Prospects of probing weak-scale
Dark Matter in future MeV telescopes

Arpan Kar

Q SORBONNE
LPTHE b UNIVERSITE

THEORIQUE ET HAUTES ENERGIES

Based on: [arXiv: 2503.04907]
M. Cirelli, A. Kar

Dark Tools

Dipartimento di Fisica, Torino
Jun 16 - 19, 2025



Dark matter : WIMPs

® Dark Matter (DM) exists and provides ~25% of the energy density of the Universe

® Microscopic natures of DM are still unknown

® \Weakly Interacting Massive Particles (WIMPSs) : one of the most popular candidates for DM

> no electric charge, no colors, stable
» mass at the weak scale (GeV - TeV)

> weak interactions (ov ~ 10~ 26 cm3s— ) keep WIMPSs in thermal equilibrium in the early
Universe and provide correct relic abundance through thermal decoupling

® WIMP searches : _
Collider Search

» Direct detection DM SM
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Indirect detection of WIMP DM

® DM is concentrated in the form of halos
surrounding different galaxies (including our Galaxy)
[ Evidence: galactic rotation curves ]

® Pair-annihilations of WIMP DM patrticles in Inside DM Halo
such a halo can produce Standard Model particles BUNIR " orery phoon L
. e ()
which cascade further and produce flux of WIMP DM @ =y -

gamma rays

Y ’ e+/ e_ ’ p / p ’ A4 'Sl ‘T’ 'S, etc. Medium-energy Electrons

M Leptons

® Searches using different experiments: High-eneray ‘
_ Antiprotons
y-rays [ Fermi-LAT, H.E.S.S., etc. wmvpom @ mo

e’/ p = AMS-02 cosmic-ray, etc. Decay process b
v's/V's =) Super-K, IceCube, ANTARES etc.

® Constraints on WIMP annihilation rate and WIMP mass



Status of Indirect searches of WIMP DM

All Indirect Detection constraints
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Searches for WIMP DM in photon observations from the Galaxy

® Photon signals from the Galaxy: the observables consist of mainly two types of photon signal
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Searches for WIMP DM in photon observations from the Galaxy

® Photon signals from the Galaxy: the observables consist of mainly two types of photon signal
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® Prompt radiation: High-energy y- rays are produced directly in the WIMP annihilation process



Searches for WIMP DM in photon observations from the Galaxy

® Photon signals from the Galaxy: the observables consist of mainly two types of photon signal
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® Prompt radiation: High-energy y- rays are produced directly in the WIMP annihilation process

® Secondary radiation: Galactic WIMP annihilations generate abundant energetic e’
which subsequently emit through Inverse Compton scattering (ICS) and bremsstrahlung



Searches for WIMP DM in photon observations from the Galaxy

® Photon signals from the Galaxy: the observables consist of mainly two types of photon signal
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® Prompt radiation: High-energy y- rays are produced directly in the WIMP annihilation process

® Secondary radiation: Galactic WIMP annihilations generate abundant energetic e’
which subsequently emit through Inverse Compton scattering (ICS) and bremsstrahlung

» Comparatively lower-energetic gamma-rays photons

» Enhanced for WIMPs annihilating into lepton-rich annihilation channels

e.g., DMDM — ete” , DMDM — u*u~




Prompt and secondary photons from WIMP annihilations in the Galaxy

® The prompt emission signal from WIMP DM received by far most of the attention, mainly because:

=> Prompt emission concentrates at high-energy (above GeV)

=> Availability of various high-energy gamma-ray telescopes

(Existing: Fermi-LAT, H.E.S.S, etc.)

mpm =10 GeV, DMDM-pu*u~, (ov)=3x 10726 cm3s!
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® Secondary photons from WIMP annihilation in general populate the Sub-GeV energy range
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MeV Gap and upcoming MeV missions

® One potential difficulty for detecting the secondary emissions:
relatively poor sensitivity of past and existing telescopes in the sub-GeV range
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® The upcoming space-based MeV telescopes will efficiently fill the MeV gap with better sensitivity

= COSI, AMEGO, e-ASTROGAM, GECCO, AJEPT, PANGU, GRAMS, MAST,
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® The upcoming space-based MeV telescopes will efficiently fill the MeV gap with better sensitivity

= COSI, AMEGO, e-ASTROGAM, GECCO, AJEPT, PANGU, GRAMS, MAST, .......

