

RelExt: A New Dark Matter Tool for the Exploration of Dark Matter Models

16.06.2025

Johann Plotnikov in collaboration with R. Capucha, K. Elyaouti, M. M. Mühlleitner, R. Santos

DEPARTMENT OF PHYSICS, INSTITUTE OF THEORETICAL PHYSICS

Introduction into Dark Matter (DM)

It exists.

It exists.

With a relic density of $\Omega h^2 = 0.120 \pm 0.001$ [PLANCK 2018]

Why another one?

Why another one?

DarkPack [Palmiotto et al.]

Why another one?

DarkPack [Palmiotto et al.]

MadDM [Ambrogi et al.]

Why another one?

DarkPack [Palmiotto et al.]

MadDM [Ambrogi et al.]

MicrOMEGAS [Goudelis et al.]

Why another one?

DarkPack [Palmiotto et al.]

MadDM [Ambrogi et al.]

MicrOMEGAS [Goudelis et al.]

DarkSUSY [Bringmann et al.]

Why another one?

DarkPack [Palmiotto et al.]

MadDM [Ambrogi et al.]

MicrOMEGAS [Goudelis et al.]

DarkSUSY [Bringmann et al.]

SuperIso Relic [Mahmoudi et al.]

Motivation

Distinguish between two types of freeze-out models:

Motivation

Distinguish between two types of freeze-out models:

- Models with few particles and parameters

Motivation

Distinguish between two types of freeze-out models:

- Models with few particles and parameters

RxSM

Motivation

Distinguish between two types of freeze-out models:

- Models with few particles and parameters

RxSM **CxSM**

Motivation

Distinguish between two types of freeze-out models:

- Models with few particles and parameters

RxSM

CxSM

TRSM

Motivation

Distinguish between two types of freeze-out models:

- Models with few particles and parameters

RxSM

CxSM

TRSM

→ Easy to obtain the **full** relic density

Motivation

Distinguish between two types of freeze-out models:

- Models with few particles and parameters

RxSM

CxSM

TRSM

→ Easy to obtain the **full** relic density

- Models with many particles and parameters

Motivation

Distinguish between two types of freeze-out models:

- Models with few particles and parameters

RxSM

CxSM

TRSM

→ Easy to obtain the **full** relic density

- Models with many particles and parameters

2HDM

Motivation

Distinguish between two types of freeze-out models:

- Models with few particles and parameters

RxSM

CxSM

TRSM

→ Easy to obtain the **full** relic density

- Models with many particles and parameters

2HDM

BDM5

Motivation

Distinguish between two types of freeze-out models:

- Models with few particles and parameters

RxSM

CxSM

TRSM

→ Easy to obtain the **full** relic density

- Models with many particles and parameters

2HDM

BDM5

SUSY

Motivation

Distinguish between two types of freeze-out models:

- Models with few particles and parameters

RxSM

CxSM

TRSM

→ Easy to obtain the **full** relic density

- Models with many particles and parameters

2HDM

BDM5

SUSY

→ Difficult to obtain the **full** relic density

Motivation

Distinguish between two types of freeze-out models:

