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Primordial Black Holes

Hypothetical black holes formed before stellar formation.

Come from extremely dense matter fluctuations in the early Universe. crdense
horizon 4 -i~ /,--\ .
: , - \:,/\\\"J‘:,

\
\
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Not predicted from vanilla slow-roll inflation, but
requires a big extrapolation

density perturbation

P underdense "~ BH formation|
o} -. ! % o [picture borrowed from N. Kitajimal
L) J No shortage of primordial black hole (PBH)
ol | production mechanisms:
o'k Ultra slow-roll inflation, cosmological phase

L o transitions, pre-heating... etc
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Black holes evaporate

Hawking (1970s) showed that by solving
the equation of motion for quantum fields /é
in a curved spacetime e V"2

ENen+t
1 tind Horlzon ~
(D + m2) Q[) — —,__g(?” (g‘“’\/ —g&,qb) + m2¢ f /\\/Z\A
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BrLAck HOLE

You get particle emission from a black //
hole!

s pace DM
—_—

The production rate is insensitive to other
particle interactions. So will happen for all
particles, known or unknown.

DM SM SM

. . . [Image: L. Heurtier & Y. Perez-Gonzalez]
One tool for calculating this is BlackHawk.

https://blackhawk.hepforge.org/
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By emlttlng radlatlon, the BH maSS . jl’-J“!'-P'BI'I [%} [B. Kavanagh and A. Green 2022]
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Evaporated BHs parameter space

Big Bang Nucleosynthesis (BBN) and
inflation provide constraints but lots of
space in between!

—1/4 in
g = 71/2 95 (Tin) / PrBH
- 106.75 pin

logo(3)
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In green GW COnStraintS [G. Domenech et. al 2020]

Evidence for evaporated PBHs would be

interesting in of itself. 2

Implications for topics on the edge of our
understanding, inflation, extra dimensions
GR at Planck scale, ...

log (M, /1g)
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https://arxiv.org/abs/2012.08151

Hawking radiation and BSM

Very efficient production of dark matter!

Black hole temperature increases as mass

decreases | .
- mpmMm = 107= GeV — MmpmMm — 10*° GeV === s5=1
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universe, solves the system of coupled Friedmann and Boltzmann equations fully.

Publicly available on GitHut?and ready to use!

dMpy M, da M2
— —e(Mpy. a,)—2— x _ P
7 6( BH, d )M]%H p = — Uy ['Y(MBHJ a*) QE(MBH, CL*)] MéH
3H?M? , dlog Mgn
3 P — p%M + PDR + PPBH ppBH + 3H pppH = 1 PPBH
T
. dlo MBH
ppor + 4H ppr = — i n PPBH dlog M
DR M 4 4H pIM = — iy PPBH
SM

ANDREW CHEEK 7

16 June 2025



https://github.com/yfperezg/frisbhee
https://github.com/yfperezg/frisbhee

We created ﬂfBHEL

Our code FRISBHEE, FRledmann Solver for Black Hole Evaporatlon in the Early
universe, solves the system of coupled Friedmann and Boltzmann equations fully.

. . oy O
Publicly available on GitHub and ready to use! Black hole dynamics

dMpnu Mﬁ da M4
Z—E(MBH,(I ) x — M — 2¢( M __ b
dt L3 M]%H At a*[ﬁy( BH:a'*) E( BHaa’*)] M]%H
3H2M2 . d log MBH
= pp" + PDR + PPBH ppPBH + 3H ppH = PPBH
8T dt
. d 10 MBH
ppr +4Hppr = — gd n PPBH  dlog Mg
DR PR+ 4H pM gy PPBH
SM
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universe, solves the system of coupled Friedmann and Boltzmann equations fully.

Publicly available on GitHut?and ready to use!

dMBH M;)l dCL M4
— _G(MBHja*)—Q < = —a*[’Y(MBH;OJ*) — QE(MBHaa*)]—p
Friedmann My d MéH
3H2M2 _ d log MBH
2 = p%M + PDR + PPBH ppBH + 3H ppRH = 1 PPBH
8T
. dlo MBH
ppr + 4H ppr = — %115 PPBH dlog MH
DR M 4 4H pIM = — ; PPBH
t SM
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@

universe, solves the system of coupled Friedmann and Boltzmann equations fully.

Publicly available on GitHut‘Sjand ready to use!

dMBH M;)l da, M4
= —e(M $) 5 * — S—
g e(MgH,a )M]%H - a,|v(Mpu, ay) QE(MBHa@*)]Méﬂ
3H2 M2 _ d 10g MBH
L = pp™ + ppr + pPBH ppeu + 3H ppen = ac reH
ST
: le MBH
ppr + 4H ppr = — gdt PPBH dlog Mn
DR PR + 4HpEM = — T PPBH
Boltzmann SM
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Successes of FRISBHEE

> Tracking the spin evolution proved to be an important use case for FRISBHEE.

o Been known for half a century that Kerr black
holes shed angular momentum more quickly than
their mass. . rage 196

o For maximally spinning black holes, only around
40% of mass has been lost when 90% of the spin
has gone.

f(&)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.14.3260

Successes of FRISBHEE

This results in an entropy injection after a,.~0 diluting high spin radiation

16 June 2025
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Using FRISBHEE (dark radiation)

dneff/ex_mono.py

> How do you generate these plots yourself?