® Potential of these MeV telescopes in probing WIMP DM, based on the secondary emission?

v



MeV-GeV photons from WIMP annihilations in the Galaxy

® Target region for observation: a disk of 10° radius around the galactic Center (GC)
=>» same order as the maximum angular width of the MeV telescopes

- - +
DM e ,u , b, WT, ... cascade Y flux  prompt emission (high energy)

eT flux secondary emission (low energy)

DM



MeV-GeV photons from WIMP annihilations in the Galaxy

® Target region for observation: a disk of 10° radius around the galactic Center (GC)
=>» same order as the maximum angular width of the MeV telescopes

- - +
DM e ,u b, W, ... cascade Y flux  prompt emission (high energy)

eT flux secondary emission (low energy)

DM

® Prompt Y - ray emission flux:

d®prompt _ (ov) dNy Jaq
dE},dQ 87T m%M dE}, A

% spectra produced per annihilation Jrg = dO [ ds p2 (r(s 9))
dE, inagiven annihilation channel Aa L DM )

(10°around GC) _ _
s = line-of-sight (l.o0.s.)

dQ =2m sinb dO

Po

NFW DM profile : | Ppom(r) =

r r 2
(r—) (1 + r—) Salas et al., (1906.06133)
Cirelli et al., (2406.01705) 8




MeV-GeV photons from WIMP annihilations in the Galaxy

.. (s,b,l) - Galactic coordinates
® Secondary Yy - ray emission flux:

d¢’2ndary 1 1 j2ndary(Ey: -7_6(5: b, Z))
= — dQ | — ds
dE.dQ ~ AQ ), Lo 4

cosb cosl =cosO

E

‘Janary = JICS + .]brem
Y




MeV-GeV photons from WIMP annihilations in the Galaxy

.. (s,b,l) - Galactic coordinates
® Secondary Yy - ray emission flux:

cosb cosl =cosO

d®yng 1 1 Jandary(Ey, X(s, b, 1)) . . .
ﬁ - E ds2 I:E_f ds aneen 2_ ]2nda1y - ]ICS + .]brem
Y AQ Y Jl.os n
Mpm . n
jics(Ey, %(s,b,1)) = 2 f dE| D Pics(Ey, Ee, 3| 25 (B, %)
m, i € ISRF € From DM annihilation

. R Mpm ~ dne ~
Jbrem(Ey: X(s,b,1))=2 J:n dE, 7DbreIn(E"}”‘ E, X dE, (E¢, X)

electron

&
proton



MeV-GeV photons from WIMP annihilations in the Galaxy

.. (s,b,l) - Galactic coordinates
® Secondary Y - ray emission flux:

cosb cosl =cosO

d¢’2ndary 1 1 j2ndary(Ey: -7_5(5: b, l)) . . .
= T dQ | — d = +
dEYdQ AQ AQ [EY Lo S 41T ‘ ]anary J 1cs J brem

Mpm
. — ] — n —
]ICS(EW X(s,b,1))=2 f dE, E PIICS(E},, E., X) Ee (E,,X)
m, icISRF € From DM annihilation

Mpm

jbrem(Ey:J_C’(S: b: Z)) — 2 f dE

m

Inter-Stellar Radiation Field (ISRF) : CMB, infrared (IR), starlight (SL)

dn,
dE,

(E., X)

0

7Dbrern(E:y: E,., 561

J. Buch, M. Cirelli, G. Giesen, M. Taoso, (PPPC 4 DM, [1505.01049]), (GALPROP)

d o.l_:)rem electron
Porem(Ey, Ee, X) = ¢ By )ﬁ ag,  (EerEy) e L
1 » Y &
Gas species : ionic, atomic and molecular proton




MeV-GeV photons from WIMP annihilations in the Galaxy

e Distribution of WIMP induced e~ in the galaxy :

Qe(Ef,r)I: {lov) dNe pﬁl\:‘(

2 S
2mgpy, dE;
\spectra produced per annihilation
in a given annihilation channel

DM density

Source function from WIMP annihilation :

10



MeV-GeV photons from WIMP annihilations in the Galaxy

e Distribution of WIMP induced e~ in the galaxy :

Source function from WIMP annihilation :