- Models with few particles and parameters

RxSM

CxSM

TRSM

→ Easy to obtain the **full** relic density

- Models with many particles and parameters

2HDM

BDM5

SUSY

→ Difficult to obtain the **full** relic density

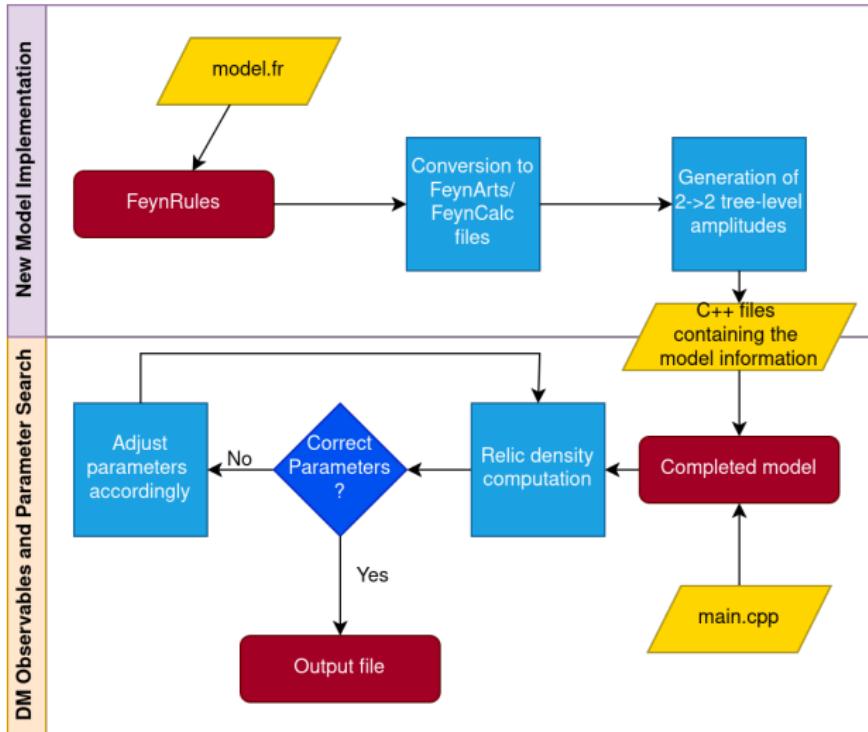
→Resort to **agnosticism** about additional particles

Agnosticism *noun [u]*

the fact that someone does not know or does not have an opinion about whether something is true, good, correct, etc. [Cambridge Dictionary]

Agnosticism *noun [u]*

the fact that someone does not know or does not have an opinion about whether something is true, good, correct, etc. [Cambridge Dictionary]


Knowledge *noun*

actually knowing stuff. [Me]

Goal of RelExt:

Find parameter regions which lead to the **full** measured relic density

RelExt

Search Algorithms

■ Monte Carlo Grid Search

Search Algorithms

■ Monte Carlo Grid Search

- Points of initial run do not lead to the **full** relic density

■ Monte Carlo Grid Search

- Points of initial run do not lead to the **full** relic density
- + Fast generation of new parameter points

■ Monte Carlo Grid Search

- Points of initial run do not lead to the **full** relic density
- + Fast generation of new parameter points
- + Search improves with each run

■ Monte Carlo Grid Search

- Points of initial run do not lead to the **full** relic density
- + Fast generation of new parameter points
- + Search improves with each run

■ Single Parameter Search

■ Monte Carlo Grid Search

- Points of initial run do not lead to the **full** relic density
- + Fast generation of new parameter points
- + Search improves with each run

■ Single Parameter Search

- Adjustment of only one parameter of the model

■ Monte Carlo Grid Search

- Points of initial run do not lead to the **full** relic density
- + Fast generation of new parameter points
- + Search improves with each run

■ Single Parameter Search

- Adjustment of only one parameter of the model
- + Fast, since only 1-dimensional

■ Monte Carlo Grid Search

- Points of initial run do not lead to the **full** relic density
- + Fast generation of new parameter points
- + Search improves with each run

■ Single Parameter Search

- Adjustment of only one parameter of the model
- + Fast, since only 1-dimensional
- + Easy to investigate impact of parameters

■ Monte Carlo Grid Search

- Points of initial run do not lead to the **full** relic density
- + Fast generation of new parameter points
- + Search improves with each run

■ Single Parameter Search

- Adjustment of only one parameter of the model
- + Fast, since only 1-dimensional
- + Easy to investigate impact of parameters

■ Random Walk

■ Monte Carlo Grid Search

- Points of initial run do not lead to the **full** relic density
- + Fast generation of new parameter points
- + Search improves with each run

■ Single Parameter Search

- Adjustment of only one parameter of the model
- + Fast, since only 1-dimensional
- + Easy to investigate impact of parameters

■ Random Walk

- Slow, since n-dimensional and random

■ Monte Carlo Grid Search

- Points of initial run do not lead to the **full** relic density
- + Fast generation of new parameter points
- + Search improves with each run

■ Single Parameter Search

- Adjustment of only one parameter of the model
- + Fast, since only 1-dimensional
- + Easy to investigate impact of parameters

