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⌦DMh2 = 0.12± 0.001

What we know about Dark Matter

Contributions      to the energy 
density of the Universe today:

⌦i

[Planck 2020]

• Dark

• Cold or slightly warm

• Long-lived 

• Constrained self-interaction



What is the Origin?

?



Focus: 
Dark Matter is (and behaves like) a particle

in early universe thermal bath
(no axions, no black holes)

Many possibilities
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▪ Successful example: Big Bang Nucleosynthesis

➔ Explains primordial abundances of light elements
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⇒ Solving the Boltzmann Equations for Dark Matter

Particle physics + cosmology:
Extrapolate to early, hot 
Universe 



Boltzmann equations for particle densities
1

E� (�t �Hp �p) f�(p, t) = C [f�]

Relativistic Liouville operator for
homogeneous, isotropic Universe

Collision 
operator

Cosmology Particle Physics

[Zel’dovich, Okun, Pikel’ner1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; 
Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; 

Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]
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Relativistic Liouville operator for
homogeneous, isotropic Universe

Collision 
operator
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DM distribution functions
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Boltzmann equations for particle densities
[Zel’dovich, Okun, Pikel’ner1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; 
Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; 

Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

Assumption*:

* Dark Matter in kinetic equilibrium   
   and non-relativistic at relevant times
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Compare rates to Hubble expansion rate

�i ? H

Larger than Hubble 
expansion ⇒ efficient

1

�ann > H

H / T
2

Boltzmann equations for particle densities
[Zel’dovich, Okun, Pikel’ner1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; 
Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; 

Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

* in radiation 
   dominated era



Compare rates to Hubble expansion rate

�i ? H

inefficient,
just Hubble expansion 

1

�ann > H

H / T
2

Boltzmann equations for particle densities
[Zel’dovich, Okun, Pikel’ner1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; 
Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; 

Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

* in radiation 
   dominated era



Compare rates to Hubble expansion rate

�i ? H

typically something 
interesting happens

1

�ann > H

H / T
2

Boltzmann equations for particle densities
[Zel’dovich, Okun, Pikel’ner1966; Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; 
Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, Olive 1988; Kolb, Turner 1990; 

Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

* in radiation 
   dominated era
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Weakly interacting massive particle 

"WIMP miracle"
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• Radiation dominated era 

• Dark sector non-relativistic

• Dark sector in kinetic eq. with SM

• Vanishing initial asymmetry

• DM initially thermalized

• No long-range force in dark sector 
   (no bound states)

• Thermal eq. among dark sector particles
   (e.g. between coannihilating partners)
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Simplifying assumptions within the WIMP paradigm

• Radiation dominated era 

• Dark sector non-relativistic

• Dark sector in kinetic eq. with SM

• Vanishing initial asymmetry

• DM initially thermalized

• No long-range force in dark sector 
   (no bound states)

• Thermal eq. among dark sector particles
   (e.g. between coannihilating partners)

• … 

Beyond WIMPs: 
some do not hold!

Let’s explore some departures from the WIMP paradigm…



Outline

• WIMP-ish Variants
  Freeze-out from annihilation, hidden sectors

• Non-thermalized dark matter
  Freeze-in and superWIMPs

• Hybrid Regime
  freeze-out from conversions



WIMP-ish Variants



Resonant annihilation: Higgs portal model

Annihilation enhanced:

m� ⇠ mh/2

•  No resonant enhancement
•  Small couplings to light quarks,

[Binder, Bringmann, Gustafsson, Hryczuk 2017; 
Duch, Grzdkowski 2017]

while the possibility to drive inflation through a non-minimal coupling of the scalar to gravity
has been analysed in [37] in light of current constraints.

3 The galactic center excess

3.1 The Fermi-LAT observation

Description of the observation. � Alessandro
GCE data from [19].

3.2 Annihilation cross section and photon spectrum

Dark matter annihilation in the scalar Higgs portal model proceeds through s-channel Higgs,
t-channel scalar exchange, and the S2h2 interactions, see Fig. 1.
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Figure 1: Feynman diagrams for all WIMP annihilation processes, SM = t, h, Z,W, b, ⇥, c, g, �. Below mS = mh

only processes of type a) are present. Above the hh threshold all three diagrams contribute.

Annihilation cross section mechanism, relative contributions of di�erent channels, energy
spectrum for two masses. � Jan, Benedikt If photons are not produced directly in the loop
supressed process SS � h � ⇤⇤ , they are generated at all steps in the hadronization and decay
processes of possible SM final state particles. Thereby, the main contribution of high energetic
photons stem from the decay of ⇧0-states originating from the cascade.

