

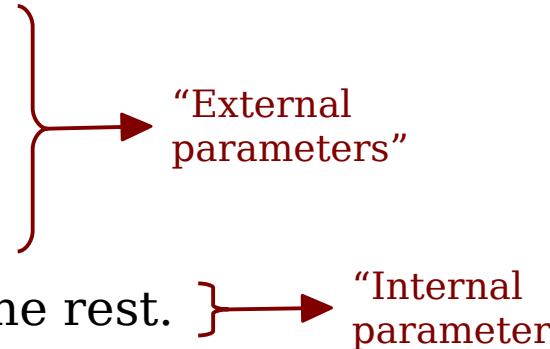
MicrOMEGAs: hands-on session

Dark Tools 2025 workshop

Introductory comments

MicrOMEGAs has been under constant development since \sim two decades. It incorporates numerous functionalities, too many to cover in an hour-long tutorial.

In this tutorial we will use MicrOMEGAs mainly in order to compute the dark matter relic abundance in a simple dark matter model, according to two different thermodynamical mechanisms.


Our case study will be the Singlet Scalar dark matter model:

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{1}{2}(\partial_\mu s)(\partial^\mu s) - \frac{\mu_s^2}{2}s^2 - \frac{\lambda_s}{4}s^4 - \frac{\lambda_{sh}}{2}s^2(H^\dagger H)$$

The model is fully described by the following BSM parameters :

- The physical DM mass m_s (mss)
- The portal couplings λ_{sh} (lamssh)
- The quartic coupling λ_s

whereas μ_s can be computed from the rest.

“External parameters”

“Internal parameter”

We will assume that the User has implemented the model in CalcHEP format, through the means of his/her choice (*cf e.g.* talks on LANHEP and FeynRules).

Creating a new model

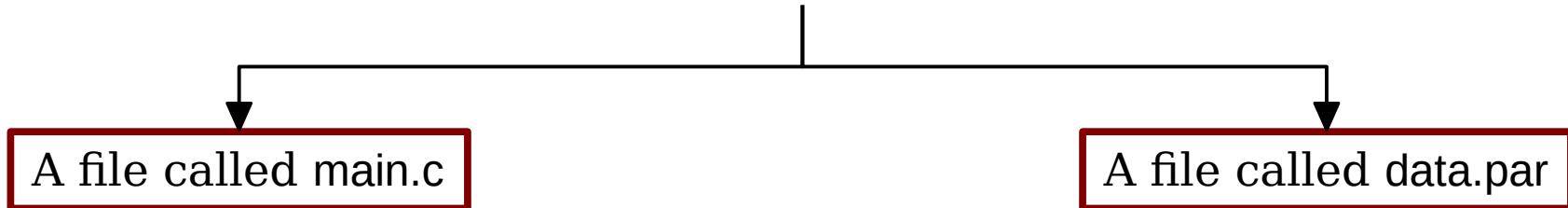
The first step is to create a dedicated directory structure for our model. This is done with

```
./newProject SingletScalarDM/
```

The model files (.mdl) are to be placed in

```
~/micromegas_6.2.4/SingletScalarDM/work/models/
```

At the stage we can have a look at the model files

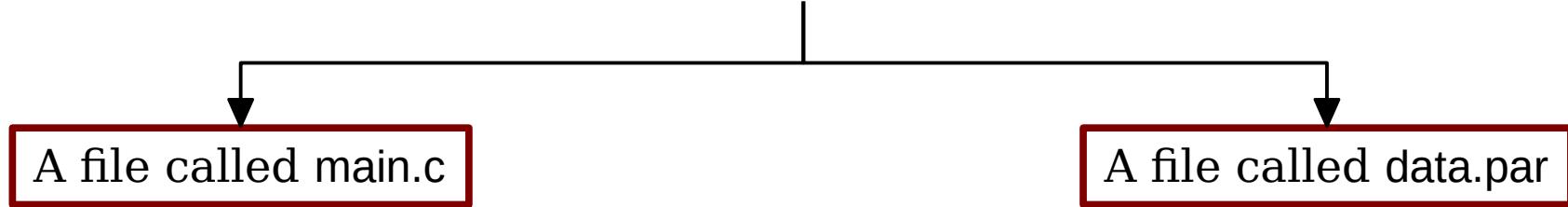

It's also always a good idea to go to

```
~/micromegas_6.2.4/SingletScalarDM/work/
```

run: `./calchep` , check the model and make sure that “The model is Ok”.