■ Random Walk

- Slow, since n-dimensional and random
- + Adjusts multiple parameters at once

Example

Extend the scalar sector of the SM with one complex scalar doublet Φ_2 and one real scalar singlet Φ_s with the following \mathbb{Z}_2 -symmetry

$$\Phi_{\text{SM}} \rightarrow \Phi_{\text{SM}}, \Phi_2 \rightarrow -\Phi_2, \Phi_s \rightarrow -\Phi_s$$

Extend the scalar sector of the SM with one complex scalar doublet Φ_2 and one real scalar singlet Φ_s with the following \mathbb{Z}_2 -symmetry

$$\Phi_{\text{SM}} \rightarrow \Phi_{\text{SM}}, \quad \Phi_2 \rightarrow -\Phi_2, \quad \Phi_s \rightarrow -\Phi_s$$

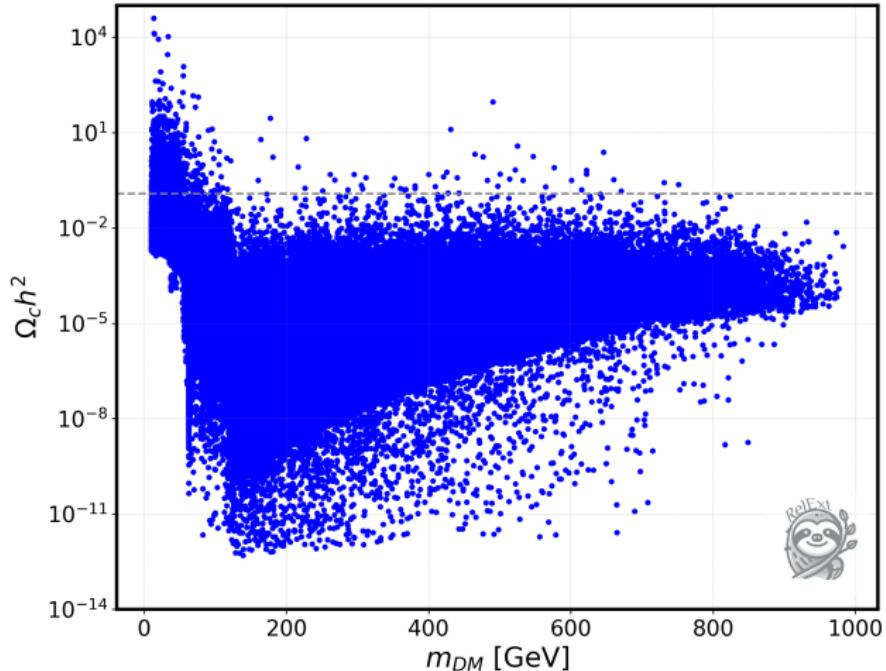
$$\begin{aligned}
 V_{\text{Scalar}} = & m_{11}^2 \Phi_1^\dagger \Phi_1 + m_{22}^2 \Phi_2^\dagger \Phi_2 + \frac{\lambda_1}{2} \left(\Phi_1^\dagger \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^\dagger \Phi_2 \right)^2 \\
 & + \lambda_3 \Phi_1^\dagger \Phi_1 \Phi_2^\dagger \Phi_2 + \lambda_4 \Phi_1^\dagger \Phi_2 \Phi_2^\dagger \Phi_1 + \frac{\lambda_5}{2} \left[\left(\Phi_1^\dagger \Phi_2 \right)^2 + \text{h.c.} \right] \\
 & + \frac{1}{2} m_s^2 \Phi_s^2 + \frac{\lambda_6}{8} \Phi_s^4 + \frac{\lambda_7}{2} \Phi_1^\dagger \Phi_1 \Phi_s^2 + \frac{\lambda_8}{2} \Phi_2^\dagger \Phi_2 \Phi_s^2 \\
 & + (A \Phi_1^\dagger \Phi_2 \Phi_s + \text{h.c.})
 \end{aligned}$$

After electroweak symmetry breaking

$$\Phi_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(\nu + h + iG^0) \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(\rho_1 + i\eta) \end{pmatrix}, \quad \Phi_s = \rho_s$$

