
6
An extended ‘getting started’ guide

www.darksusy.org

Torsten Bringmann

DarkTools 2025, 17 June, Torino

http://www.darksusy.org

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼2

Installation
Download the latest version
https://darksusy.hepforge.org/download.html

Configure:
As usual, you can provide options (see, e.g., ./conf.gfortran)

Make:
More experienced users can use autocomplete to see various make targets.
NB: ‘make coffee’ still work in progress…

Test installation:
After a little while you should see something like the following:

Anyone did
not see this?

Try bypassing compilation problems
with contributed code: 💡

(for full installation)

(no worries…)

https://darksusy.hepforge.org/download.html

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼3

Directory structure

DarkSUSY Root

/lib/examples /data

Test program and
example main
programs

Compiled
DarkSUSY
libraries

Shared
data
tables

/src

/dd /rd …

(particle physics-independent
routines of DarkSUSY)

|{z}

libds_core.a

/mssm

/src_models

/silverira_zee /generic_wimp …|{z}

each particle physics module creates its
own library. Link to the one you want

After the installation, you will see the following:

/scr

Various
scripts:
developers
only

/docs
Full
manual

/contrib

external code

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼4

Documentation

A manual (not fully up to date yet & does not cover everything)
is distributed with DarkSUSY. Create with

make manual

make pdf_manual

 default version(s)

only creates shorter version,
skipping subroutine headers

Also see headers of various subroutines for instructions
(and which author to blame 😉).

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼5

Main programs

DarkSUSY is essentially a library of routines
and functions

DarkSUSY consists mainly of FORTRAN 77,
with some FORTRAN 95/03 additions
FORTRAN is rather basic, but results in fast code
Furthermore, it is straight-forward to follow (and write)

You, as a user, have to provide a suitable main program
(by linking to these libraries)

Some examples of main programs exist in the

/examples folder and are good starting points

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼6

Typical Fortran program

 program myprogram
 implicit none

 include ‘dsver.h’
 real*8 oh2,xf
 integer unphys,war,ierr,iwar,nfc
 real*8 dsrdomega

 call dsinit
 call dsgive_model(500.0d0,1000.d0,300.d0,10.d0,
 & 3000.d0,0.d0,0.d0)
 call dsmodelsetup(unphys,war)
 oh2=dsrdomega(1,1,xf,ierr,iwar,nfc)
 write(*,*) ‘Relic density, omega h^2 = ‘,oh2

 end

6 chars
de

cl
ar

at
io

ns
pr

og
ra

m

includes files, typically global
variables (common blocks)

continuation character (col 6)

subroutine call
arguments

(must match declaration)

function call

exponent for
double precision
(real*8) number

See example programs or tutorials on the web for more Fortran examples

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼7

dsmain_WIMP
The dsmain_wimp program in examples/ essentially does the
same thing, but in a more user-friendly way.

TASK: run this program!

You will be asked what model to pick
 What kind of SUSY model do you want to look at?
 1 = MSSM-7
 2 = cMSSM
 3 = as read from an SLHA2 file

Pick MSSM-7
and enter (e.g.)

mu: 1000
M2: 1000
MA: 400
tan(β): 10

m0: 3000
At/m0: 0
Ab/m0: 0

Inspect output and try to identify the
corresponding part in the code!
Repeat for another model point if you like…

TASK:

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼8

dsmain_WIMP (2)
At the end of the dsmain_wimp run you got

 The DarkSUSY example program has finished successfully.
 Particle module that was used: MSSM

 [simply call 'make -B dsmain_wimp DS_MODULE=<MY_MODULE>' if you want to try
with a different module <MY_MODULE>]

Compile and then run the same program again, now for
a generic WIMP (use <MY_MODULE> = generic_wimp) !

TASK:

mass: 100
self-conjugate: 0
asymmetry: 0
annihilation cross section: 3e-26
PDG: 15 (τ leptons)
scattering cross section: 1e-42

use e.g. the following parameters

See docs/pdg_codes.pdf for
a full list of particle codes

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼9

DarkSUSY 6 structure

Module ...