The model directory

The directory `~/micromegas_6.2.4/SingletScalarDM/` that was created once you ran `./newProject SingletScalarDM/` should contain, among other things:



This is the main file that can be used to tell micrOMEGAs what we want it to do.

This file can be used to change the external parameter values.

The model directory

The directory `~/micromegas_6.2.4/SingletScalarDM/` that was created once you ran `./newProject SingletScalarDM/` should contain, among other things:

This is the main file that can be used to tell micrOMEGAs what we want it to do.

This file can be used to change the external parameter values.

In order to run the program, just execute:

```
make main=main.c
```

followed by:

```
./main data.par
```

Quite a few things should appear in your terminal, some of which we'll discuss...

The data.par file

Through this file we can change the value of any parameter that are listed in the (vars1.mdl) file.

- If this file is empty, the default values (listed in vars1.mdl) are used. In our case, we had set (already in FeynRules) as default values:

mss = 10 GeV
lamssh = 0.1

Q1: Which other coupling is involved?
Q2: Which is the main annihilation channel?

and we obtain a relic abundance $\Omega h^2 \sim 0.3$.

- In order to change the values of some parameters, let's edit the data.par file by adding the line:

lamssh 0.16

and reruning `./main data.par`

Q: What do you expect to happen?

The main.c file: general structure

The default main.c file contains:

- Switches to turn on/off certain modules (functionalities).
- Commands to read the input data.par file and perform various checks.
- The commands

sortOddParticles(cdmName)

which sorts the Z_2 -odd particles with increasing masses and stores the names of the DM particles in CDM[1], CDM[2],... and

qNumbers(CDM[1], &spin2, &charge3, &cdim)

which returns the quantum numbers of the particle CDM[1].

- Various modules computing different quantities (relic density, DM-nucleon scattering cross-section etc), plotting etc.

→ This file can be edited to suit what exactly it is that you want to achieve.

Today we'll only go through a few of these functionalities. For a full account, please *cf* the micrOMEGAs manual in `~/micromegas_6.2.4/man/`

Writing a simple program

Please *cf*:

`~/micromegas_6.2.4/SingletScalarDM/mymain.c`

Writing a simple program

Let's have a look at a simplified main file (mymain.c). We will use it to:

- Change the values of the DM mass and its coupling. This can be done with

```
assignValW("var", val)
```

which allows one to change the value of parameter var from within the main script.

- Compute the freeze-out DM abundance and print the contributions of the main annihilation channels.
- Compute the spin-independent and spin-dependent WIMP-proton/neutron scattering cross-sections.
- Compute the freeze-in DM abundance and print the contributions of the main annihilation channels.
- Compute the DM abundance according to the “full” integrated Boltzmann equation and compare to the FO/FI limits.
 - In passing, we'll also comment on some important topics

Initializations

```
/*===== Modules =====
Keys to switch on
various modules of micrOMEGAs
=====*/
//...Calculate Freeze out relic density and display contribution of individual channels
#define OMEGA
//...Calculate relic density in Freeze-in scenario
#define FREEZEIN
//...Calculate N dm relic density
#define NdmParticles

//...Calculate amplitudes and cross-sections for CDM-nucleon scattering
#define CDM_NUCLEON

/*===== end of Modules =====*/
/*===== End of DEFINE settings ===== */

#include"../include/micromegas.h"
#include"../include/micromegas_aux.h"
#include"lib/pmodel.h"

//=====
//=====
//=====
int main(int argc,char** argv)
{
  int err;
  char cdmName[10];
  int spin2, charge3,cdim;
  int fast=0;
//=====
//...Choice of gauge + 3-body f-states...
//=====
  ForceUG=0;          /* to force Unitary Gauge assign 1 */
  VZdecay=0;  /* WW* and ZZ* channels are off */
  VWdecay=0;
```

Which modules are needed in this program

} - Model in Feynman gauge
- Exclude 3/4-body f-states

A WIMPy benchmark

```
=====//  
//...Change external parameter values...//  
=====//  
assignValW("mss", 10.);  
assignValW("lamssh", 0.16);  
  
=====//  
//...Sort odd particle spectrum and identify DM candidate(s)...//  
=====//  
err=sortOddParticles(cdmName);  
qNumbers(CDM[1], &spin2, &charge3, &cdim);
```


Change DM mass and
Higgs portal coupling

Compute particle spectrum
and identify dark matter
candidate(s)

