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SNRs Star clusters . PulsarWind  Colliding wind Protostellar jets
y . Nebulae binaries microquasars

...and others !
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Introduction

Two reasons to focus on cosmictray antiparticles:

Very low fluxes:

~ 1 antiproton/10* protons
~ 1 positron/150 electrons
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— Sensitive to small couplings

Believed to be of secondary origin:
o X
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— Astrophysical bkg can be easﬁy estimated
Up.to a good production XS knowledge..




Indirect dark matter search

Galactic diffusive halo

Resolution of CR transport equation in steady state:
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Indirect dark matter search

Astrophysical bckg
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log(Energy)

log(Flux)

Resolution of CR transport equation in steady state:
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Introduction

Indirect dark matter search

A Astrophysical bckg
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Introduction

Game changer: high-quality data!

Numerous precison experiments in a large energy range

VOYAGER (1977) %, Precision level % from GeV to TeV
. 5- 500 MeV 3 X . Sensitive to particles & antiparticles independently
PAMELA (2006) W 4
i 1GeV - 1.2 TeV : j%
AMS-02 (2011)

NUCLEON (2014)

DAMPE (2015)

50 GeV - 500 TeV *.

10 GeV - 1 PeV

CALET (2015)

ISS-CREAM (2017) ,
1TeV-500 TeV

. . B ¥
TR
’p

GAPS (2025)
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A few words about positrons

Also measured by:
- — — — astrophysical background (MED) {  AMS-02 data, published errors n H E AT (1 997)

-PAMELA (2009)
-FERMI (2010)

Astrophysical bckg from
secondary production:

‘r) p, He + ISM gu
"

f)7 a7e+7 i

- Recently reevaluated with

updated XS
(NA49 - NA61/SHINE - ALICE- CMS)

(Orusa + 2022 & Di Mauro + 2023)

(Boudaud, ..., Y.G.+ 2015)

— 5-7 % uncertainty



A few words about positrons

High-energy cosmic positrons: the need for a primary source

Also measured by:

- — - = astrophysical background (MED) {  AMS-02 data, published errors _H E AT (1 997)
-PAMELA (2009)
Above 10GeV s FERSLA010)
Astrophysical bckg from
secondary production:
00 X
; ‘gr> p, He + ISM gu
v“ p,d,et, ..

- Recently reevaluated with

updated XS
(NA49 - NA61/SHINE - ALICE- CMS)

(Orusa + 2022 & Di Mauro + 2023)

(Boudaud, ..., Y.G.+ 2015)

— 5-7 % uncertainty



A few words about positrons

The WIMP explanation of the positron excess

- — — — astrophysical background (MED) {  AMS-02 data, published errors

(Boudaud, ..., Y.G.+ 2015)



A few words about positrons

The WIMP explanation of the positron excess

astrophysical background (MED) {  AMS-02 data, published errors
exotic contribution | AMS-02 data, corrected errors
total

-2 K —
(00 et = 1-10721em?® 571

_ ~
Mypest = 27 TeV

(Boudaud, ..., Y.G.+ 2015)



A few words about positrons

The WIMP explanation of the positron excess

- — — — astrophysical background (MED) {  AMS-02 data, published errors
exotic contribution | AMS-02 data, corrected errors
total

<O-/U>beSt
IS Yord -
'nXbest = 27 v

(Boudaud, ..., Y.G.+ 2015)

One DM candidate

- Very few channels giving a
good fit

— Huge boost factors 103-10°

Hadronic channel

Ruled out by pbars constraints
(See second part)

Leptonic channel

Tensions with CMB+DS constraints
(Lopez, A.+ 2015, Planck Col.XI11+2015)

Cannot come from DM clumpiness
(Lavalle, ].+ 2006, Brun, P.+ 2009)

— Analysis extended to low-E

No good fit found
(Boudaud;..., Y.G.+ 2016)

(Di Mauro&Winkler 2021)
f)rigin of this excess?