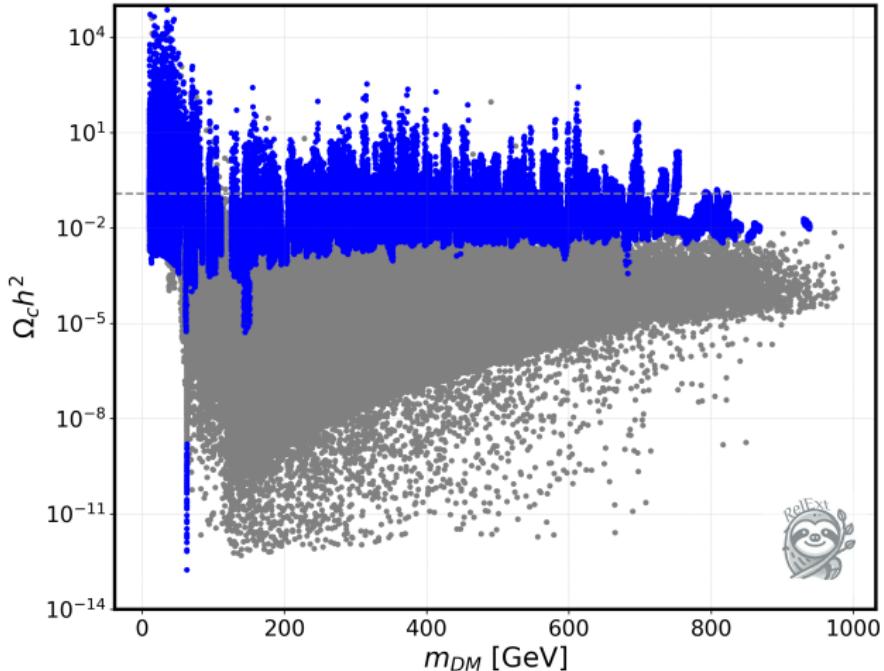
and mass diagonalization with angles $\alpha_{1,2,3}$

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R \begin{pmatrix} \rho_1 \\ \eta \\ \rho_s \end{pmatrix}$$

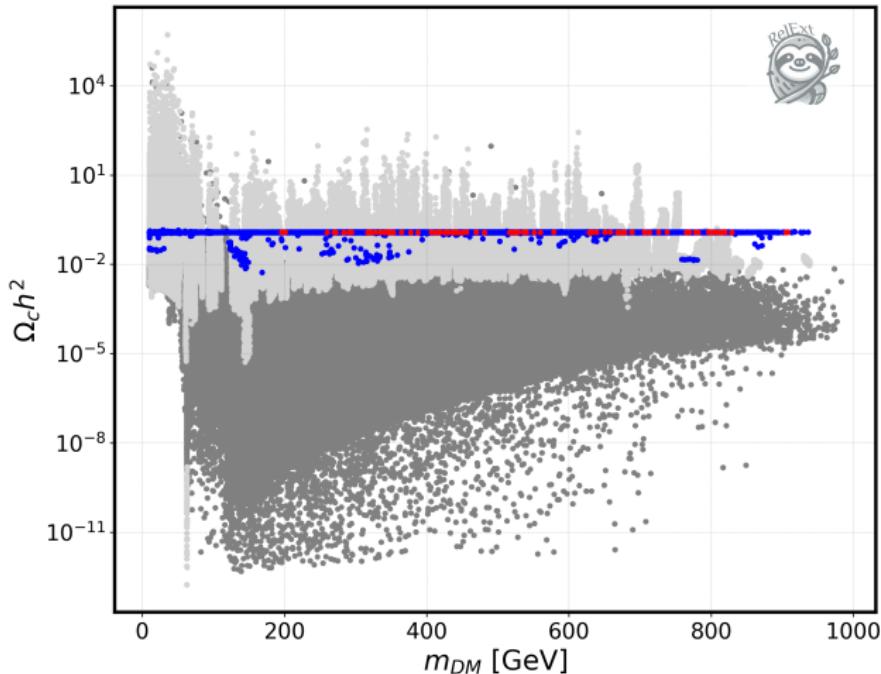

We are left with 11 input parameters

$$m_{h_1}, \quad m_{h_2}, \quad m_{H^+}, \quad \alpha_1, \quad \alpha_2, \quad \alpha_3, \quad \lambda_2, \quad \lambda_6, \quad \lambda_8, \quad m_{22}, \quad m_s$$