NB: `sortOddParticles(cdmName)` should be executed *every* time you modify
parameter values

Thermal freeze-out

```
//=====//  
//...Freeze-out scenario dark matter abundance...//  
//=====//  
#ifdef OMEGA  
{ int fast=0;  
  double Beps=1.E-4, cut=0.01;  
  double Xf;  
  double omegaF0;  
  int i,err;  
  
  printf("\n=====\\n");  
  printf("===== Calculation of relic density in thermal freeze-out scenario =====\\n");  
  printf("=====\\n");  
  printf("=====\\n");  
  
  //...Compute the relic  
  omegaF0=darkOmega(&Xf,fast,Beps,&err);  
  } } Compute the thermal  
  freeze-out DM abundance  
  
  printf("=====\\n");  
  printf("===== Freeze-out results =====\\n");  
  printf("=====\\n");  
  printf("=====\\n");  
  printf("Omega freeze-out=% .2e\\n", omegaF0);  
  printf("=====\\n");  
  
  //...Print leading channels  
  printChannels(Xf,cut,Beps,1,stdout);  
  
  printf("=====\\n");  
}  
#endif  
 } } Print out leading channels
```

Direct detection

Let's calculate the spin-(in-)dependent scattering cross-section of protons/neutrons

```
=====//  
//...WIMP-nucleon scattering cross-sections...//  
=====//  
#ifdef CDM_NUCLEON  
{ double pA0[2],pA5[2],nA0[2],nA5[2];  
  double Nmass=0.939; /*nucleon mass*/  
  double SCcoeff;  
  double csSIp1,csSIn1,csSDp1,csSDn1, csSIp1_,csSIn1_,csSDp1_,csSDn1_;  
  
//...Compute the amplitudes for proton/neutron spin-independent/spin-dependent scattering  
nucleonAmplitudes(CDM[1], pA0,pA5,nA0,nA5);  
  
//...Compute the corresponding cross-sections  
SCcoeff=4/M_PI*3.8937966E8*pow(Nmass*McdmN[1]/(Nmass+ McdmN[1]),2.);  
csSIp1= SCcoeff*pA0[0]*pA0[0];  
csSDp1=3*SCcoeff*pA5[0]*pA5[0];  
csSIn1= SCcoeff*nA0[0]*nA0[0];  
csSDn1=3*SCcoeff*nA5[0]*nA5[0];  
  
printf("\n==== Calculation of %s-nucleon cross sections [pb]: ====\n",CDM[1]);  
printf(" proton SI %.3E SD %.3E \n", csSIp1,csSDp1);  
printf(" neutron SI %.3E SD %.3E \n", csSIn1,csSDn1);  
printf("\n=====\\n");  
}  
#endif
```

} Compute
p,n amplitudes

} Compute
p,n cross-sections

A FIMPy benchmark

Let's now redefine our coupling constant to something more appropriate for freeze-in

```
//================================================================  
//...Redefine coupling, more suitable for freeze-in...//  
//================================================================  
assignValW("lamssh", 1.995e-12);  
  
err=sortOddParticles(cdmName);  
qNumbers(CDM[1], &spin2, &charge3, &cdim);
```


Replace Higgs portal
coupling

Freeze-in

```
//=====
//...Freeze-in scenario dark matter abundance...
//=====

#ifndef FREEZEIN
{
    double TR=1E5;
    double omegaFI, omegaFIdec;

    //...Add the lightest odd particle to the list of feeble particles
    toFeebleList(CDM[1]);

    printf("\n=====");
    printf("\n==== Calculation of relic density in freeze-in scenario =====\n");
    printf("\n=====");
    printf("\n");

    //...Full calculation
    omegaFI=darkOmegaFi(TR,CDM[1],&err);

    //...Calculation based on Higgs decays only
    omegaFIdec = darkOmegaFiDecay(TR, "H", "~ss");

    printf("\n=====");
    printf("\n==== Freeze-in results =====\n");
    printf("\n=====");
    printf("\n");
    printf("omega freeze-in=%.3E\n", omegaFI);
    printf("omega freeze-in from Higgs decays=%.3E\n", omegaFIdec);
    printf("\n=====");

    //...Print leading channels
    printChannelsFi(0,0,stdout); //...Full calculation

    //...Always a good idea to empty the list of feeble particles after the computation
    toFeebleList(NULL);
}

#endif
```

