 '
e Image credit: Frontiers Media S.A.
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100 10°  10* 102  10® Lopez Funeetal. 2017
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Can we see M31 through the Milky Way halo?
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Can we see M31 through the Milky Way halo?
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] Can we see M31 through the Milky Way halo? Laura Eisenberger
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7 What are the uncertainties of the DM distribution? Laura Eisenberger

o,
S
&
S

different DM density profiles for M31 J-Factors (line-of-sight integrated
(Tamm et al. 2012) + uncertainties over the exposure region - extended
over circular region — PS with r = 1.35°)
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] Has INTEGRAL/SPI detected M317? Laura Eisenb;ter
. d*‘m“" preliminary J M31PS * spectra mostly consistent with O

J M33PS ~ 20 upper limits (UL)

&
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* hint of signal of M33 at ~ 30 keV

— Comptonization component of
0~29 ULX M33 X-8 above 10 keV
(West et al. 2018)
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* NUSTAR studies (Yang et al. 2022):
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Has INTEGRAL/SPI detected M317? Laura Eisenb

1
M31 point source spectrum
. | { 20UL fit power law continuum (empirical)
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DM Limits

M31 point source spectrum
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How can we use M31 data to constrain DM models?

+

Laura Eisenberger

total pair production rate from thermal DM annihilation
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How can we use M31 data to constrain DM models? Laura Eisenb

DM annihilation into two photons
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 model DM halo of M31, M33 and MW within exposure outline of INTEGRAL/SPI dataset
- exact DM profile less relevant compared to boost factor uncertainty
- J-factor of M31 ~ 10% - 10%° GeV2cm®

* preliminary DM model constraints
from upper limits of M31 PS spectrum EIEE 20t on
- e.g. lower limit on thermal DM mass =

ST

— compare to extended emission 108
* test more DM models L

—. secondary/tertiary WIMP emission | 10

- decaying DM

- primordial black holes 10-10

* larger dataset with more galaxies
- correlated analysis

10 20
Distance [Mpc]

ergcm™2s71gr !
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1 How can we use M31 data to constrain DM models? Laura Eisenberger
MW annihilation signal + continuum total pair production rate from thermal DM annihilation
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Das et al. in preparation 7
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1 How can we use M31 data to constrain DM models?

final state radiation of DM annihilation into e*e~ exclusion plot of the model parameter space
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Background (Milky Way halo + diffuse)
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Cumulative signal of all 27

dSphs

Max DM signal
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Background at 50 GeV
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« WIMP: Weakly Interacting Massive Particle _ ermionic P e

* Scotogenic models: additional Z, symmetry ( (U ¥ B By S
L . sU@2):|2 2 1 1|2 1

(SM particles: even, new particles: odd) Uy |1 1 0 01 0

 T1-2-A' model: New fields in the T1-2-A’ model

explains neutrino masses, the muon anomalous magnetic
moment and potentially the baryon asymmetry of the Universe

consistent with limits for cLFV decays and direct DM detection and
DM relic density (Alvarez et al. 2023)

7

Promising scotogenic DM candidate:
fermionic, m=1.1 TeV, (ov)=9.5x1027 cm3s?!(MicrOMEGAS)
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DM halo of the Milky Way
* Modeling of prompt emission

!

Energy: 4.9e+10 eV

NFW density profile
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