Initial Monte Carlo


Initial Monte Carlo

Second Monte Carlo


Second Monte Carlo

Random Walk

Random Walk

Computation Time

Method	points	% within 2σ	[good points]/[CPU time]
Random $m_{\text{DM}} > m_h$	10^5	0.%	$\sim 0 \text{ s}^{-1}$
Random $m_{\text{DM}} < m_h$	10^5	0.027%	$\sim 0.0012 \text{ s}^{-1}$
Best cells $m_{\text{DM}} > m_h$	10^5	0.29%	$\sim 0.0178 \text{ s}^{-1}$
Best cells $m_{\text{DM}} < m_h$	10^5	3.66%	$\sim 0.135 \text{ s}^{-1}$
Best cells with RWalk $m_{\text{DM}} > m_h$	10^4	97.5%	$\sim 0.065 \text{ s}^{-1}$
Best cells with RWalk $m_{\text{DM}} < m_h$	10^4	97.3%	$\sim 0.085 \text{ s}^{-1}$

Conclusions

Conclusions

Conclusions

- Automated relic density computation: **RelExt** facilitates relic density calculations for various DM models with a \mathbb{Z}_2 symmetry

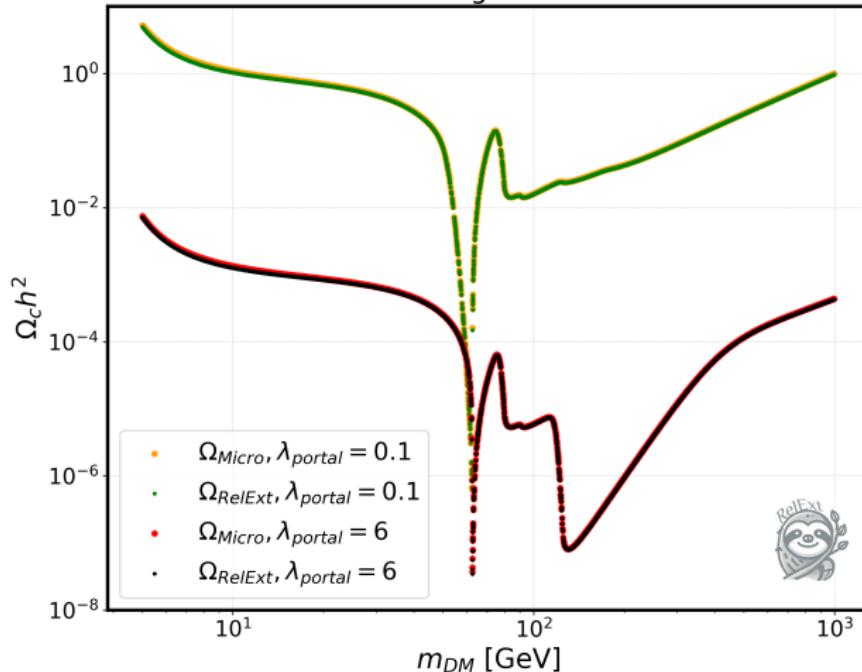
Conclusions

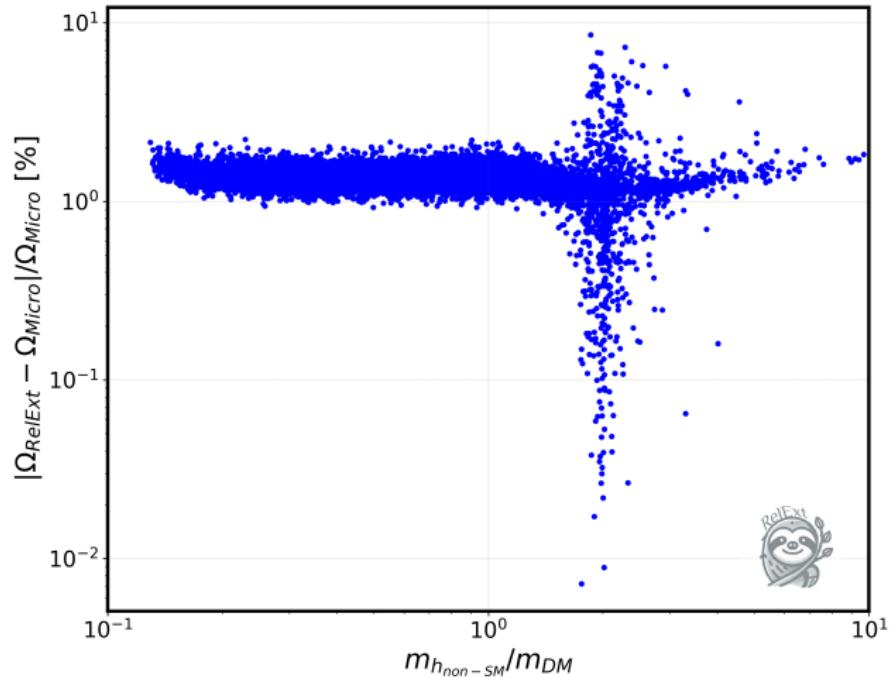
- Automated relic density computation: **RelExt** facilitates relic density calculations for various DM models with a \mathbb{Z}_2 symmetry
- Efficient scanning methods, which improve the search for viable DM candidates