— Could also be SNRs
(see e.g. Mertsch, P.+ 2020)

Pulsar Wind
Nebulae

A natural astrophysical candidate
— Currently investigated with
multimessenger studies:
y-ray/radio signal and e* anisotropies
(see e.g! Manconi, S.+ 2019, Orusa, L. + 2025)



A few words about positrons

Dark matter constraints with positrons

o @ High-energy

+ positrons!
— Not that Competitive (see e.g. Di Mauro&Winkler 2021)

@ Low-energy
— Voyager-1 crossed the heliopause in 2012

— Direct measurement of the IS e* + e~ flux

-------- Potgieter et al. '15 )
Strong et al. "11 (=1.6 inj) \\ ) : ] ,
—— Ip & Axford '85 LB mod o &, 79 Low-energy cosmic p05|trons prowde a strlngent

— — —Langner et al. ‘01 Polar i ] 1,
Webber & Higbie '08 IS7 i constraint on leptophilique DM models
Voyager 1 (This work) e
AMS (Aguilar et al. '14)

10 10®
Energy (MeV)

(Cummings, A .+2016)
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A few words about positrons

Dark matter constraints with low-energy positrons

Annihilating Dark Matter

Electrons Propagation B excluded

NFW
chp = 830 MV

+ positrons!

thermal {(ov}

L1 ||I||II L1 ||I||II L1 ||||||I
v) [em®s!

excluded

-------- Potgieter et al. '15 3
Strong et al. "11 {(=1.6 in)) \

| +
— — |p & Axford '85 LB mod a

I . erer

: - solar modulation o=

— — —Longner et al. ‘01 Pelar A . - . .y 8
Webber & Higbie '08 1S7 % : insensitive Ttr

® O Voyaoger 1 (This work) = I Vovagerl — b ]

O AMS (Aguilar et al. '14) 3 i AMS-02 — W~ 4

l[}—!‘.}_liu Ll MR | L e | RN | L .
10— (.01 (.1 1 10 100 10

Dark matter mass m, [GeV]

=
—

—

=

=}

=]

— |5}
= o
E JoF}
3 73}
. oW
T |77
N =}
_

— [}
3 —
=

- - -
. =
o

—_

p_— ==
= =i
= e
= -
= —
— —
=]

- —
. -
T

107! 10° 10
Energy (MeV)

(Cummings, A .+2016) (Boudaud, M.+ 2016,,2018)
— Stringent constraints on S and P wave annihilition




An excess in CR antiprotons?

Outline

A few words about positrons
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The antinuclei frontier

Conclusion and prospects
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An excess in CR antiprotons? Wy

s the case of antiprotons more exciting?

— Preliminary AMSO?2 antiproton data from 2015

¢ PAMELA 2012
¢ AMS-022015

AMS-02 p/p data
B/C best fit in sample

— Fiducial B ‘.0"’ plp best fit in sample
Uncertainty from: Cross-sections propagation uncertainties
Propagation

nuclear uncertainties
B Primary slopes

Solar modulation 10 1 02 e
5 10 50 100 : :
Kinetic energy T [GeV] Kinetic Energy [GeV] T [GeV/n]

— Secondary predictions very close to the data — Some claimed excesses

— Small deviations may indicate typical WIMP DM (Cui; M-Y.,+2017, Cuoco, A.+2017, Cholis, .+2017)

Uncertainties data + prediction from different origins...

... A refined treatment of uncertainties is needed!

12
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An excess in CR antiprotons? S R B
| 0 it
A refined treatment of uncertainties 7
— Data: AMSO2 antiproton from 2016 T: 107! f
— Model: semi-analytical (USINE) (Maurin 2020) O /
, = ¥ 4 AMS02 (yy)
Comparison with data = discrepancy ~ few 10GV %:f“ 1072 Jrzﬁ —— Baseline prediction

| %HﬂﬂwHMHHHH#“”*“ﬂ“ﬂﬁ”ﬂm i+

Room for speculations?

