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Introduction

AMS-02 detected  and  ‘candidates’ though. In fact:


Why did we detect almost as many  than , while the multiplicity of a 
given nucleus is suppressed by more than  for each additional nucleon?
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∼ 7 D ∼ 5 3He ∼ 4 4He P. Zuccon, Talk at MIAPbP 2022
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M. Winkler & T. Linden proposed a solution: 


DM-produced weakly-decaying -baryons ( ) can enhance the production of  
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Introduction

• Using PYTHIA, we can set the ratio between baryon and meson production 
with the parameter probQQtoQ 

•  probQQtoQ is set to match the measured fragmentation function 
 (PDG, 1998), obtaining 


• One issue: the  multiplicities exceeds by  the LEP measurement at the 
-pole  the coalescence momentum had to be decreased to match  ( ) 

data at ALEPH (ALICE)

f(b → Λb) = 0.1+0.04
−0.03 0.243 (3 × the default)

p/p 40σ
Z → D 3He
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R.-D. Moise, PoS ICHEP2024 (2025) 676

LHCb’s first experimental 
limits on the inclusive 

branching ratio of  to Λ0
b

3He

Another issue:

BR(Λ0
b → 3He) < 6.3 × 10−8
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Our work

• Setting the coalescence model using ALICE data


• New tuning of PYTHIA to match:


• ,   and  multiplicities measured at LEP


• The most recent value of the fragmentation function 
 (HFLAV, 2021)


• The new LHCb limit for 

p/p Λ0 π±

f(b → Λb) = 0.089 ± 0.012

BR(Λ0
b → 3He)
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M. Di Mauro, A. Jueid, JK, R. Ruiz de Austri, 2504.07172



Coalescence model
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Choosing a simple coalescence with 
distance cutof (  and fm) 

and we obtain  GeV 
Δp < pcoal Δr < 3
pcoal = 0.20 ± 0.01

ALICE data at 
 TeVs = 7



PYTHIA tuning
Hadronisation tune

We performed tuning of 14 PYTHIA 
parameters related to flavor selection 

and hadronisation
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PYTHIA tuning
Hadronisation tune
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We performed tuning of 14 PYTHIA 
parameters related to flavor selection 

and hadronisation



PYTHIA tuning
Fragmentation functions

Extra tuning of the probQQtoQ 
parameter, to be used solely for 
the production of  and  from 

 and -meson decay:


 


p n
Λb B

probQQtoQ = 0.19 ± 0.03
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PYTHIA tuning
Fragmentation functions
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Extra tuning of the probQQtoQ 
parameter, to be used solely for 
the production of  and  from 

 and -meson decay:


 


p n
Λb B

probQQtoQ = 0.19 ± 0.03



PYTHIA tuning
Branching ratios into di-quark modes

We also modify some 
branching ratios of the 

 to di-quark modes to 
match the LHCb upper 
limit on 

Λ0
b

BR(Λ0
b → 3He X)
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PYTHIA tuning
Branching ratios into di-quark modes
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PYTHIA tuning
Branching ratios into di-quark modes

15Antinuclei production from weakly-decaying -baryonsbJ. Koechler (INFN Turin)

10°1 100 101

K [GeV/n]

10°8

10°7

10°6

K
dN

/d
K

DM DM ! bb ! 3He, mDM = 50 GeV

Had. tune
Had. tune+QQ
Benchmark
WL21 tune

3He from b-baryons

10°1 100 101

K [GeV/n]

10°5

10°4

K
dN

/d
K

DM DM ! bb ! D, mDM = 50 GeV

Had. tune
Had. tune+QQ
Benchmark
WL21 tune

D from b-baryons
D from B-mesons



Summary

• We performed a full tuning of PYTHIA and determination of the coalescence 
model in order to match different collider observables in order to correctly 
assess the production of light antinuclei ( ) arising from DM annihilation 


• We now expect the production of light antinuclei from  and -mesons to 
be negligible compared to the prompt production


• If the  candidates detected by AMS-02 were confirmed, we 
need to come up with new production mechanisms to explain these events

D, 3He

Λb B

D, 3He and 4He
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Thank you for your attention!
Questions?



Light antinuclei as a strong DM signal
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M. Korsmeier, F. Donato, N. Fornengo, Phys.Rev.D 97 (2018) 10, 103011
CuKrKo = A. Cuoco, M. Krämer, M. Korsmeier, Phys.Rev.Lett. 118 (2017) 19, 191102



Coalescence models
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Some coalescence models:


• Simple coalescence: 


• Simple coalescence with distance cutoff:  and  fm


• Gauss Wigner: 


• Argonne Wigner: 

Δp < pcoal

Δp < pcoal Δr < 3

𝒟(Δr, Δp) ∝ e−Δr2/(2σ2)e−Δp2δ2/2

𝒟(Δr, Δp) =
1

8π (T1 + T2 + T3 + T4 + T5 + T6)



Coalescence models
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M. Di Mauro, N. Fornengo, A. Jueid, R. Ruiz de Austri, F. Bellini, 2411.04815 

ALEPH data (  collisions at the -pole)e+e− Z
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Coalescence models
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