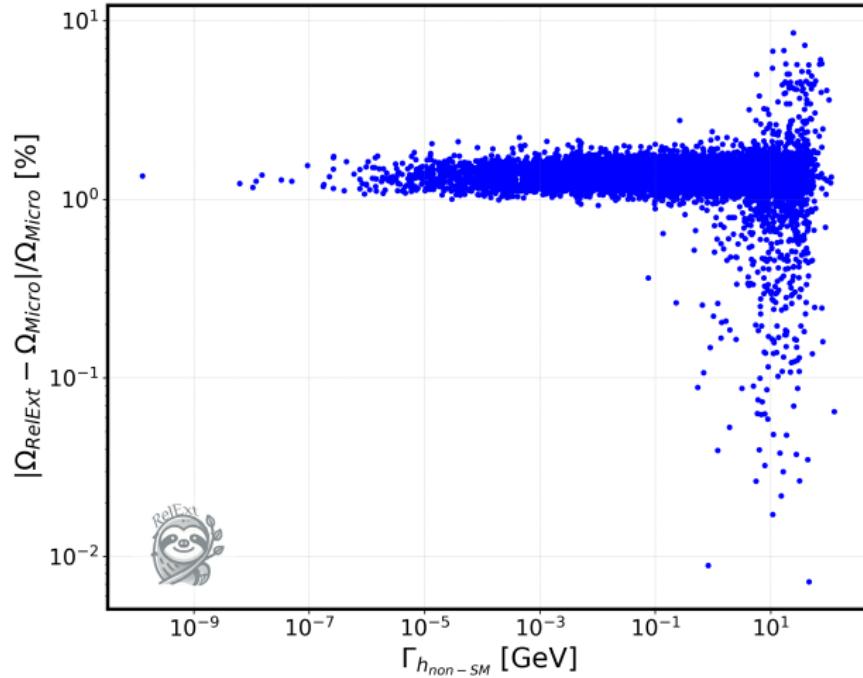
Conclusions

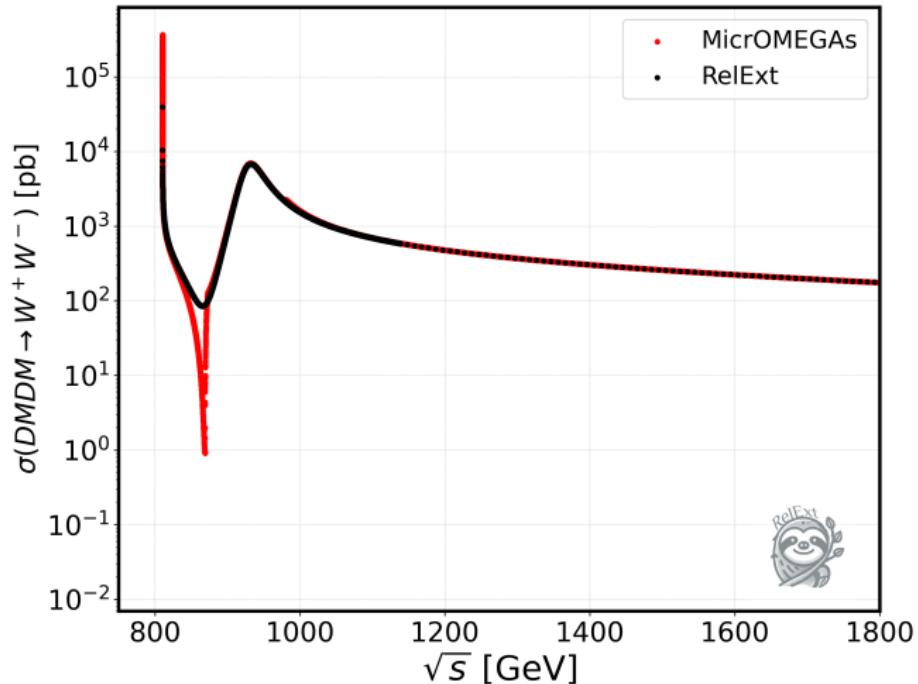
- Automated relic density computation: **RelExt** facilitates relic density calculations for various DM models with a \mathbb{Z}_2 symmetry
- Efficient scanning methods, which improve the search for viable DM candidates
- Compatible with other tools like **ScannerS** [Basler et al.] and **BSMPT** [Biermann et al.]