—40)f
At
Non-gaussian residuals
R .
% . ‘s '- Z-SeOre
E . ¢ - 8 -. . L
:?: _l_ s ™ .; .-.'.-.‘-'.
1™ . e. oo o
.'-.1'.- . ] L ]
—ar
1 10 100 107

R [GV] Courtesy M. Boudaud



A . . 7 0/70/0/. HE-’: 10 | _|_‘|' S—
n excess in CR antiprotons: Y | N
Y g TF 10"
A refined treatment of uncertainties 7
— Data: AMSO2 antiproton from 2016 T: 107 f
— Model: semi-analytical (USINE) (Maurin 2020) O Tf L ase
Comparison with data = discrepancy ~ few 10GV é: 1072 Jfﬁ —— Baseline ]:'r:;iftiﬂﬂ
- Errors on the data of T T
— Ste:t. Unf. ' o0t “}; }[
Cutoff Scale =
Acc. HT JfJ[H H'H + |
Tot. syst. E Ot H}HH&H%HJ{HHJ&J[H‘} 1 H'H HHJ[#J[J[H J(
< —20) Room for speculations?
—40}
3
Non-gaussian residuals
E L ¢ ‘ar * Z-SC01e
S . .
Small total error / Different correlation lengths <Y . "-.... X ._' . :'. "'_
Dominated by acceptance around the excess ! ¢ He
— Covariance matrix estimated from detector info. i - . -

13 R [GV] Courtesy M. Boudaud
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An excess in CR antiprotons: V| X e
. a2 T 10}
A refined treatment of uncertainties 7
— Data: AMSO?2 antiproton from 2016 T: 107} f
— Model: semi-analytical (USINE) (Maurin 2020) O Tf
: 4 AMS02 (yy)

[0

Comparison with data = discrepancy ~ few 1OGV S 102l

—— Baseline prediction

{I}ﬂ
H-r"_-\-\__r\-'\-\.

— Errors on the data S E—

Small total error / Different correlation lengths |
Dominated by acceptance around the excess — 20 J[ | }[ H
— Covariance matrix estimated from detector info: I H}L H HHJfHWU[ HJ[HJ[H“%“H{#HP(%
EO
o
= Errors on the model = oo} Room for speculations?
- Pbar production cross-sections
—40}
3
Non-gaussian residuals
R
% " "o "- Z-SCOTE
f N ° *oe 0",
] .'-1'.'.: ., .
—3t
1 10 100 107

R [GV] Courtesy M. Boudaud
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An excess in CR antiprotons: V| X e
. a2 T 10}
A refined treatment of uncertainties 7
— Data: AMSO?2 antiproton from 2016 T: 107} f
— Model: semi-analytical (USINE) (Maurin 2020) O Tf
: 4 AMS02 (yy)

[0

Comparison with data = discrepancy ~ few 1OGV S 102l

—— Baseline prediction

{I}ﬂ
H-r"_-\-\__r\-'\-\.

— Errors on the data S E—

Small total error / Different correlation lengths |
Dominated by acceptance around the excess — 20 J[ | }[ H
— Covariance matrix estimated from detector info. SN H1[J[J(}[HH*HJ(JH[J[J[H#JH[HJ[HWL*JHﬁH‘WHJ(
7
= Errors on the model = oo} Room for speculations?
- Pbar production cross-sections
Newdata -from' NA61/SHINE (p+p) —a0p
NA49: (p+C) & LHCb: (p+He) ,
(Aduszkiewicz+2017,Anticic+ 2010} Adij#2018) i Non-gaussian residuals
— Updated-parameterisation and.uncertainties -
(Winkler, M.2016, Korsmeier, M.+ 2018) e | ‘e -
3 1 — A=EC0Ie
— |sospin asymetry taken into.account 2 > e . .
(H.Fischer for NA49 Collab.,2003) .i 1" * . :._'n_",-.
. 1'."I...: ®e o
—3t
1 10 100 107

R [GV] Courtesy M. Boudaud
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An excess in CR antiprotons: V| X e
. a2 T 10}
A refined treatment of uncertainties 7
— Data: AMSO?2 antiproton from 2016 T: 107} f
— Model: semi-analytical (USINE) (Maurin 2020) O Tf
: 4 AMS02 (yy)

[0

Comparison with data = discrepancy ~ few 1OGV S 102l

—— Baseline prediction

{I}ﬂ
H-r"_-\-\__r\-'\-\.

