

Dark matter: prospects

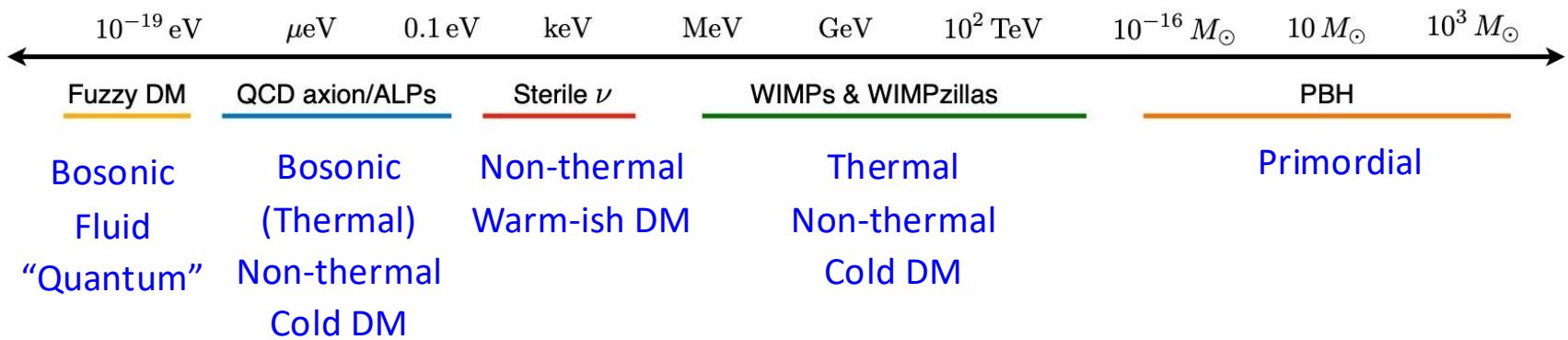
Nicolao Fornengo

Department of Physics, University of Torino
Istituto Nazionale di Fisica Nucleare (INFN)

UNIVERSITÀ
DI TORINO

Dark Tools

Torino – 18 June 2025

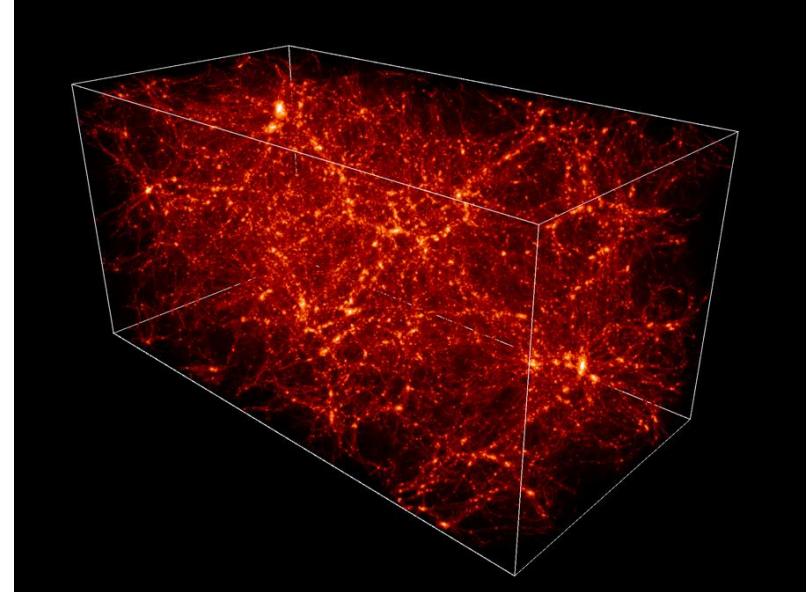

Fundamental Facts and Questions

- Overwhelming evidence that majority of pressurless matter in the Universe is non-baryonic
- Gravitational inference clear, fundamental nature still a mystery
- What is Dark Matter?
 - A particle or a manifestation that we do not understand gravity?
 - If a particle, what are key parameters: mass, spin, interaction types and strengths