[ ( 90%) in a bb event @ 100GeV c.o.m]
[Possible commentary on Bremsstrahlung, electroweak Corrections (1009.0224v1:Weak Cor-

rections are Relevant for Dark Matter Indirect Detection)]
The resulting ⇤-ray spectra are generated with the PYTHIA [38] event generator (version

8.209) for each final state separately by simulating the production of SM+SM at a center of
mass energy of 2mS . All spectra are then combined in a model dependent way according to
Fig. 2 to yield the gamma ray flux of annihilating dark matter:

d�

d⇥dE
=

1

2mS

X

FS

dNFS

dE
(⌥v)FS ·

R2

4⇧

Z

l.o.s

ds⌃2 (3)

The resulting spectra per annihilation
P

FS
dNFS
dE

(�v)FS
�v composed in this way are shown exem-

plarily in Fig. (ref to Spectra). Here, R denotes the fraction of annihilating dark matter to the
total dark matter content which is discussed in section 3.4. The integral over the line of sight
is discussed further in section 3.3.

Reference to Fig. 2.

3.3 Dark matter density profile and uncertainties

Our treatment of the J-factor. � Benedikt, Alessandro
Reference to Fig. 3.
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Fig. 1: Profile likelihoods for the scalar singlet model, in the plane of the singlet parameters ⁄hS and mS. Contour lines mark out
the 1‡ and 2‡ confidence regions. The left panel shows the resonance region at low singlet mass, whereas the right panel shows the
full parameter range scanned. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed
regions corresponding to solutions where S constitutes 100% of dark matter are indicated in orange.

Fig. 2: Profile likelihoods for the scalar singlet model, in various planes of observable quantities against the singlet mass. Contour
lines mark out the 1‡ and 2‡ confidence regions. Greyed regions indicate values of observables that are inaccessible to our scans, as
they correspond to non-perturbative couplings ⁄hS > 10, which lie outside the region of our scan. Note that the exact boundary
of this region moves with the values of the nuisance parameters, but we have simply plotted this for fixed central values of the
nuisances, as a guide. The best-fit (maximum likelihood) point is indicated with a white star, and edges of the allowed regions
corresponding to solutions where S constitutes 100% of dark matter are indicated in orange. Left: late-time thermal average of the
cross-section times relative velocity; Centre: spin-independent WIMP-nucleon cross-section; Right: relic density.

the allowed regions we have found. These edges are indi-
cated with orange annotations in Figs. 1 and 2. At high
singlet masses, the value of the late-time thermal cross-
section (Eq. 4 for T = 0) corresponding to this strip is
equal to the canonical ‘thermal’ scale of 10≠26 cm3 s≠1.
At low masses, this strip runs along the lower edge of
the resonance ‘triangle’ only, as indirect detection rules
out models with œSh

2 = 0.119 near the vertical edge
(at mS = 62 GeV).

In Fig. 2, we also show in grey the regions corre-
sponding to Higgs-portal couplings above our maximum

considered value, ⁄hS = 10, in order to give some rough
idea of the area of these plots that we have not scanned
(and the area that should almost certainly be excluded
on perturbativity grounds were we to do so). We note
that at large mS, the highest-likelihood regions are all
at quite large coupling values, where the annihilation
cross-section is so high, and the resulting relic density is
so low, that all direct and indirect signals are essentially
absent – but where perturbativity of the model begins
to become an issue.
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but elastic scatterings are not:

⇒ no kinetic equilibrium!

[see also Di Mauro, Arina, Fornengo, JH, Massaro 2023]



▪ Semi-analytic calculation via leading moments
[van den Aarssen, Bringmann, Goedecke 2012]

▪ Full numerical solution of unintegrated Boltzmann Eq.

E�(@t �Hp @p) f�(p, t) = Cann [f�] + Cel [f�]

while the possibility to drive inflation through a non-minimal coupling of the scalar to gravity
has been analysed in [37] in light of current constraints.

3 The galactic center excess

3.1 The Fermi-LAT observation

Description of the observation. � Alessandro
GCE data from [19].