— Errors on the data S E—

Small total error / Different correlation lengths |
Dominated by acceptance around the excess — 20 J[ | }[ H
— Covariance matrix estimated from detector info. .| H}L H HHJfHWU[ HJ[HJ[H“%“H{#HP(%
EO
]
- Errors on the model = ol Room for speculations?
- Pbar production cross-sections
— Updated parameterisation and uncertainties —40p
- Transport .|
L Non-gaussian residuals
JERE
% . ‘s "- Z-SeOre
f N ° *oe 0",
. . ": s %o L]
e A
—3}
1 10 100 107
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An excess in CR antiprotons: V| X e
. a2 T 10}
A refined treatment of uncertainties 7
— Data: AMSO?2 antiproton from 2016 T: 107} f
— Model: semi-analytical (USINE) (Maurin 2020) O Tf
: 4 AMS02 (yy)

[0

Comparison with data = discrepancy ~ few 1OGV S 102l

—— Baseline prediction

{I}ﬂ
H-r"_-\-\__r\-'\-\.

— Errors on the data S E—

Small total error / Different correlation lengths |
Dominated by acceptance around the excess — 20 J[ | }[ H
— Covariance matrix estimated from detector info. N H1[J[J[}[+HHJ{H}LJH[J[J[JFH*H[HJ[H'HJTJ&JH[J[%[J[HJ(

Z

- Errors on the model = ol Room for speculations?

- Pbar production cross-sections
— Updated parameterisation and uncertainties —40p
- Transport .|
—:Updated transport models anduncertainties —
(Y:G.+2017,2019, 2021 Derome+ 2019, Weinrich, Y.G+2020) S R WP ——

E -1 ~ ° ‘ :‘."-“-'o

] .'-1'.'.: L™ .
—3f
1 10 100 107
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An excess in CR antiprotons: V| X e
. a2 T 10}
A refined treatment of uncertainties 7
— Data: AMSO?2 antiproton from 2016 T: 107} f
— Model: semi-analytical (USINE) (Maurin 2020) O Tf
: 4 AMS02 (yy)

[0

Comparison with data = discrepancy ~ few 1OGV S 102l

—— Baseline prediction

{I}ﬂ
H-r"_-\-\__r\-'\-\.

— Errors on the data S E—

Small total error / Different correlation lengths |
Dominated by acceptance around the excess — 20 J[ | }[ H
— Covariance matrix estimated from detector info. N H1[J[J[}[+HHJ{H}LJH[J[J[JFH*H[HJ[H'HJTJ&JH[J[%[J[HJ(
- Errors on the model = _oof Room for speculations?
- Pbar production cross-sections
— Updated parameterisation and uncertainties —40p
- Transport .|
— Updated transport models'and uncertainties “ Non-gaussian residuals
- Parents —
E .
% O Z-SeOre
= % u‘-c o * e
E -1 ~ ° ‘ :‘."-“-'o
. 1'.‘1'.: ® e [
—3t
1 10 100 107
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. . “ongy,
An excess in CR antiprotons? Wy

10"
A refined treatment of uncertainties

— Data: AMSO2 antiproton from 2016
— Model: semi-analytical (USINE) (Maurin 2020)
Comparison with data = discrepancy ~ few 1OGV S 102l

r— ¥ —_ —_
Vi3im 2 s e

1
T
+

1071 7

1A [(
Hrhﬂ'\-..

1 AMS02 (04)

—— Baseline prediction

[0

{I}ﬂ
‘1—4::'“"\-\.

— Errors on the data S E—
Small total error / Different correlation lengths | J[

Dominated by acceptance around the excess J[ }[ H 1
ot }' H1[J[J(J[Hﬁ*HJ(P[J[J[H#J[J[HJ[H*HHW HJ(

Room for speculations?