What is (sort of) known

- Cosmic density about $\frac{1}{4}$ of the Universe total budget
CMB anisotropies, LSS
- Local density: $0.3\text{-}0.4 \text{ GeV cm}^{-3} = 10^5$ average density
Local stellar motions
- Local velocity dispersion: $(200\text{-}300) \text{ km s}^{-1}$
Local stellar motions
- No preferred length scale
Galaxy clustering and evolution
- Behaves as non-relativistic and pressurless (cold or cold-enough)
Structure formation
Excludes lightest neutrinos, implication for light scalars
- Early appearance: gravitational influence way before CMB release
Galaxy clustering
For light bosons, this sets the latest epoch of particle creation
- No significant interaction with ordinary matter or self-interaction
Darkness, Bullet cluster

What is unknown


Interactions strength

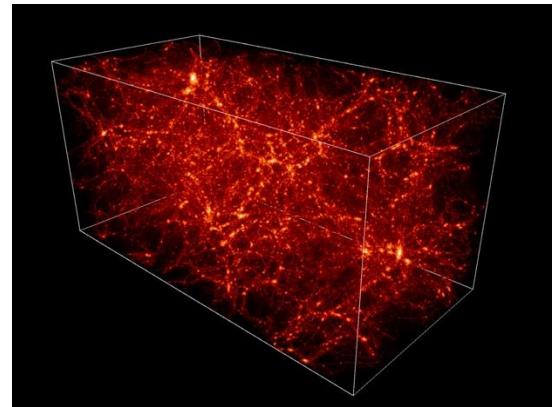
Single vs multi component

Tools at hand

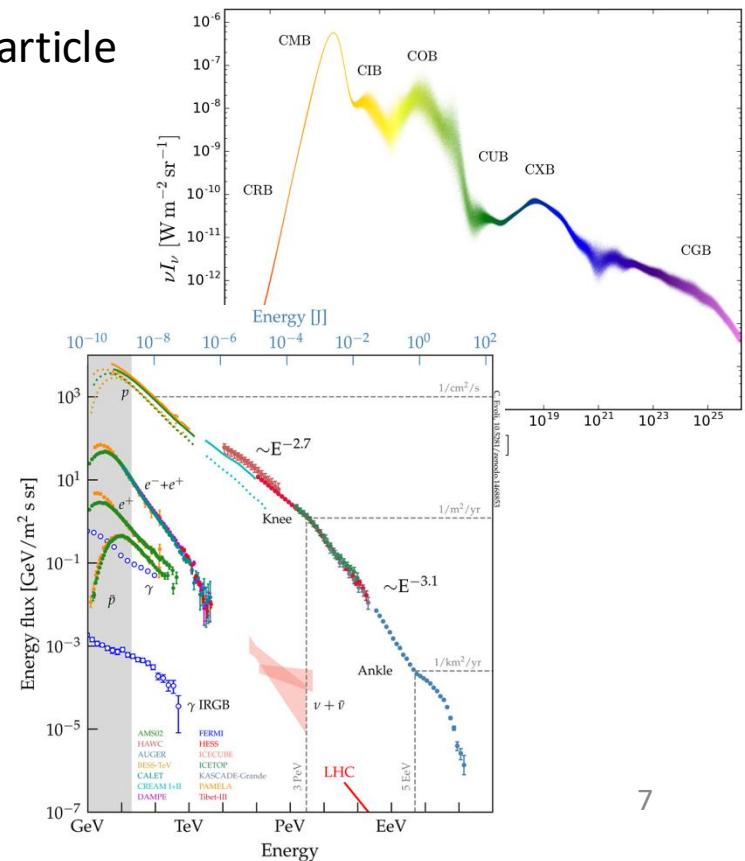
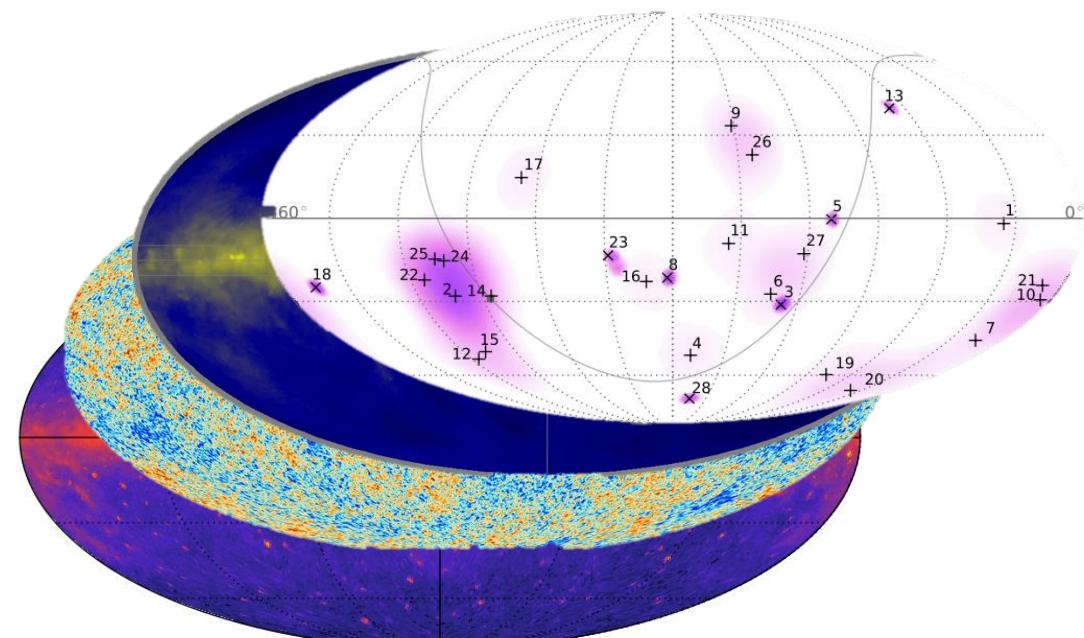
Cosmic surveys