..

.

Module silveira_zee
libds_silveira_zee.a

Interface functions
Internal routines

Particle physics modules
src_models/

Module mssm
libds_mssm.a

Interface functions
Internal routines

Linking to main library/user
replaceable
Linking to chosen module

Alternative calling sequence
(if linked)

Calling sequence

Main program
User-supplied, e.g.

examples/dsmain_wimp.F

User
replaceables

User
replaceables
Functions
replaced
and modified
by user

User
replaceables
Functions
replaced
and modified
by user

User
replaceables
Functions
replaced
and modified
by user

DarkSUSY core library
src/
libds_core.a

Observables (rates, relic
density etc)

User
replaceables
Functions
replaced
and modified
by user

Halo profiles
dsdmsdriver with
different halo
profiles.

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼10

Makefiles
Which particle module is used is decided when you
build your main program:
gfortran -o dsmain_wimp dsmain_wimp.f -lds_core -lds_mssm (for MSSM)

This can be made much more flexible, and system-
independent, with makefiles:

dscheckmod :
 @test `ls ../lib/ | grep libds_${DS_MODULE}.a` || { echo ERROR: Module $
{DS_MODULE} does not exist, or is not compiled; exit 1;}

dsmain_wimp : DS_MODULE = $(shell sed -n '1p' dsmain_wimp.driver)

dsmain_wimp : dscheckmod makefile dsmain_wimp.F
 printf "#define MODULE_CONFIG MODULE_"$(DS_MODULE)"\n" > module_compile.F
 printf "$(LIB)/libds_core_user.a\n"$(LIB)"/libds_core.a\n"$(LIB)"/libds_"$
(DS_MODULE)"_user.a\n"$(LIB)"/libds_"$(DS_MODULE)".a" > module_link.txt
 $(ADD_SCR) libds_tmp.a module_link.txt
 $(FF) $(FOPT) $(INC) $(INC_MSSM) -L$(LIB) -o dsmain_wimp dsmain_wimp.F \
 libds_tmp.a $(shell if ["x$(DS_MODULE)" = "xmssm"]; then printf "%s" " $
(AUX_LIB_MSSM)"; fi)
 rm -f module_compile.F
 rm -f module_link.txt
 rm -f libds_tmp.a

gfortran -o dsmain_wimp dsmain_wimp.f -lds_core -lds_generic_wimp (for generic Wimp)

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼11

Makefiles (2)
In dsmain_wimp.F, we have blocks of the type

#if MODULE_CONFIG == MODULE_generic_wimp
 subroutine dspmenterparameters
 [more code for this module]
#endif

This is how the program performs, e.g., model-specific setup
and initialisation tasks

Alternative: separate main program for each particle physics
module simpler makefiles (as in /examples/aux/).<latexit sha1_base64="3lD6Q9xvrtwn6lYIOtSUCchdDXY=">AAACA3icbVDLSsNAFL2pr1pfVZduBovgqiQq6rLoxmUF+4A2lMlk0g6dzISZiVBCl/6AW/0Dd+LWD/EH/A4nbRbaeuDC4Zz74gQJZ9q47pdTWlldW98ob1a2tnd296r7B20tU0Voi0guVTfAmnImaMsww2k3URTHAaedYHyb+51HqjST4sFMEurHeChYxAg2Vur2OcWhNnJQrbl1dwa0TLyC1KBAc1D97oeSpDEVhnCsdc9zE+NnWBlGOJ1W+qmmCSZjPKQ9SwWOqfaz2b9TdGKVEEVS2RIGzdTfExmOtZ7Ege2MsRnpRS8X//USli9cuG6iaz9jIkkNFWR+PEo5MhLlgaCQKUoMn1iCiWL2f0RGWGFibGwVG4y3GMMyaZ/Vvcv6+f1FrXFTRFSGIziGU/DgChpwB01oAQEOz/ACr86T8+a8Ox/z1pJTzBzCHzifP69kmJk=</latexit>