— Covariance matrix estimated from detector info:

Residuals [Fl]

— Errors on the model

- Pbar production cross-sections
— Updated parameterisation and uncertainties —40f

- Transport
— Updated transport models'and uncertainties
- Parents
New-H;He, C,N,O... data from AMSO2
(AMS02 Collab. 2017,2019)
— Updated fit and contribution of high=Z.elements

Non-gaussian residuals

[f}lnl]
—
L

o * Z-500Te

deE0ore

1 10 100 E
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. a2 T 10}
A refined treatment of uncertainties 7
— Data: AMSO?2 antiproton from 2016 T: 107} f
— Model: semi-analytical (USINE) (Maurin 2020) O Tf
: 4 AMS02 (yy)

[0

Comparison with data = discrepancy ~ few 1OGV S 102l

—— Baseline prediction

{I}ﬂ
H-r"_-\-\__r\-'\-\.

— Errors on the data S E—

Small total error / Different correlation lengths |
Dominated by acceptance around the excess — 20 J[ | }[ H
— Covariance matrix estimated from detector info. IR H1[J[J{}[HH*HJHH[J#H#JWH{HﬂHHJ[MHJ(
7
- Errors on the model = ol Room for speculations?
- Pbar production cross-sections
— Updated parameterisation and uncertainties —40p
- Transport .|
— Updated transport models'and uncertainties “ Non-gaussian residuals
- Parents —
— Updated fit and contribution of high-Z elements [ NI —
5 % u‘-c o * e
E -1 ~ ° ‘ :‘."-“-'o
. 1'.‘1'.: ® e [
—3}
1 10 100 107
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A refined treatment of uncertainties 7
— Data: AMSO?2 antiproton from 2016 T: 107} f
— Model: semi-analytical (USINE) (Maurin 2020) O Tf
: 4 AMS02 (yy)

[0

Comparison with data = discrepancy ~ few 1OGV S 102l

—— Baseline prediction

{I}ﬂ
H-r"_-\-\__r\-'\-\.

— Errors on the data S E—

Small total error / Different correlation lengths |

Dominated by acceptance around the excess — 20 J[ | }[ H

— Covariance matrix estimated from detector info. N H1[J[J[}[+HHJ{H}LJH[J[J[JFH*H[HJ[H'HJTJ&JH[J[%[J[HJ(

7

- Errors on the model = ol Room for speculations?

< Pbar production cross-sections

— Updated parameterisation and uncertainties —40p

- Transport ;

— Updated transport models and uncertainties “ Non-gaussian residuals

— Updated fit and contribution of high-Z elements R ST —

s s - . .
— Refined covariance matrix for.the model - P ol o,
. 1'."I...: ®e o
—3t
1 10 100 107
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An excess in CR antiprotons? Wy

A refined treatment of uncertainties

— Data: AMSO2 antiproton from 2016
— Model: semi-analytical (USINE) (Maurin 2020)

Comparison with data = discrepancy ~ few 1OGV

- Errors on the data
Small total error / Different correlation lengths
Dominated by acceptance around the excess

— Covariance matrix estimated from detector info:

— Errors on the model
< Pbar production cross-sections
— Updated parameterisation and uncertainties
- Transport
— Updated transport models and uncertainties

— Updated fit and contribution of high-Z elements

— Refined covariance matrix for.the model

— Chi?2 test with:

y?=(data—model) T (™% c92%2) 7 (data—model)

Residuals 7]

Z-score [0y

- .+F++_g____——-

—|— AMS-02 ()
—— DBaseline prediction
N Total uncertainties

40¢
20} -
==
—20 ”~ Room for speculations?
y Parents Transport
——l[]".-"'f; x5 Total
3t
L . . a .
L *
]. : [ ] . [ ] :. -'; .. ™ ".. » .
‘ ‘o' * . obe * " “
—1t L . ’ ]
s * 3

I
oo

Residuals much more gaussian

Z-8C0re

10 100

R [GV]
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An excess in CR antiprotons? W xB R
:f' 107
Statistical tests (Boudaud, Y.G+2019) ’
: T o 107
— Chi2 definition: = 4 AMS (o)
X2=(dat.a—1110del)H(CmOdEI‘F Cdata)_l(dat'a_m()del} ;-;; 102 5 ?:i{"t:iri{:::
— Chi2-test: A0y |
: L
5 [ dafi= 0 S e
Puvalue — 0.90 é U
= _oof /" Room for speculations?
= KS_teSt: A Parents Transport
XS Total
Pualue — 0.27 —A0EZ ——
3t
— AMS-02 antiprotons are consistent with . .. .« ®
a secondary astrophysical origin e . %" Loete e
. * ]
Other studies confirmed (Heisig+ 2020) = * et R T .
T.r': -1 . ° - L
Does that mean there.cannot be = R
. . . »
SthIStICCI[ eVIdence fOI’ DM? sl Residuals much more gaussian
Z-score