3.2 Annihilation cross section and photon spectrum

Dark matter annihilation in the scalar Higgs portal model proceeds through s-channel Higgs,
t-channel scalar exchange, and the S2h2 interactions, see Fig. 1.
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[ ( 90%) in a bb event @ 100GeV c.o.m]
[Possible commentary on Bremsstrahlung, electroweak Corrections (1009.0224v1:Weak Cor-

rections are Relevant for Dark Matter Indirect Detection)]
The resulting ⇤-ray spectra are generated with the PYTHIA [38] event generator (version

8.209) for each final state separately by simulating the production of SM+SM at a center of
mass energy of 2mS . All spectra are then combined in a model dependent way according to
Fig. 2 to yield the gamma ray flux of annihilating dark matter:
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Resonant annihilation: Higgs portal model



Resonant annihilation: Higgs portal model
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Gondolo &Gelmini
full BE

coupled BEs, QCD=B
coupled BEs, QCD=A
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FIG. 1. The required value of the Singlet-Higgs coupling �S ,
as a function of the Scalar Singlet mass mS , in order to obtain
a relic density of ⌦h2 = 0.1188. The blue dashed line shows
the standard result as established by Gondolo & Gelmini [9],
based on the assumption of local thermal equilibrium during
freeze-out. For comparison, we also plot the result of solving
instead the coupled system of Boltzmann equations (27) and
(28) for the maximal (‘B’) and minimal (‘A’) quark scatter-
ing scenarios defined in the main text (red solid and dashed
lines, respectively). Finally, we show the result of fully solving
the Boltzmann equation numerically, for the maximal quark
scattering scenario and with no DM self-interactions included
(‘full BE’).

B: only light quarks (u, d, s) contribute to the scat-
tering, and only for temperatures above 4Tc ⇠

600MeV, below which hadronization e↵ects start to
become sizeable [63] (smallest scattering scenario,
as adopted in [12]).

Finally, we adopt the recent results from Drees et
al. [64] for the e↵ective number of relativistic de-
grees of freedom ge↵(T ) that enter the calculation of
the Hubble rate during radiation domination, H =p

4⇡3ge↵/45T 2
/mPl, as well as the entropy degrees of

freedom entering for example in the calculation of g̃(T )
as defined in Eq. (18).

B. Relic density of scalar singlet dark matter

Let us first compute the relic density following the
standard treatment adopted in the literature. To this
end, we numerically solve Eq. (17) for a given set of pa-
rameters (mS ,�S) and determine the resulting asymp-
totic value of Y0. The blue dashed line in Fig. 1 shows
the contour in this plane that results in Y0 correspond-
ing to a relic density of ⌦h2 = 0.1188, c.f. Eq. (19). We
restrict our discussion to values of mS in the kinematic
range where h�vi is enhanced due to the Higgs propaga-
tor given in Eq. (41), and the coupling �S that results
in the correct relic density is hence correspondingly de-

FIG. 2. Temperatures at which DM number density and ve-
locity dispersion (‘temperature’) start to deviate from their
equlibrium values, defined for the purpose of this figure as
|Y �Yeq| = 0.1Yeq and |y�yeq| = 0.1 yeq, respectively. These
curves are based on solving the coupled system of Boltzmann
equations (27) and (28), for the same parameter combinations
as in Fig. 1 (resulting thus in the correct relic density).

creased. This curve agrees with the corresponding result
obtained in Ref. [49].

For comparison, we show in the same figure the re-
quired value of �S that results when instead solving the
coupled system of Boltzmann equations (27) and (28), or
when numerically solving the full Boltzmann equation as
described in Section IIC . Here, the solid (dashed) line
shows the situation for the ‘B’ (‘A’) scenario for scat-
terings on quarks. Outside the resonance region, the
coupled Boltzmann equations lead to identical results
compared to the standard approach, indicating that ki-
netic decoupling indeed happens much later than chemi-
cal decoupling and that the assumption of local thermal
equilibrium during chemical freeze-out thus is satisfied.
For DM masses inside the resonance region, on the other
hand, we can see that the two methods can give signif-
icantly di↵erent results, implying that this assumption
must be violated. For the same reason, a smaller scat-
tering rate (as in scenario ‘B’) leads to an even larger
deviation from the standard scenario than the maximal
scattering rate adopted in scenario ‘A’.