- CMB probes
- Galaxy surveys
- Galaxy clusters surveys
- Filaments?
- Voids surveys
- Weak lensing surveys
- Ly-alpha
- Neutral Hydrogen intensity mapping surveys
- Allow to test DM on different scales and at different times
- Probe coldness, collisionless and pressurless hypotheses, interactions with visible sector, possibly single vs multi-component
- Probe DM clustering (non-linear scales) and growth of structures
- Probe of early DM injected energy: CMB distortion, ionization

Tools at hand


Cosmic laboratories

- Sun, other stars
 - Can capture WIMPy DM and produce neutrino fluxes
 - DM can alter their inner structure and energy transport (both for WIMP and axions), thus affecting stellar properties and evolution
 - DM rich environment can affect stellar formation rates and stellar evolution
- Supernovae
 - MeV DM production can affect cooling
- Neutron stars
 - WIMPy DM capture can modify NS temperature (kinetic heating)
 - DM accreted around NS or inside the NS core can affect BH inspirals
 - ALP conversion in magnetosphere
- Black Holes
 - DM accreted around BH can affect BH physics
 - Formation of DM mini-spikes
 - Superradiance for light bosonic DM (ALPs) [effective also for NS]
 - Local DM environment affecting the inspiral signal of compact objects (backreaction on the metric, dynamical friction): extreme mass-ratio inspirals more affected
 - Gravitational waves from PBH merging
- Stochastic GW backgrounds
 - PBH formed from collapse of large fluctuations
 - Non-perturbative production of DM
- DM compact objects ?

Tools at hand


Cosmic messengers

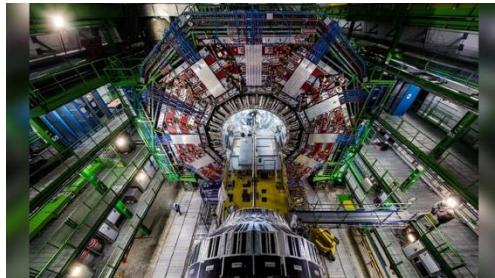
- DM can inject high/low-energy particles (messengers) into cosmological environments (our Galaxy, external galaxies, clusters, filaments, voids):
 - Decay | annihilation | conversion if a particle
 - Evaporation or accretion if a PBH