1 10 100 107
R [GV]
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A ' ' 2*0 OndOf
n excess in CR antiprotons?™@ay Mg
fe/-

Dark Matter antiproton component

A Astrophysical bckg
(ov)

log(Flux)

Canal : W' et ..

) 8
My log(Energy)
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An excess in CR antlpr0t0n57 DQféMO/ Calore, Cirelli, Derome, Genolini, Maurin, Salati, Serpico

SciPost Phys. 12,163 (2022)

foe ”

Dark Matter antiproton component

— Typical DM annihilation channels — Depends on the magnetic halo size H

bb, WEW =, i, qq; hh

DM halo
- Inputs spectra from PPPC4MID
(Cirelli+ 202X) i
g [ RS ST
— DM profile considered S S Asp
€ ¢ T A Tl el
Generalized NFW profile (Navarro+1996) G e e i
Ds el T e
pDM (r> F i o w
(r/7s)7 (1 10s)?
Profile 4 ps [Mg/pc
benchmark NFW 0.00854
0.08931 Above GeV, at first order di ¥ o ]
contracted NFW 0.00361 /i
New AMSO2 data on Be/B + e™ sensitive to L
(M¢Millan+ 2016 - but renormalized) — Reevalutation of the halo size kpc
- Weuse NFW as benchmark (Weihrich,..Y.G. +2020)

| 16



An excess in CR antlprotons7"0cw Mdofy

Exploring the nul hypothesis

— No significant excess found
supxeaL(N)

LR=-2n——— ——~
Sup{A,u}EAU]\J[’(Aa :LL)

Chernoffs theorem used, {(ov) =i0
= pure secondary.antiprotons

Final state | Model m* (ov)* LR LR LR | local signif.
[GeV] | [em®/s] | (denom) | (num) [o]
bb BIG 109.3 | 1.71e-26 | 48.37 51.65 | 3.28 1.8
bb SLIM 109.1 | 1.48e-26 48.77 51.70 | 2.93 1.7
bb QUAINT || 106.7 | 4.28e-27 45.32 45.53 | 0.22 0.5
qq BIG 88.5 | 4.41e-27 50.31 51.65 | 1.35 1.2
utu~ BIG 155.7 | 2.65e-23 49.76 51.65 | 1.90 1.4
wWrw— BIG 106.8 | 2.20e-26 49.24 51.65 | 2.41 1.6
hh BIG 166.7 | 3.62e-26 49.28 51.65 | 2.38 1.5

— Major impact of uncertainty choice

Err. data / model

[o]

local signif.

(ov)*
[em?/s]

cov/cov

1.81

1.71e-26

cov/none

2.39

5.07e-26

diag/cov

3.33

2.14e-26

diag/none

2.75

1.70e-25

stat/cov

5.19

1.48e-26

stat/none

4.49

2.98e-25

Some studies confirmed (Heisig+2020)
Some less cautious studiés find excesses

Qlto ”

z-score oy

]

elgen

tot

a

Calore, Cirelli, Derome, Genolini, Maurin, Salati, Serpico
SciPost Phys. 12,163 (2022)

10

primary DM best fit

—-—-= gecondary - ++ [
‘ . & i g— ._;"_._.... = +
total . R -
T
o laa
..H"'f'
AT
=
At f '
s
& Best fit!
_.H-
A e i
A ) .
i -
7 P .
r \
L]
+ ' :
+ ! \

total

0.5

z-score |

00—
95 0.0

-~ eigen
tot

2.5

10 10!