This interpretation is explicitly confirmed in Fig. 2,
where we plot the temperatures at which the DM num-
ber density and temperature start to deviate from the
equilibrium values: in the parameter range that we focus
on here, kinetic decoupling happens indeed very close
to chemical decoupling. The reason for this very early
kinetic decoupling is straight-forward to understand as
the result of a strongly suppressed momentum transfer
rate �(T ), compared to the annihilation rate, due to
two independent e↵ects: i) the small coupling �S needed
to satisfy the relic density requirement, without a cor-
responding resonant enhancement of �(T ), and ii) the
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FIG. 3. The impact of the improved treatment of the ki-
netic decoupling on the relic density for parameter points that
would satisfy the relic density constraint in the standard ap-
proach (dotted line in Fig. 1), both for the minimal (solid)
and maximal (dashed) scenario for scattering with quarks.
The numerical result (‘full BE’) implements minimal quark
scattering; note that this does not take into account the e↵ect
of DM self-interactions (while the other curves are consistent
with assuming a maximal self-scattering rate). The green
dashed curve shows the impact of implementing the elastic
scattering term in the highly non-relativistic limit, c.f. Eq. (5).

scattering rate being proportional to the Yukawa cou-
pling squared, which favours scattering with Boltzmann-
suppressed heavy fermions. We note that the latter point
also explains the relatively large di↵erence between the
two extreme quark scattering scenarios used here for il-
lustration (in scenario ‘B’, the largest Yukawa couplings
do not contribute to the scattering).

In order to emphasize the importance of our improved
treatment of the decoupling history, we plot in Fig. 3
also the ratio of the resulting relic density to that of the
standard approach (for parameter values satisfying the
relic density constraint for the latter, i.e. corresponding
to the blue dashed curve in Fig. 1). Let us stress that,
compared to the observational uncertainty in this quan-
tity of about 1%, these corrections are by no means small
even in the minimal scattering scenario ‘A’. In the same
figure, we also compare our result for the coupled sys-
tem of Boltzmann equations (27) and (28) to the full
numerical solution of the Boltzmann equation in phase
space, as described in Section IIC (black dots). Before
getting back to these results, let us briefly comment on
the green dashed line in Fig. 3, which implements the
highly non-relativistic scattering term Cel of Eq. (5), and
hence not the replacement (35) in Eq. (28) which we oth-
erwise adopt as our default. Clearly, the impact of this
choice is very limited for this approach. We note that
the quantitative importance of the relativistic correction
term proportional to hp

4
/E

3
i in Eq. (28) lies in the same

ballpark, a↵ecting the relic density by at most ⇠10% in
the region very close to the resonance (and below the

percent-level elsewhere).
In Appendix A we discuss in depth the time evolution

of both the coupled Boltzmann equations and the full
phase-space density in the resonance region. Let us here
just mention that the characteristic features of the curves
displayed in Figs. 2 and 3 can indeed all more or less
directly be understood in terms of the highly enhanced
annihilation rate in a relatively narrow kinematic region
around the resonance,

p
s ⇠ mh ± �h. As the full nu-

merical solution reveals, furthermore, the shape of f�(p)
can in some cases be quite di↵erent from the Maxwell-
Boltzmann form (34) that is consistent with the coupled
system of Boltzmann equations (27) and (28). Whether
this has a noticeable impact on the resulting relic den-
sity (like for mS ⇠ 57GeV) or not (like for mS ⇠ mh/2)
again mostly depends on whether or not the shape is af-
fected for those momenta that can combine to

p
s ⇠ mh

during chemical freeze-out.
For illustration, we pick a DM mass of mS = 57GeV

and show in Fig. 4 the full phase-space distribution for
a few selected values of x (left panel) as well as the rele-
vant evolution of Y and y (right panel). For models with
DM masses in this range, the relatively large di↵erence
between full solution and coupled equations (as visible in
Fig. 3) can mostly be understood in terms of the dip in
the ratio of DM phase-space distributions at intermedi-
ate values of q = p/T that starts to develop for x & 20.
Concretely, the fact that the actual distribution for those
momenta is slightly suppressed compared to a distribu-
tion fully characterized only by its second moment, as in
Eq. (34), causes the DM particles to annihilate less ef-
ficiently, h�vineq < h�vi, because this is the momentum
range probed by the resonance for these x values. This
in turn leads to the DM particles falling out of chemical
equilibrium earlier, and hence a larger asymptotic value
of Y . The reason for this momentum suppression to de-
velop in the first place is also to be found in the particu-
larly e�cient annihilation close to the resonance, which
leads to a depletion of DM particles with corresponding
momenta because the scattering rate is no longer su�-
ciently large to redistribute the phase-space distribution
to a thermal shape. We note that the bulk part of this
e↵ect is actually well captured by the coupled Boltzmann
system, c.f. the dashed vs. solid lines in the right panel
of Fig. 4. For further details, we refer again to Appendix
A.