DM density

2 m[z)M dE> D

Qe(EeS,r)I: {lov) dNe .021\:(

in a given annihilation channel

dn,

1 Mpm
= Semi-Analytic : —=(E,,X) = — f dEfPe(Ef, r)
biot(Ee, X) E,

dE,

2 ICS on ambient photons

b...(E.,X) : total energy loss rate of e

> synchrotron emission in galactic B-field > ionization of the same gases

2 Coulomb interactions with interstellar gases

2 bremsstrahlung on the same gases

\spectra produced per annihilation

J. Buch, M. Cirelli, G. Giesen, M. Taoso, (PPPC 4 DM, [1505.01049])
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MeV-GeV photons from WIMP annihilations in the Galaxy

e Distribution of WIMP induced e~ in the galaxy :

Qe(Ef,r)lz {lov) dN. 921\:(

DM density

Source function from WIMP annihilation : > mDM dES D

\spectra produced per annihilation
in a given annihilation channel

d — 1 N S S
= Semi-Analytic : —=(E,, — dE P E>,r
y dE ( € X) btot(Ee: ':_E) fE © e( c )

b...(E.,X) : total energy loss rate of e’

> ICS on ambient photons 2> Coulomb interactions with interstellar gases

> synchrotron emission in galactic B-field > ionization of the same gases
2 bremsstrahlung on the same gases

J. Buch, M. Cirelli, G. Giesen, M. Taoso, (PPPC 4 DM, [1505.01049])

= Full-propagation of ez :
( spatial difusion, advection/convection, re-acceleration, energy losses, various nuclear processes )

V- (J—va)+8—[prp8p( )}——[ - (v w)N]_
l Z (CBngas Oj—si 1+ ) N — (c/gngas i +
i<y YT5—i
J; = —DijvjN Evoli et al., (1607.07886)

N;(7,p): no. densityof e /e per momentum p 10



MeV-GeV photons from WIMP annihilations in the Galaxy

mpuw=1GeV, DMDM-u*u-, {ov)=3x 10726 cm3s~!
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WIMP annihilation signals at the MeV telescopes
® MeV telescopes : AMEGO, e-ASTROGAM and MAST

mpm =10 GeV, DMDM-u*u~, (ov)=3x 10726 cm3s~!
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Fisher-projections : E 3P O
max 1
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Projected sensitivities for WIMP (leptonic annihilations)

Existing constraints: CMB, X-rays, Y -rays, AMS e*, neutrinos, ........
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® Future space-based MeV gamma-ray telescopes will complement the ground-based

high energy gamma-ray instruments in the indirect searches for weak-scale DM
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Projected sensitivities for WIMP (hadronic annihilations)

Existing constraints: y-rays, AMSp, ........
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Importance of considering the secondary signals for WIMPs
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Effects of propagation of e~ in the Galaxy
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Effects of Galactic
propagation
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Summary

® We explored the potential of upcoming MeV telescopes (e.g., AMEGO, e-ASTROGAM, MAST)
in probing the photon signals from WIMP DM annihilations in the inner Galaxy

® Low-energy secondary emissions (e.g., ICS and bremsstrahlung) produced by DM induced e~
significantly enhance the sub-GeV Y- ray signals of WIMP DM annihilations
(for lepton-rich annihilation channels)

‘ Significant enhancements in the sensitivity of MeV telescopes in probing weak-scale DM

® Based on such signals, the MeV telescopes will be able to explore a wide area of the
DMDM—-pu*tu~

m_, - <ov> plane that is yet unconstrained

=> can probe GeV scale DM with <ov> ~2-3 orders of magnitude
smaller than the current bounds

=>» can probe thermally-produced DM with a mass up to
the TeV range

® MeV y-ray telescopes can efficiently complement the
ground-based high energy y-ray instruments in the
indirect searches for weak-scale DM
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Impact of the choice of DM profile
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ISRF models
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ISRF model 1 (solid lines):
J. Buch, M. Cirelli, G. Giesen, M. Taoso, (PPPC 4 DM, [1505.01049]), (GALPROP)

ISRF model 2 (dashed-dotted lines):
T. Porter, A. W. Strong, (astro-ph/0507119) (used in DRAGON)



B-field models
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Different Galactic B-field models from:
J. Buch, M. Cirelli, G. Giesen, M. Taoso, (PPPC 4 DM, [1505.01049])



Signal-to-noise ratio and Fisher methods
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Systematic uncertainties in the backgrounds
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