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼12

dscheckmod :
 @test `ls $(LIB) | grep libds_${DS_MODULE}.a` || { echo ERROR: Module ${DS_MODULE} does not exist, or is not compiled; exit 1;}

dsmain_wimp : DS_MODULE = $(shell sed -n '1p' dsmain_wimp.driver)
dsmain_wimp : dscheckmod dscheck_libs_mssm makefile dsmain_wimp.F
dsmain_wimp : $(LIB)/libds_core.a $(LIB)/libds_core_user.a
 printf "#define MODULE_CONFIG MODULE_"$(DS_MODULE)"\n" > module_compile.F
 printf "$(LIB)/libds_"$(DS_MODULE)"_user.a\n"$(LIB)"/libds_core_user.a\n"$(LIB)"/libds_"$(DS_MODULE)".a\n"$
(LIB)"/libds_core.a" > module_link.txt
 $(ADD_SCR) libds_tmp.a module_link.txt
 $(FF) $(FOPT) $(INC) $(INC_MSSM) -L$(LIB) -o dsmain_wimp dsmain_wimp.F \
 libds_tmp.a $(shell if ["x$(DS_MODULE)" = "xmssm"]; then cat mssm_libs.txt; fi)
 rm -f module_compile.F
 rm -f module_link.txt
 rm -f libds_tmp.a
 rm -f mssm_libs.txt

/examples/makefile:

/examples/aux/makefile:

Makefiles (3)

additional, module-specific libraries would
be added at these places

variable describing particle
module simply set by hand

Don’t be afraid of makefiles!
[‘Everything’ can be done by copy&paste + simple replacements]💡

Let us compare the targets for dsmain_wimp and oh2_generic_wimp:

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼13

Writing your own programs
Typical program
layout

call dsinit
[make general settings]
[determine your model parameters your way]
call dsgive_model…
call dsmodelsetup
[calculate what you want]

Step-by-step guide:
1.Go to your own private folder

2. Create a .f file with the above structure

3. copy examples/aux/makefile to your folder
x + modify as desired

4. ‘make’ in your private folder and then run the code

[I.e. not a subfolder of the DS release]

(Or copy one of the files in examples [/aux] to this folder. These often provide good starting points)

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼14

‘My’ 1st DarkSUSY program

There are other ways to use DarkSUSY, but this is the
cleanest and by far preferred one. It keeps your
routines separate from DS and makes updates easier!💡

TASK: Copy oh2_generic_wimp.f to some private
directory, rename it to my_first_DS_program.F.
Then compile and run it there!

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼15

‘My’ 1st DarkSUSY program

1.Copy all files needed by oh2_generic_wimp.f:

2.Modify makefile only where necessary:

Solution

/tutorial> cd my_code
/tutorial/my_code> cp ../darksusy-6.4.0/examples/aux/oh2_generic_wimp.f my_first_DS_program.f
/tutorial/my_code> cp ../darksusy-6.4.0/examples/aux/makefile .

replace all oh2_generic_wimp my_first_DS_program (8 places)→
flxconv: DS_MODULE = generic_wimp
flxconv: INC_MODULE = $(INC_GENERIC)
flxconv: flxconv.f
flxconv: $(LIB)/libds_core.a $(LIB)/libds_core_user.a
	 $(ADD_SCR) libds_tmp.a $(LIB)/libds_$(DS_MODULE)_user.a $(LIB)/
libds_core_user.a $(LIB)/libds_$(DS_MODULE).a $(LIB)/libds_core.a
	 $(FF) $(FOPT) $(INC) $(INC_MODULE) -L$(LIB) -o flxconv flxconv.f \
	 libds_tmp.a
	 rm -f libds_tmp.a

[delete blocks for unneeded targets, e.g.]

delete removed (obsolete) targets from target ‘all’:
all: my_first_DS_program dsmain_decay

TASK:

WARNING:
makefiles
distinguish
<TAB> and
<SPACE> !!!

💡

Copy oh2_generic_wimp.f to some private
directory, rename it to my_first_DS_program.f.
Then compile and run it there!