Conclusions

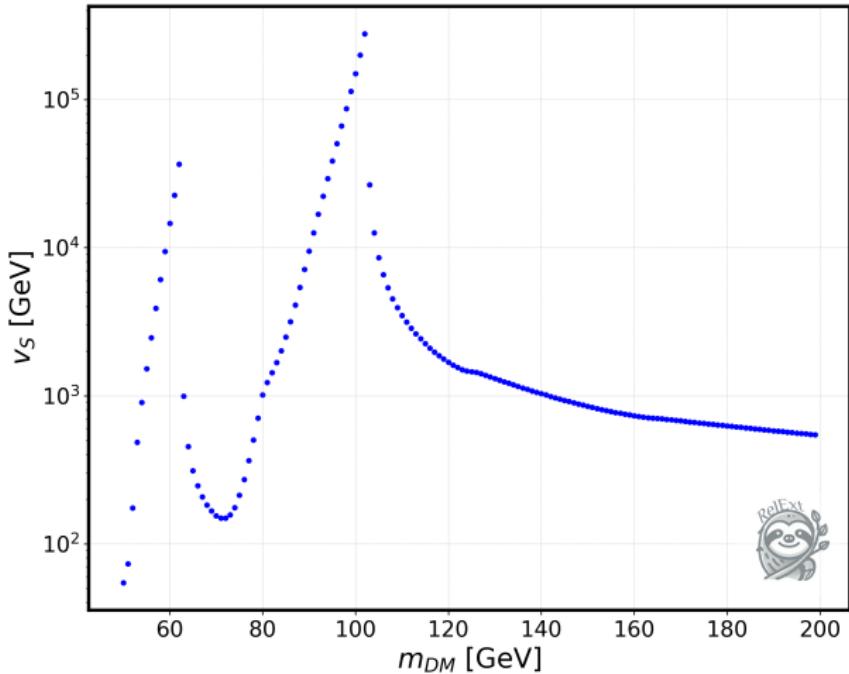

- Automated relic density computation: **RelExt** facilitates relic density calculations for various DM models with a \mathbb{Z}_2 symmetry
- Efficient scanning methods, which improve the search for viable DM candidates
- Compatible with other tools like **ScannerS** [Basler et al.] and **BSMPT** [Biermann et al.]
- Next steps: Further optimizations, inclusion of additional DM production mechanisms and new models, next-to-leading order calculations, computation of direct detection


Thank you for listening!




Backup

Real Singlet Scalar



N2HDM	
$m_{h_{\text{SM}}}$	125.09
$m_{h_{\text{non-SM}}}$	927.082
m_{H_D}	405.215
m_{A_D}	595.853
$m_{H_D^\pm}$	628.737
α	-0.248593
v_s	292.978
m_{22}	133.912
λ_2	3.49988
λ_8	2.34688
$\Gamma_{h_{\text{SM}}}$	0.00490257
$\Gamma_{h_{\text{non-SM}}}$	38.9219
$\Omega_{\text{RelExt}} h^2$	0.000314878
$\Omega_{\text{Micro}} h^2$	0.000339666