102
R[GV]

10
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Calore, Cirelli, Derome, Genolini, Maurin, Salati, Serpico

' ' 20, Ol
An excess in CR antiprotons?™ar 4, “7»

Q[T@/‘ SciPost Phys. 12,163 (2022)

Upper limits on the: DM annihilation xs: our results

cm? s

— Bounds for 5 representative annihilation
channels

<OV>

- NFW DM profile / BIG propagation model

— Weakening of the bound = slight excess

= mu* mu~ bound not competitive
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Upper limits on the: DM annihilation xs: our results
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— Bounds for 5 representative annihilation
channels
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- NFW DM profile / BIG propagation model
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= mu* mu~ bound not competitive
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Upper limits on the:DM annihilation xs: comparison with other works

P limits (this work)
Giesen et al. 15
Cuoco et al. 16

— — — - Cui et al. 16

- New propagation models, callibrated
on AMSO?2, fit better HE pbars

7 thermal — Cui et al. 16: agree with high masses, at low
masses difference in propagation model
+ significance of the excess

LavV

— Cuoco et al. 16: same qualitative differences
NFW (y=1)

=
o]
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o
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a
o
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bb channel
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Upper limits on the:DM annihilation xs: comparison with photon constraints

p limits (this work)
Calore et al. 15
Alvarez et al. 20

— — — - Albert et al. 17

P

Abdalla et al. 237 — Three different dSph gamma ray constraints:
- conservative — aggresive

o = Large Magellanic Cloud (LMC):
jy  nermel - no_excess in synchrotron radiation from e* e~
- band = uncertainties in B field and DM profile

<ovV>

— Complementarity of the pbar bound

o
@]
o]
o
3
@]
o)
.
[0}
[}
B
-’

EMU Survey (LMC) NFW (y=1)
BIG — We plan to implement this constraint
bb channel In micrOmega

100
DM mass m, [GeV]
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An excess in CR antiprotons?

Works from other groups

Heisig + 2020 Balan + 2020

t  Bip AMS-02
== hest fit
=== hest fit, mterstedlar
BN wsth correlation

10° 10°
mpm|GeV]

— Similar statistical analysis using
covariance matrix for systematic errors
— Excess insignificant

— DarkRayNet new public tool developped

— Predict secondary and primary with NN

— Make the comparison with DM models more
versatile
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Conclusion and prospects

Outline

A few words about positrons

An excess in CR antiprotons?

The antinuclei frontier

Conclusion and prospects
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The antinuclei frontier

Antideterons in CR

NSRS BESS limit

D —)y \ <[] 1 £ oaps sensitivity
k E : ] 02 sensitivity

pC =248 GeV
Lo : =—— Secondary CukrkKo
— DM CuKrko . MED-MAX
MED-MAX

A =ky— ks

-
Il—
vl
|
w
(]
If_
=
I—.
=
T
=
L]
&)
—
<

Production rules for antinuclei:
— fusion of antinucleons occurs when

= Tertlary Cukrko
MED-MAX

Al < pe

10! 107

T/n |GeV/n] Korsmeier, M. + 2018

— formation around the thershold energy of

antinucleons form spallation reactions

. - Update of the coalescence factor from the
— spread at low energy from solar modulation

ALICE experiment
— DM annihilation ~at rest produces low-energy — Update of the expected secondary
antideterons antideuterons flux

— AMSO02 and GAPS will give at least upper bounds
23



The antinuclei frontier

Anti-helium in CR

Anti-helium 4 detected in AMS02?

non-bending plane
)

bending plane

\‘\)\I

He

1014

Charge =-2.05 % 0.05
Mass = 4.1=* 0.9GeV/c?

. ) IQ':u. Mass = 3.73 GeV/c? |
Latest anti-helium event in 10 years: December 10, 2020 07:04:30 0T ey

(V. Choutke, COSPAR. cont.July 17th 2022)

.-'E- "
- -
g
O
-
=)

B AMS 5-years sensitivity
MED-MAX

— Few events [0, 10] GeV with Z=-2 70 o
— 6 anti-He 3 and 2 anti-He 4 T/n [GeV/n] Poulin. V + 2019
— Rate ~1anti-He/ 100M He

= Update of the coalescence factor from the
= Difficult to evaluate the significance ALICE experiment
— So far no anti-He bckgd event in simulations . = Update of the expected secondary antiHe flux
— Heavy MC simulation needed

— AMSO0?2 antiHe = new exotic production needed

— Required further investigations (GAPS, etc) - .. if true! b4



Indirect detection of dark matter with cosmic rays

Presistent excess in tension with present DM bounds

Better explained by local pulsars

— HE y-ray/radio signal and e* anisotropies data are coming
(HESS, LHAASO, CTA, Fermi, AMS1007?..))