¥ bigupdate ~

Mi
asi
bi

Switch branches/tags

Q F sDR

Branches = Tags

$ python -m dneff.ex_mcno.pyl

Dic_sDR = {@.:'scl’,

v bigupdate
View all branches Mli’nBH = 10% g, a, =0.9999 - B =107
1055 4
10% 4
105 ]
S
=109
109 sMRadiaton
—— PBHMass \\\ o] — PBH
0.04 ——- PBHa, \\\;‘ " —— Dark Radiation
o oL ‘ . ‘ ‘ T ‘ ‘ ‘ :
(base) andrew@Andrew: $ python -m dneff.ex_mono.py 0002 od Do 01D o as 0 TS e
= =t/ og(a
10 10!
10'2 4 10° 4
M PBH = 104 g, a *=0.9999: DNeff = ©.02176739906303125 % Lot Z 00!
i — S 7 <
é 108 g0
10° 1 1073 5
. . . . . 1074 1 . . . .
00 25 50 75 100 00 25 50 75 100
log(a) log(a)

16 June 2025 ANDREW CHEEK




Results from PBH domination

Previous Studies OvereStimated the — AN from Graviton Production F———
graviton contribution to the relativistic e = o i
degrees of freedom at recombination. o 4, = 0.99

" : =+ Paper A
Paper A = Hooper et. al. arXiv:2004.00618 ol * Paper B

T =+ Paper C
Paper B = Arbey et. al. arXiv:2104.04051 I "7 No Redshit

— With Redshift

A i\"'(\ F

Paper C = Masina arXiv:2103.13825

The prospects for future CMB probes
become less optimistic.

8 4 _% pDR
ANg =< - [ — NSM A PO
' {7(11) . eﬁ}paM
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Scan results for graviton and vector

,B’

16 June 2025

o With FRISBHEE we can perform full scans even when black holes don’'t dominate.
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Dark matter relic abundance

- Making precise calculation of Q) for different particles and BH spins

—— mpum = 1072GeV —— mpy = 10¥ GeV === s5=1
—— mpy = 10! GeV —_— =0 —— 5 =2
—— mpMm = 107 GeV T 1/2

log,(f")
10%‘10([’")

Kerr BHs, a, = 0.99

-2 0 2 4 6 8 10
108;10(M11§1H/1g')

Schwarzschild BHs, a, = 0
1 1 1

29 0 9 1 6 8 10
10!%10(1"'{}3%/1!%)
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Using FRISBHEE (dark matter)

o How to get the dark matter abundance yourself? dm/ex_mono.p

¥ bigupdate ~

Switch branches/tags
QF

Branches = Tags

main

v bigupdate

\L my=10% GeV, M =107 g
035
030

View all branches
Oh~2 = 2.579915E+00 .
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Warm dark matter constraints

> We can use FRISBHEE to generate the output for structure formation codes like CLASS

o The main constraint we use is from Lyman-a forest

o Define constraint parameter n

10°®
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Dark sectors

> We have created the framework that allows for more complicated dark sectors

Non-interacting Interacting
Additional X Particle : =
0.3 ‘*»..\\5\2/;-’ > (.12 2
ms; = ..;_'
mSs = 1
| s = 2 g
0.05 |||||\|F T |||||||’ T ||||||| \IIII\IF T T TTTTTT 2
106 107 108 109 1010 -2 0 2 4 6 8 10
l0g10(Mppy/8)

my [GGV]
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Interacting DM

mx = 1TeV, mpm = 1 MeV Br(X — SM) = 10—7.

QA2 > 0.12

30.0

Thermal X

—10 F —32.5

¢ Jooo—T T ex

- —35.0

|
o
Inflation

log;0(53)

Fig. 1. Example of processes leading the production of ther-
malized DM particles.
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PBH distributions

o All results above have shown monochromatic distributions in mass and spin.
o Many production mechanisms lead to broader distributions.
o FRISBHEE can deal with distributions

Log-Normal, =1 Hrag, Power-Law, a =2.5,6=4.0 thty, Critical Collapse Hrn,
0.0030 0.012 10!
l. 102 0.014 - l ‘
0.0025 0012 - L 1ot 0.010
L 102
0.0020 0.010 - 0.008 - L 100
_ L 10! o =
g’ 0.0015 g’ 0.008 g’ 0.006 -
= = =
10° 0.006 - 10°
0.0010 - 0.004 - 107!
\ 0.004 -
\\ 104 II
0.0005 - 0.002 -
0.002 - ' ’I
_ LAl
1072 | b 2
0.0000 - . e — ; = . : 10
10! 10? 10° 10! 10? 10° 10! 107
M [g] M [g] M [g]
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PBH distributions

o All results above have shown monochromatic distributions in mass and spin.
o Many production mechanisms lead to broader distributions.

o FRISBHEE can deal with distributions ——
0.08 /:
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oS
0.04 ooy
0.02 8
0.00
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FRISBHEE now

o There is an updated branch of the code with many examples, what I've presented here and
others!

> The “big update” branch will soon become “main”

= o

[9 ex_Flpy
[ ex_massdist.py

[9 ex_massdist py

[Y ex_mono.py

[ ex_mono.py

[9 ex_planckrel.py

[ ex_spinmassdist.py

[ ex_spinmassdist.py

> We are working on other more updates on the physics side.
o Implementing evaporation variation at late stages of evaporation.
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Summary

- FRISBHEE is code that solves the coupled equations for evaporating black holes in the early
universe. It is public and available for all.

We show that the accurate tracking of the coupled Friedmann-Boltzmann equations is vital.
CMB probes of the additional relativistic degrees of freedom are less constraining than we

o

o

previously thought.
o Dark matter will be produced by PBH evaporation so there will be an interplay with interacting
models.

Our code can handle distributions of black holes.

o
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