The Multimessenger Landscape

Tools at hand

Cosmic messengers

- DM can inject high/low-energy particles (messengers) into cosmological environments (our Galaxy, external galaxies, clusters, filaments, voids):
 - Decay | annihilation | conversion if a particle
 - Evaporation or accretion if a PBH
- Messengers might be reprocessed during their travel to us
- Dark matter itself can be the origin of “cosmic messengers reprocessing” (e.g.: ALP birefringence, gamma-ray hardening through ALPs)
- Complex system of signals
- Typically dominant astrophysical backgrounds
- Probe DM interactions with itself and visible sector
- Multi-messenger and –wavelength correlations
- Correlations with cosmological surveys


Tools at hand

Experiments in the Lab

- Passive but directly probe DM: direct detection, haloscopes, helioscopes

- Active but indirect: production at high energy accelerators | high intensity beams | axion lab experiments

Connection to particle physics models

- Axion-like, wave (scalar, pseudo-scalar)
 - String theory?
 - Inflationary models?
 - Ad hoc?
- QCD axion (pseudo-scalar)
 - Strong CP-problem
- Sterile neutrinos
 - Very light, KeV, Heavy
 - Neutrino mass models, leptogenesis models
- Dark photons
 - Gauge group extensions: $U(1)'$, $SU(2)'$
- Heavy (pseudo) scalars
 - Scalar sector extensions: singlets, 2HDM, triplets
- WIMPs
 - Supersymmetry
 - Extra dimensions
 - Minimal DM models
 - Leptogenesis models
- Very heavy particles
 - GUT
 - Leptogenesis

All of them require that DM
“cosmological stability” is ensured
(accidentally, through a symmetry)

Connection to particle physics models

- Axion-like, wave (scalar, pseudo-scalar)

- String theory?
- Inflationary models?
- Ad hoc?

String theory models often have many scalar field, which could either induce inflation or give a motivation for ALPs

- QCD axion (pseudo- scalar)

- Strong CP-problem

- Sterile neutrinos

- Very light, KeV, Heavy
- Neutrino mass models, leptogenesis models

- Dark photons

- Gauge group extensions: $U(1)'$, $SU(2)'$

- Heavy (pseudo) scalars

- Scalar sector extensions: singlets, 2HDM, triplets

- WIMPs

- Supersymmetry
- Extra dimensions
- Minimal DM models
- Leptogenesis models

- Very heavy particles

- GUT
- Leptogenesis

Connection to particle physics models

- Axion-like, wave (scalar, pseudo-scalar)
 - String theory?
 - Inflationary models?
 - Ad hoc?
- QCD axion (pseudo- scalar)
 - Strong CP-problem
- Sterile neutrinos
 - Very light, KeV, Heavy
 - Neutrino mass models, leptogenesis models
- Dark photons
 - Gauge group extensions: $U(1)'$, $SU(2)'$
- Heavy (pseudo) scalars
 - Scalar sector extensions: singlets, 2HDM, triplets
- WIMPs
 - Supersymmetry
 - Extra dimensions
 - Minimal DM models
 - Leptogenesis models
- Very heavy particles
 - GUT
 - Leptogenesis

In principle, well motivated

Connection to particle physics models

- Axion-like, wave (scalar, pseudo-scalar)
 - String theory?
 - Inflationary models?
 - Ad hoc?
- QCD axion (pseudo- scalar)
 - Strong CP-problem
- Sterile neutrinos
 - Very light, KeV, Heavy
 - Neutrino mass models, leptogenesis models
- Dark photons
 - Gauge group extensions: $U(1)'$, $SU(2)'$
- Heavy (pseudo) scalars
 - Scalar sector extensions: singlets, 2HDM, triplets
- WIMPs
 - Supersymmetry
 - Extra dimensions
 - Minimal DM models
 - Leptogenesis models
- Very heavy particles
 - GUT
 - Leptogenesis

Well motivated extension (neutrinos need a mass) although different realizations possible and link to DM might or might not be present (would be a great economical option, especially if leptogenesis is part of the solution)

Connection to particle physics models

- Axion-like, wave (scalar, pseudo-scalar)
 - String theory?
 - Inflationary models?
 - Ad hoc?
- QCD axion (pseudo- scalar)
 - Strong CP-problem
- Sterile neutrinos
 - Very light, KeV, Heavy
 - Neutrino mass models, leptogenesis models
- Dark photons
 - Gauge group extensions: $U(1)'$, $SU(2)'$
- Heavy (pseudo) scalars
 - Scalar sector extensions: singlets, 2HDM, triplets
- WIMPs
 - Supersymmetry
 - Extra dimensions
 - Minimal DM models
 - Leptogenesis models
- Very heavy particles
 - GUT
 - Leptogenesis