} Feebly interacting particles must be declared explicitly

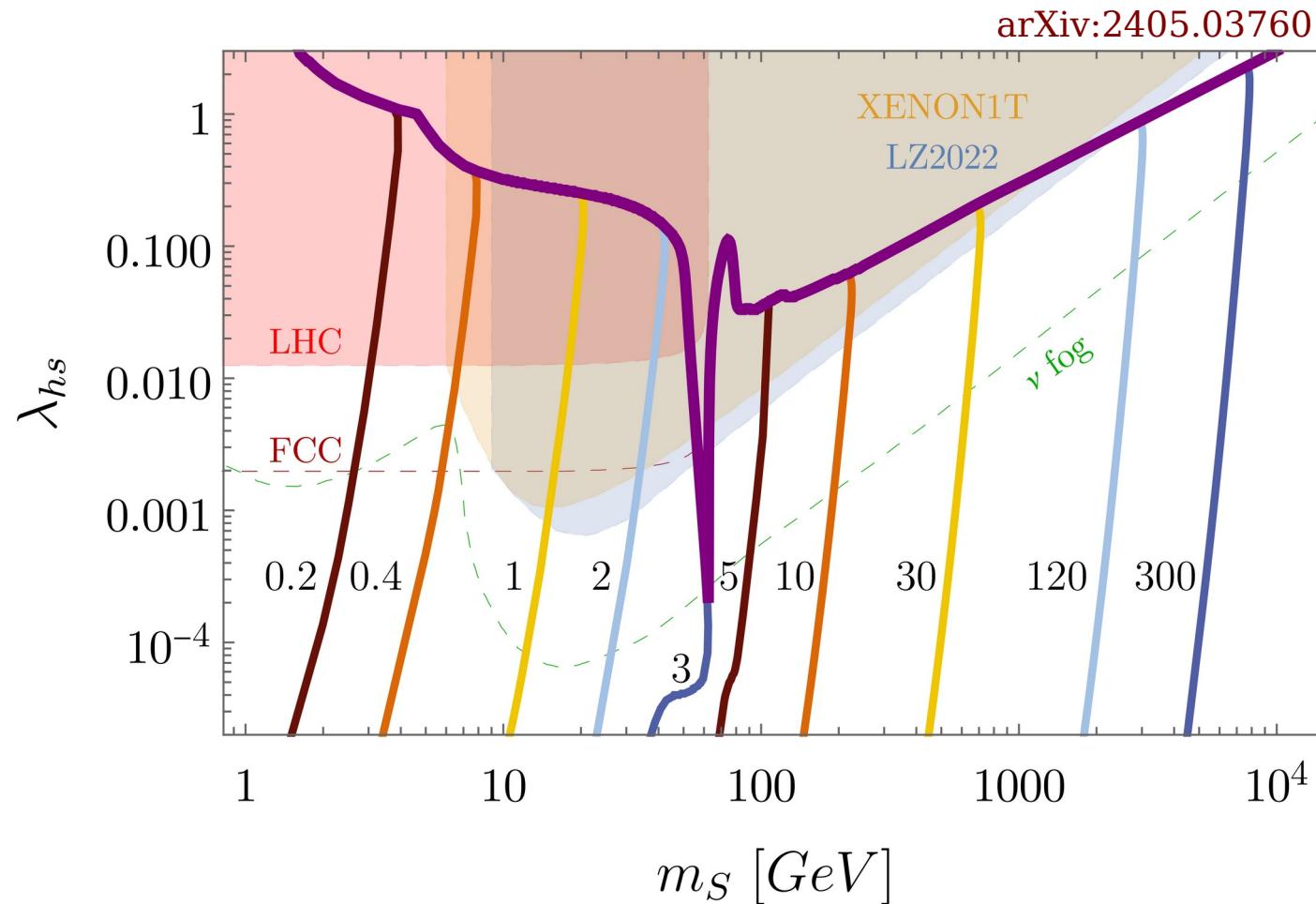
} - Full freeze-in calculation
- Calculation based on Higgs decay only

} Print out leading channels

} Empty the list of feeble particles

Beyond freeze-in

As a final example, let's check that solving a "freeze-in with backreactions" Boltzmann equation with zero initial abundances allows us to


- i) Recover the two limits that we just saw
- ii) Move beyond them

Please uncomment the last part of mymain.c

(well, except the comments!)

What did we just observe ?

Freeze-in with a low reheating temperature

Backreactions imply a smooth passage from freeze-in to freeze-out.

Thank you!