IV. DISCUSSION

From the above discussion, we have learned that very
early kinetic decoupling is not just a theoretical possi-
bility. It can appear in simple WIMP models, like the
Scalar Singlet case, and a↵ect the DM relic density in a
significant way. We note that the size of the latter ef-
fect is, as expected, directly related to the size of the
momentum exchange rate and hence to just how early
kinetic decoupling happens compared to chemical decou-

[Binder, Bringmann, Gustafsson, Hryczuk 2017]
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 1. The value of a constant thermally averaged annihila-
tion cross-section, h�vi, resulting in a relic density of Majo-
rana (orange) or Dirac (blue) particles matching the observed
cosmological DM abundance. Solid lines show the case of DM
in equilibrium with the SM until freeze-out (shaded areas in-
dicate the e↵ect of varying ⌦DMh2 within 3� [1]). Dashed
(dotted) lines show the case of DM in equilibrium with a hid-
den sector containing gS = 1 (gS = 5) light scalar degrees
of freedom (with µS = 0), which decoupled from the SM at
T � max[m�, mt]. Corresponding results for p-wave annihi-
lation are presented in Appendix A.

is that the DM phase-space distribution is of the form

fi / f�,eq = exp(�E�/T ), i.e. that the freeze-out hap-

pens for m� � T and well before kinetic decoupling (see

Ref. [45] for a treatment of early kinetic decoupling). The

second assumption is that the annihilation products con-

stitute a heat bath, in the sense that none of them builds

up significant chemical potentials. Crucially, both as-

sumptions can be violated in decoupled sectors.

In Fig. 1 we indicate with solid lines the value of h�vi in

the standard scenario (assuming a constant value of this

quantity around chemical decoupling) that is needed to

obtain a relic density matching the observed cosmological

DM abundance of ⌦DMh
2

= 0.12 [1]. The orange solid

lines show the case of Majorana DM (with g� = 2 and

⌦� = ⌦�̄ = ⌦DM), updating the conventionally quoted

‘thermal relic cross-section’ in Ref. [34] with a more re-

cent measurement of ⌦DM and recent lattice QCD results

for the evolution of SM d.o.f. in the early Universe [46].

For comparison, the blue lines indicate the case of Dirac

DM (g� = g�̄ = 2 and ⌦� = ⌦�̄ = ⌦DM/2) to stress the

not typically appreciated fact that the required value of

h�vi is not exactly twice as large as in the Majorana case.

A secluded dark sector.— The idea [18–22, 26] that

DM could be interacting only relatively weakly with the

SM, but much more strongly with itself or other par-

ticles in a secluded DS, has received significant atten-

tion [29, 36, 47–52]. In such scenarios, both sectors may

well have been in thermal contact at high temperatures,

until they decoupled at a temperature Tdec. The sepa-

rate conservation of entropy in both sectors then implies

a non-trivial evolution of the temperature ratio,

⇠(T ) ⌘ T�(T )

T
=

⇥
g
SM
⇤ (T )/g

SM
⇤ (Tdec)

⇤ 1
3

[gDS
⇤ (T )/gDS

⇤ (Tdec)]
1
3

, (3)

where g
SM,DS
⇤ denotes the e↵ective number of relativistic

entropy d.o.f. in the two sectors. Let us stress that this

commonly used relation tacitly assumes that DM is in

full equilibrium with at least one species S with vanishing

chemical potential, µS = 0 (implying µ� = �µ�̄ as long

as DM is in chemical equilibrium).

For a precise description of the freeze-out process of

� in such a situation the standard Boltzmann equation

(1) needs to be adapted at three places: both i) the

equilibrium density neq and ii) the thermal average h�vi
must be evaluated at T� rather than the SM tempera-

ture T , and iii) the Hubble rate must be increased to

take into account the energy content of the DS. Dur-

ing radiation domination, in particular, this means that

H
2

= (8⇡
3
/90)ge↵M

�2
Pl T

4
, where ge↵ ' gSM + (

P
b gb +

7
8

P
f gf )⇠

4
and the sums runs over the internal d.o.f. of

all fully relativistic DS bosons (b) and DS fermions (f)

(in our numerical treatment, we always use the full ex-

pression for ge↵). We note that existing relic density

calculations for decoupled DSs very often only take into

account a subset of these e↵ects, or implement them in

a simplified, not fully self-consistent way.