Might be the DM or be part of a hidden sector which contains a DM particle (in which case work as new force mediators and might be mixed with ordinary photons)

Introduce long-range forces if very light
Not too different from WIMPs if heavier

Connection to particle physics models

- Axion-like, wave (scalar, pseudo-scalar)
 - String theory?
 - Inflationary models?
 - Ad hoc?
- QCD axion (pseudo- scalar)
 - Strong CP-problem
- Sterile neutrinos
 - Very light, KeV, Heavy
 - Neutrino mass models, leptogenesis models
- Dark photons
 - Gauge group extensions: $U(1)'$, $SU(2)'$
- Heavy (pseudo) scalars
 - Scalar sector extensions: singlets, 2HDM, triplets
- WIMPs
 - Supersymmetry
 - Extra dimensions
 - Minimal DM models
 - Leptogenesis models
- Very heavy particles
 - GUT
 - Leptogenesis

Scalar field sector of the SM might be larger
Many NP extensions require/predict more scalars

Connection to particle physics models

- Axion-like, wave (scalar, pseudo-scalar)
 - String theory?
 - Inflationary models?
 - Ad hoc?
- QCD axion (pseudo- scalar)
 - Strong CP-problem
- Sterile neutrinos
 - Very light, KeV, Heavy
 - Neutrino mass models, leptogenesis models
- Dark photons
 - Gauge group extensions: $U(1)'$, $SU(2)'$
- Heavy (pseudo) scalars
 - Scalar sector extensions: singlets, 2HDM, triplets
- WIMPs
 - Supersymmetry
 - Extra dimensions
 - Minimal DM models
 - Leptogenesis models
- Very heavy particles
 - GUT
 - Leptogenesis

Very strong and predictive symmetry, but needs to be broken

SUSY breaking not understood: induces many frameworks, very large # of free parameters, losing predictability

Accelerator bounds progressively increase, pushing SUSY scale at higher energies: naturalness in jeopardy, but technically not a shortstopper (SUSY is needed e.g. for string theory or preferred for gauge-coupling unification)

Connection to particle physics models

- Axion-like, wave (scalar, pseudo-scalar)
 - String theory?
 - Inflationary models?
 - Ad hoc?
- QCD axion (pseudo- scalar)
 - Strong CP-problem
- Sterile neutrinos
 - Very light, KeV, Heavy
 - Neutrino mass models, leptogenesis models
- Dark photons
 - Gauge group extensions: $U(1)'$, $SU(2)'$
- Heavy (pseudo) scalars
 - Scalar sector extensions: singlets, 2HDM, triplets
- WIMPs
 - Supersymmetry
 - Extra dimensions
 - Minimal DM models
 - Leptogenesis models
- Very heavy particles
 - GUT
 - Leptogenesis

Contrary to SUSY, it's possible to contain the # of free parameters (e.g. the compactification scale)
Accelerator bounds progressively increase the scale at higher energies
Extra-dim are needed for string theory, but the scale can be close to Planck scale (no need to be accelerator reachable, in principle)

Connection to particle physics models

- Axion-like, wave (scalar, pseudo-scalar)
 - String theory?
 - Inflationary models?
 - Ad hoc?
- QCD axion (pseudo- scalar)
 - Strong CP-problem
- Sterile neutrinos
 - Very light, KeV, Heavy
 - Neutrino mass models, leptogenesis models
- Dark photons
 - Gauge group extensions: $U(1)'$, $SU(2)'$
- Heavy (pseudo) scalars
 - Scalar sector extensions: singlets, 2HDM, triplets
- WIMPs
 - Supersymmetry
 - Extra dimensions
 - Minimal DM models
 - Leptogenesis models
- Very heavy particles
 - GUT
 - Leptogenesis

Ad hoc, but very predictive: e.g. MDM has just one free parameter (DM mass) and SM gauge couplings, successful MDM requires $M_{DM} = \text{several TeV}$, predicts a bunch of associated (almost degenerate in mass with DM) charged fermions