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼16

My(!) 1st DarkSUSY program

Create your own program (in your private directory) to

TASK:

OK, this was cheating a bit… so let’s try a bit harder:

1. set up a Scalar Singlet model (with some pre-defined
values for coupling and DM mass) and

2. calculate the relic density and write it to screen.
3. Make sure it links to the correct libraries and compiles
4. run it!

Hints: Think of an example earlier seen in this tutorial — you should use less
than 15 lines of Fortran code!
The makefile target for oh2_ScalarSinglet probably does the same as
you want to do…

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼17

My(!) 1st DarkSUSY program

DISCUSS (or try…) — what do you have to change
to do the same for the generic_WIMP model?

TASK:

Scalar_Singlet_example: DS_MODULE = silveira_zee
Scalar_Singlet_example: INC_MODULE = $(INC_SILVEIRAZEE)
Scalar_Singlet_example: Scalar_Singlet_example.f
Scalar_Singlet_example: $(LIB)/libds_core.a $(LIB)/libds_core_user.a
	 $(ADD_SCR) libds_tmp.a $(LIB)/libds_$(DS_MODULE)_user.a $(LIB)/libds_core_user.a
$(LIB)/libds_$(DS_MODULE).a $(LIB)/libds_core.a
	 $(FF) $(FOPT) $(INC) $(INC_MODULE) -L$(LIB) -o Scalar_Singlet_example
Scalar_Singlet_example.f \
	 libds_tmp.a
	 rm -f libds_tmp.a

1. Create Fortran file:

2. Add following block to makefile (copy&paste, just replace names):

3.[Make sure to keep the definition (at the beginning)]

Solution
 program myprogram
 implicit none

 real*8 oh2,xf
 integer unphys,war,ierr,iwar,nfc
 real*8 dsrdomega

 call dsinit
 call dsgivemodel_silveira_zee(0.3d0,1000.d0) ! lambda = 0.3, mdm = 1000
 call dsmodelsetup(unphys,iwar)
 oh2=dsrdomega(1,1,xf,ierr,iwar,nfc)
 write(*,*) 'Relic density, omega h^2 = ',oh2

 end

INC_SILVEIRAZEE=-I$(DS_INSTALL)/src_models/silveira_zee/include

💡
Make sure to not
convert <TAB>s
to <SPACE>s
without noticing!

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼18

DarkSUSY modularity: key concepts
Main program always links to DS_core and one particle module

Module ...

..

.

Module silveira_zee
libds_silveira_zee.a

Interface functions
Internal routines

Particle physics modules
src_models/

Module mssm
libds_mssm.a

Interface functions
Internal routines

Linking to main library/user
replaceable
Linking to chosen module

Alternative calling sequence
(if linked)

Calling sequence

Main program
User-supplied, e.g.

examples/dsmain_wimp.F

User
replaceables

User
replaceables
Functions
replaced
and modified
by user

User
replaceables
Functions
replaced
and modified
by user

User
replaceables
Functions
replaced
and modified
by user

DarkSUSY core library
src/
libds_core.a

Observables (rates, relic
density etc)

User
replaceables
Functions
replaced
and modified
by user

Halo profiles
dsdmsdriver with
different halo
profiles.

Interface functions communicate
model-dependent input to core library
‘Set of interface functions defines particle module’
No further exchange between core and modules
Minimal: about a dozen in total
A particle module can provide less — this only
restricts possible applications in main program
[error at linking stage points to missing interface function]

Most functions are replaceable functions
Can be individually replaced at linking stage (when building the main program)
DarkSUSY installation remains unchanged
User-supplied function will still be consistently used in rest of code
Examples: external annihilation rate for relic density calculation; different yields for
indirect detection routines, etc…

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼19

Using a replaceable function

Let’s assume you don’t trust DarkSUSY — purely

hypothetically of course 😉

So you want to replace e.g. the invariant rate Weff
(a typical example of an interface function) for the
scalar singlet model, provided by the code, with a
result that you obtained yourself.