Model setup.— Let us for concreteness consider a

simple setup where the DS consists of massive fermions

�, acting as DM, and massless scalars S with µS = 0,

constituting the heat bath. We assume that the DS de-

coupled from the SM at high temperatures, such that

g
SM
⇤ (Tdec) = 106.75 and g

DS
⇤ (Tdec) = gS + (7/4)N� in

Eq. (3), where N� = 1 (2) for Majorana (Dirac) DM. In

Fig. 1 we show the ‘thermal’ annihilation cross-section for

��̄ ! SS in such a scenario, for di↵erent values of gS .

The fact that this di↵ers significantly from the standard

case illustrates the importance of including the e↵ects

outlined above in a consistent way. In this sense, the

updated procedure for relic density calculations directly

impacts a large number of DS models where annihila-

tion also proceeds via an s-wave [20, 26, 29, 47, 53–56] –

even though �v is often velocity-dependent in these cases,

impeding a literal interpretation of the curves shown in

Fig. 1. In order to facilitate the study of such more realis-

tic scenarios, we have updated the general-purpose relic

density routines of DarkSUSY [14] to perform precision

calculations of DS freeze-out that self-consistently take

into account all three e↵ects discussed above. This al-

lows to consider a broad range of relevant models with

in principle arbitrary amplitudes, including p-wave an-
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rana (orange) or Dirac (blue) particles matching the observed
cosmological DM abundance. Solid lines show the case of DM
in equilibrium with the SM until freeze-out (shaded areas in-
dicate the e↵ect of varying ⌦DMh2 within 3� [1]). Dashed
(dotted) lines show the case of DM in equilibrium with a hid-
den sector containing gS = 1 (gS = 5) light scalar degrees
of freedom (with µS = 0), which decoupled from the SM at
T � max[m�, mt]. Corresponding results for p-wave annihi-
lation are presented in Appendix A.
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fi / f�,eq = exp(�E�/T ), i.e. that the freeze-out hap-

pens for m� � T and well before kinetic decoupling (see

Ref. [45] for a treatment of early kinetic decoupling). The

second assumption is that the annihilation products con-

stitute a heat bath, in the sense that none of them builds

up significant chemical potentials. Crucially, both as-

sumptions can be violated in decoupled sectors.

In Fig. 1 we indicate with solid lines the value of h�vi in

the standard scenario (assuming a constant value of this

quantity around chemical decoupling) that is needed to

obtain a relic density matching the observed cosmological

DM abundance of ⌦DMh
2

= 0.12 [1]. The orange solid

lines show the case of Majorana DM (with g� = 2 and

⌦� = ⌦�̄ = ⌦DM), updating the conventionally quoted

‘thermal relic cross-section’ in Ref. [34] with a more re-

cent measurement of ⌦DM and recent lattice QCD results

for the evolution of SM d.o.f. in the early Universe [46].

For comparison, the blue lines indicate the case of Dirac

DM (g� = g�̄ = 2 and ⌦� = ⌦�̄ = ⌦DM/2) to stress the

not typically appreciated fact that the required value of

h�vi is not exactly twice as large as in the Majorana case.

A secluded dark sector.— The idea [18–22, 26] that

DM could be interacting only relatively weakly with the

SM, but much more strongly with itself or other par-

ticles in a secluded DS, has received significant atten-

tion [29, 36, 47–52]. In such scenarios, both sectors may

well have been in thermal contact at high temperatures,

until they decoupled at a temperature Tdec. The sepa-

rate conservation of entropy in both sectors then implies

a non-trivial evolution of the temperature ratio,
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⇤ denotes the e↵ective number of relativistic

entropy d.o.f. in the two sectors. Let us stress that this

commonly used relation tacitly assumes that DM is in

full equilibrium with at least one species S with vanishing

chemical potential, µS = 0 (implying µ� = �µ�̄ as long
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For a precise description of the freeze-out process of

� in such a situation the standard Boltzmann equation
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equilibrium density neq and ii) the thermal average h�vi
must be evaluated at T� rather than the SM tempera-

ture T , and iii) the Hubble rate must be increased to
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(in our numerical treatment, we always use the full ex-

pression for ge↵). We note that existing relic density

calculations for decoupled DSs very often only take into

account a subset of these e↵ects, or implement them in

a simplified, not fully self-consistent way.