Connection to particle physics models

- Axion-like, wave (scalar, pseudo-scalar)
 - String theory?
 - Inflationary models?
 - Ad hoc?
- QCD axion (pseudo- scalar)
 - Strong CP-problem
- Sterile neutrinos
 - Very light, KeV, Heavy
 - Neutrino mass models, leptogenesis models
- Dark photons
 - Gauge group extensions: $U(1)'$, $SU(2)'$
- Heavy (pseudo) scalars
 - Scalar sector extensions: singlets, 2HDM, triplets
- WIMPs
 - Supersymmetry
 - Extra dimensions
 - Minimal DM models
 - **Leptogenesis models**
- Very heavy particles
 - GUT
 - Leptogenesis

In principle, well motivated since matter/antimatter asymmetry has to be generated

Often, this is achieved by providing also mass to neutrinos

It would be an excellent solution: hit 3 birds with a stone
(disclaimer: no bird has been harmed in building these models)

Connection to particle physics models

- Axion-like, wave (scalar, pseudo-scalar)
 - String theory?
 - Inflationary models?
 - Ad hoc?
- QCD axion (pseudo- scalar)
 - Strong CP-problem
- Sterile neutrinos
 - Very light, KeV, Heavy
 - Neutrino mass models, leptogenesis models
- Dark photons
 - Gauge group extensions: $U(1)'$, $SU(2)'$
- Heavy (pseudo) scalars
 - Scalar sector extensions: singlets, 2HDM, triplets
- WIMPs
 - Supersymmetry
 - Extra dimensions
 - Minimal DM models
 - Leptogenesis models
- Very heavy particles
 - **GUT**
 - Leptogenesis

Compelling or not? Theoretically intriguing, although protons are so stubborn not to have shown to decay (yet)

Assessing the nature of DM?

- Unfortunately, there is **no** compelling theoretical direction to follow (although there are some guiding principles)
- “Aesthetic” motivations like naturalness for supersymmetry are declining (susy scale progressively pushed up by accelerators searches)
- Even if a new particle is found in a lab experiment, a key challenge will be to confirm that it is **the** DM particle (caveat: DM might **not** be a particle, see PBH or wavy DM – or even modified gravity)
- A single technique is currently **insufficient** to probe the vast landscape of viable DM candidates, and this will not change anytime soon
- Instead of concentrating on specific new physics realizations, I would rather go for **classes of signals**, looking for general features and avoiding duplications: once something is found, model specifications will follow
- Many (although not all) DM scenarios have many **complementary** signals available: this should be exploited

A few questions naturally arise

- Do we have **compelling** candidates | particle physics models? How relevant is to have compelling models to progress in the study of DM?

- Do we have **compelling** candidates | particle physics models? How relevant is to have compelling models to progress in the study of DM?
- **Simplified models** should be interpreted as **the** model, or just a tool/path toward a more **complete** and complex model?

- Do we have **compelling** candidates | particle physics models? How relevant is to have compelling models to progress in the study of DM?
- **Simplified models** should be interpreted as **the** model, or just a tool/path toward a more **complete** and complex model?
- Do we have clear **signatures** for astrophysical | lab signals? How **clear** are they?
 - Direct detections: annual/diurnal modulation | directionality
 - Indirect searches:
 - Photon lines (axion, WIMPs) in all bands (radio, IR, UV, X, gamma)
 - Low-energy AntiD, antiHe
 - Other?

- Do we have **compelling** candidates | particle physics models? How relevant is to have compelling models to progress in the study of DM?
- **Simplified models** should be interpreted as **the** model, or just a tool/path toward a more **complete** and complex model?
- Do we have clear **signatures** for astrophysical | lab signals? How **clear** are they?
 - Direct detections: annual/diurnal modulation | directionality
 - Indirect searches:
 - Photon lines (axion, WIMPs) in all bands (radio, IR, UV, X, gamma)
 - Low-energy AntiD, antiHe
 - Other?
- **Spectral | morphological distortions | excesses** are enough?
 - Antiproton few GeV excess (spectral)
 - Gamma-ray galactic center excess (morphological)
 - ARCADE radio excess (size)
 - Positron “excess” (spectral – likely pulsars)
 - CMB, Ly-alpha, ionization history