No significant excess reported untill now
Refined treatment of errors is essential
— Finerianalysis needs: ‘statistic does not help!
experimental data covariance matrix from AMSO2 collab.

better pbarjpreduction xs (LHCb, AMBER, .)
- AMSO02 2021 data bring new challenges:'needs new CR models?
— Meanwhile, constraints competitive with the best bound of the literature

Measurements eagerly awaited from GAPS !
— First flight at the end of thisyear?

— anti-He Few events presumably detected by AMSO?2...

— Let's wait a published version
25



Conclusion and prospects

D. Maurin et al. 2503.16173, submitted. To Physics Report

Precision cross-sections for advancing cosmic-ray physics and other
applications: a comprehensive programme for the next decade

D. Maurin®®* L. Audouin®®, E. Berti®®, P. Coppin®4, M. Di Mauro®™¢, P. von Doetinchem®F,

F. Donato®®&h C. Evoli®, Y. Génolini®*, P. Ghosh®!, I. Leya®™, M. J. Losekamm®"°, S. Mariani®",
J. W. Norbury®P, L. Orusa®®", M. Paniccia®, T. Poeschl®", P. D. Serpico®¥, A. Tykhonov®,
M. Unger®®*, M. Vanstalle®', M.-J. Zhao®%", D. Boncioli®¥+, M. Chiosso®®&, D. Giordano®®,
D. M. Gomez Coral®*, G. Graziani®¢, C. Lucarelli®®, P. Maestro® %, M. Mahlein®", L. Morejon®?*,
J. Ocampo-Peleteiro®®® A. Oliva®2, T. Pierog®!, L. Serkdnyté®h

- Collection of requests for XS measurements (sought energies & precision)
- Antinuclei production
- Fragmentation cross-sections

- Main Facilities:
- Atthe SPS AMBER — NAG61/SHINE
- At LHC: ALICE — LHCDb
- And other Multi-GeV facilities for nuclear cross-sections
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Tools

Codes:

-~ Solving the advection/diffusion transport equation
Numerical salvers: GALPROP, DRAGON, PICARD
Semi-analytical solver: USINE

- Setting constraints on DM annihilation into CRs
Channel by channel
From antiprotons :-Calore+ (2022)
From leptons : - High masses Di Mauro&Winkler (2021)
- Small masses Boudaud+ (2016, 2018)

DM models with specific injection spectra (peculiar resonance, kinematics.. )
MicrOmega : update to come!
DarkRayNet * Balan+(2021)

Methodology points presented today:
— Prediction VS Data : Chi2 test+% Must include data+model uncertainties and their correlations

%, ' KS test': test the overfiting, probe-the gaussianity of a distribution
- Likelihood ratio : hypotheses testing/.+Chernoff’'s theorem
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Statistical analysis

— Likelihood ratio definition

SUP xe A /:’()‘7 :LLO)
Sup{)\,u}EAUM £()\7 /L)

(L7 K) 57 ‘/;17 V07 0CR7 ) CR-SpaCG é
({ov), my, channel) DM-space

- With the following factorisation

LR(up)= =21n

—21n [’<)\7 /'L) = X%iBeB()\) g X]23(>‘a :LL)

Tightest constraints

Constraints on the CR space
on the DM space

— Simplification of the likelihood

log L — 1og[:

Olog L

2
} (G ST

—2In LA\, ) = —2InL(L, n) = {
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Upper limits on the DM annihilation cross section

Upper bound on <ov> [em? s-!]
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CR propagation BIG

bb annihilation channel
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Upper limits on the DM annihilation cross section

Di Mauro & Winkler 21
Kahlhoefer et al. 21

p limits (AMS data 21)
P limits (AMS data 16)
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— New data from 2021
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