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼20

Using a replaceable function (2)
Let’s say — for the sake of the argument — that
you are ‘really sure’ that there is a missing factor
of in the code

Correct this ‘mistake’ in the function src_models/silveira_zee/an/
dsanwx.f, by ‘replacing’ it, and test the result !

Hint: Have a look at the generic_wimp_oh2[_threshold] case in examples/aux/makefile …

TASK:

E2
cm/(4m2

S)
<latexit sha1_base64="MvgffkAfqE8TrErG9wDOhO35jao=">AAACDXicbVBNSsNAGJ34W+tfqks3g0Wom5qUgroriuCyorGFNg2T6aQdOpOEmYlSQu/gBdzqDVyJW8/gBTyHkzYLbX3wweO974/nx4xKZVlfxtLyyuraemGjuLm1vbNrlvbuZZQITBwcsUi0fSQJoyFxFFWMtGNBEPcZafmjy8xvPRAhaRTeqXFMXI4GIQ0oRkpLnlm68lLMJ73aSaXOvdte7dgzy1bVmgIuEjsnZZCj6Znf3X6EE05ChRmSsmNbsXJTJBTFjEyK3USSGOERGpCOpiHiRLrp9PUJPNJKHwaR0BUqOFV/T6SISznmvu7kSA3lvJeJ/3oxzRbOXVfBmZvSME4UCfHseJAwqCKYZQP7VBCs2FgThAXV/0M8RAJhpRMs6mDs+RgWiVOrnlftm3q5cZEnVAAH4BBUgA1OQQNcgyZwAAaP4Bm8gFfjyXgz3o2PWeuSkc/sgz8wPn8ATpWbBw==</latexit><latexit sha1_base64="MvgffkAfqE8TrErG9wDOhO35jao=">AAACDXicbVBNSsNAGJ34W+tfqks3g0Wom5qUgroriuCyorGFNg2T6aQdOpOEmYlSQu/gBdzqDVyJW8/gBTyHkzYLbX3wweO974/nx4xKZVlfxtLyyuraemGjuLm1vbNrlvbuZZQITBwcsUi0fSQJoyFxFFWMtGNBEPcZafmjy8xvPRAhaRTeqXFMXI4GIQ0oRkpLnlm68lLMJ73aSaXOvdte7dgzy1bVmgIuEjsnZZCj6Znf3X6EE05ChRmSsmNbsXJTJBTFjEyK3USSGOERGpCOpiHiRLrp9PUJPNJKHwaR0BUqOFV/T6SISznmvu7kSA3lvJeJ/3oxzRbOXVfBmZvSME4UCfHseJAwqCKYZQP7VBCs2FgThAXV/0M8RAJhpRMs6mDs+RgWiVOrnlftm3q5cZEnVAAH4BBUgA1OQQNcgyZwAAaP4Bm8gFfjyXgz3o2PWeuSkc/sgz8wPn8ATpWbBw==</latexit><latexit sha1_base64="MvgffkAfqE8TrErG9wDOhO35jao=">AAACDXicbVBNSsNAGJ34W+tfqks3g0Wom5qUgroriuCyorGFNg2T6aQdOpOEmYlSQu/gBdzqDVyJW8/gBTyHkzYLbX3wweO974/nx4xKZVlfxtLyyuraemGjuLm1vbNrlvbuZZQITBwcsUi0fSQJoyFxFFWMtGNBEPcZafmjy8xvPRAhaRTeqXFMXI4GIQ0oRkpLnlm68lLMJ73aSaXOvdte7dgzy1bVmgIuEjsnZZCj6Znf3X6EE05ChRmSsmNbsXJTJBTFjEyK3USSGOERGpCOpiHiRLrp9PUJPNJKHwaR0BUqOFV/T6SISznmvu7kSA3lvJeJ/3oxzRbOXVfBmZvSME4UCfHseJAwqCKYZQP7VBCs2FgThAXV/0M8RAJhpRMs6mDs+RgWiVOrnlftm3q5cZEnVAAH4BBUgA1OQQNcgyZwAAaP4Bm8gFfjyXgz3o2PWeuSkc/sgz8wPn8ATpWbBw==</latexit><latexit sha1_base64="MvgffkAfqE8TrErG9wDOhO35jao=">AAACDXicbVBNSsNAGJ34W+tfqks3g0Wom5qUgroriuCyorGFNg2T6aQdOpOEmYlSQu/gBdzqDVyJW8/gBTyHkzYLbX3wweO974/nx4xKZVlfxtLyyuraemGjuLm1vbNrlvbuZZQITBwcsUi0fSQJoyFxFFWMtGNBEPcZafmjy8xvPRAhaRTeqXFMXI4GIQ0oRkpLnlm68lLMJ73aSaXOvdte7dgzy1bVmgIuEjsnZZCj6Znf3X6EE05ChRmSsmNbsXJTJBTFjEyK3USSGOERGpCOpiHiRLrp9PUJPNJKHwaR0BUqOFV/T6SISznmvu7kSA3lvJeJ/3oxzRbOXVfBmZvSME4UCfHseJAwqCKYZQP7VBCs2FgThAXV/0M8RAJhpRMs6mDs+RgWiVOrnlftm3q5cZEnVAAH4BBUgA1OQQNcgyZwAAaP4Bm8gFfjyXgz3o2PWeuSkc/sgz8wPn8ATpWbBw==</latexit>