- Do we have **compelling** candidates | particle physics models? How relevant is to have compelling models to progress in the study of DM?
- **Simplified models** should be interpreted as **the** model, or just a tool/path toward a more complete and complex model?
- Do we have clear **signatures** for astrophysical | lab signals? How **clear** are they?
 - Direct detections: annual/diurnal modulation | directionality
 - Indirect searches:
 - Photon lines (axion, WIMPs) in all bands (radio, IR, UV, X, gamma)
 - Low-energy AntiD, antiHe
 - Other?
- **Spectral | morphological distortions | excesses** are enough?
 - Antiproton few GeV excess (spectral)
 - Gamma-ray galactic center excess (morphological)
 - ARCADE radio excess (size)
 - Positron “excess” (spectral – likely pulsars)
 - CMB, Ly-alpha, ionization history
- How to better control **backgrounds | foregrounds**?

- Do we have **compelling** candidates | particle physics models? How relevant is to have compelling models to progress in the study of DM?
- **Simplified models** should be interpreted as **the** model, or just a tool/path toward a more complete and complex model?
- Do we have clear **signatures** for astrophysical | lab signals? How **clear** are they?
 - Direct detections: annual/diurnal modulation | directionality
 - Indirect searches:
 - Photon lines (axion, WIMPs) in all bands (radio, IR, UV, X, gamma)
 - Low-energy AntiD, antiHe
 - Other?
- **Spectral | morphological distortions | excesses** are enough?
 - Antiproton few GeV excess (spectral)
 - Gamma-ray galactic center excess (morphological)
 - ARCADE radio excess (size)
 - Positron “excess” (spectral – likely pulsars)
 - CMB, Ly-alpha, ionization history
- How to better control **backgrounds | foregrounds**?
- Are there **windows** that are still not properly exploited (e.g. MeV gap)? Gravitational waves are a new window of opportunity for DM?

- Do we have **compelling** candidates | particle physics models? How relevant is to have compelling models to progress in the study of DM?
- **Simplified models** should be interpreted as **the** model, or just a tool/path toward a more complete and complex model?
- Do we have clear **signatures** for astrophysical | lab signals? How **clear** are they?
 - Direct detections: annual/diurnal modulation | directionality
 - Indirect searches:
 - Photon lines (axion, WIMPs) in all bands (radio, IR, UV, X, gamma)
 - Low-energy AntiD, antiHe
 - Other?
- **Spectral | morphological distortions | excesses** are enough?
 - Antiproton few GeV excess (spectral)
 - Gamma-ray galactic center excess (morphological)
 - ARCADE radio excess (size)
 - Positron “excess” (spectral – likely pulsars)
 - CMB, Ly-alpha, ionization history
- How to better control **backgrounds | foregrounds**?
- Are there **windows** that are still not properly exploited (e.g. MeV gap)? Gravitational waves are a new window of opportunity for DM?
- How relevant is to exploit **correlations** among signals? Not just redundancy, explicit correlations

- Do we have **compelling** candidates | particle physics models? How relevant is to have compelling models to progress in the study of DM?
- **Simplified models** should be interpreted as **the** model, or just a tool/path toward a more complete and complex model?
- Do we have clear **signatures** for astrophysical | lab signals? How **clear** are they?
 - Direct detections: annual/diurnal modulation | directionality
 - Indirect searches:
 - Photon lines (axion, WIMPs) in all bands (radio, IR, UV, X, gamma)
 - Low-energy AntiD, antiHe
 - Other?
- **Spectral | morphological distortions | excesses** are enough?
 - Antiproton few GeV excess (spectral)
 - Gamma-ray galactic center excess (morphological)
 - ARCADE radio excess (size)
 - Positron “excess” (spectral – likely pulsars)
 - CMB, Ly-alpha, ionization history
- How to better control **backgrounds | foregrounds**?
- Are there **windows** that are still not properly exploited (e.g. MeV gap)? Gravitational waves are a new window of opportunity for DM?
- How relevant is to exploit **correlations** among signals? Not just redundancy, explicit correlations
- The question of all questions in 2025: Machine learning can **really** help?