If you now (or at any other time…) think about
changing a function or subroutine in the

installed DarkSUSY folder: DON’T !!! ⚡⚡⚡
💡

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼21

Using a replaceable function (3)

ScalarSinglet_mod: DS_MODULE = silveira_zee
ScalarSinglet_mod: INC_MODULE = $(INC_SILVEIRAZEE)
ScalarSinglet_mod: ScalarSinglet_example.f my_replaceables/dsanwx.f
ScalarSinglet_mod: $(LIB)/libds_core.a $(LIB)/libds_core_user.a
	 $(ADD_SCR) libds_tmp.a $(LIB)/libds_$(DS_MODULE)_user.a $(LIB)/libds_core_user.a $(LIB)/libds_$
(DS_MODULE).a $(LIB)/libds_core.a
	 $(FF) $(FOPT) $(INC) $(INC_MODULE) -L$(LIB) -o ScalarSinglet_example ScalarSinglet_example.f
my_replaceables/dsanwx.f \
	 libds_tmp.a
	 rm -f libds_tmp.a

1.Copy [DS]/src_models/silveira_zee/an/dsanwx.f to
[my local directory]/my_replaceables, and add the following lines
at the end:

2.Add following block to makefile (copy&paste, changes as indicated)

Solution

c... TB: here we add the additional factor required in the tutorial
 s = 4.*(dsmwimp()**2 + p**2) ! Ecm**2
 dsanwx = dsanwx*s/dsmwimp()**2/4.d0
c write(*,*) 'repleaceable test'

 return
 end

💡
Using ‘dsanwx.f’ → ‘*.f’ allows you to replace
many functions at the same time (and switch
such changes on/off simply by dragging them
into/out of your my_replaceables/ folder !)

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼22

Example programs
Our ‘minimal’ application examples are quite instructive,
and a very good next step to explore further:

💡
Any questions ?
During or after the school
Concerning these example programs or other DarkSUSY-related issues
Just get in touch, also after the workshop !

direct detection examples

usage of halo model database

relic density [+ kinetic decoupling]
indirect detection

+self-interactions!

Ultra-compact minihalos

 (Torsten Bringmann) DarkSUSY — an extended getting started guide ‒ ￼23

WIMP yields
E.g. wimpyields.f shows how to access the
yield tables calculated with PYTHIA

Calculate the differential gamma-ray flux for a WIMP
of mass 500 GeV annihilating to W+W-!

TASK:

If you want to explore this
further, you could for example
look at integrated yields
look at different channels
load different tables, e.g. the improved
spectra for sub-GeV DM annihilation
derived by Plehn, Reimitz & Richardson
[1911.11147]