Model setup.— Let us for concreteness consider a

simple setup where the DS consists of massive fermions

�, acting as DM, and massless scalars S with µS = 0,

constituting the heat bath. We assume that the DS de-

coupled from the SM at high temperatures, such that

g
SM
⇤ (Tdec) = 106.75 and g

DS
⇤ (Tdec) = gS + (7/4)N� in

Eq. (3), where N� = 1 (2) for Majorana (Dirac) DM. In

Fig. 1 we show the ‘thermal’ annihilation cross-section for

��̄ ! SS in such a scenario, for di↵erent values of gS .

The fact that this di↵ers significantly from the standard

case illustrates the importance of including the e↵ects

outlined above in a consistent way. In this sense, the

updated procedure for relic density calculations directly

impacts a large number of DS models where annihila-

tion also proceeds via an s-wave [20, 26, 29, 47, 53–56] –

even though �v is often velocity-dependent in these cases,

impeding a literal interpretation of the curves shown in

Fig. 1. In order to facilitate the study of such more realis-

tic scenarios, we have updated the general-purpose relic

density routines of DarkSUSY [14] to perform precision

calculations of DS freeze-out that self-consistently take

into account all three e↵ects discussed above. This al-

lows to consider a broad range of relevant models with

in principle arbitrary amplitudes, including p-wave an-
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The SIMP Miracle
====================================================================25% of the authors prefer the title: ‘SIMP Dark Matter’. They are uncomfortable with the term ‘miracle’ in this scenario. Damn democracy!==================================================================.
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We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when
a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout
process is a number-changing 3 ! 2 annihilation of strongly-interacting-massive-particles (SIMPs)
in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary
for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will
allow coverage of a significant part of the parameter space with future indirect- and direct-detection
experiments and via direct production of dark matter at colliders. Moreover, 3 ! 2 annihilations
typically predict sizable 2 ! 2 self-interactions which naturally address the ‘core vs. cusp’ and
‘too-big-to-fail’ small structure problems.

INTRODUCTION

Dark matter (DM) makes up the majority of the mass
in the Universe, however, its identity is unknown. The
few properties known about DM are that it is cold and
massive, it is not electrically charged, it is not colored and
it is not very strongly self-interacting. One possibility for
the identity of DM is that it is a thermal relic from the
early Universe. Cold thermal relics are predicted to have
a mass

mDM ⇠ ↵ann (TeqMPl)
1/2

⇠ TeV , (1)

where ↵ann is the e↵ective coupling constant of the 2 ! 2
DM annihilation cross section, taken to be of order weak
processes ↵ann ' 1/30 above, Teq is the matter-radiation
equality temperature and MPl is the reduced Planck
mass. The emergence of the weak scale from a geomet-
ric mean of two unrelated scales, frequently called the
WIMP miracle, provides an alternate motivation beyond
the hierarchy problem for TeV-scale new physics.

In this work we show that there is another mechanism
that can produce thermal relic DM even if ↵ann ' 0. In
this limit, while thermal DM cannot freeze out through
the standard 2 ! 2 annihilation, it may do so via a 3 ! 2
process, where three DM particles collide and produce
two DM particles. The mass scale that is indicated by
this mechanism is given by a generalized geometric mean,

mDM ⇠ ↵e↵

�
T

2
eqMPl

�1/3
⇠ 100 MeV , (2)

where ↵e↵ is the e↵ective strength of the self-interaction
of the DM which we take as ↵e↵ ' 1 in the above. As
we will see, the 3 ! 2 mechanism points to strongly self-
interacting DM at or below the GeV scale. In similar
fashion, a 4 ! 2 annihilation mechanism, relevant if DM
is charged under a Z2 symmetry, leads to DM in the keV

↵e↵ ' 1 ↵e↵ ' 1

SMDM
3→2 2→2 

✏ � 1

Kin. Eq.

FIG. 1: A schematic description of the SIMP paradigm. The
dark sector consists of DM which annihilates via a 3 ! 2 pro-
cess. Small couplings to the visible sector allow for thermal-
ization of the two sectors, thereby allowing heat to flow from
the dark sector to the visible one. DM self interactions are
naturally predicted to explain small scale structure anomalies
while the couplings to the visible sector predict measurable
consequences.

to MeV mass range. In this case, however, a more com-
plicated production mechanism, such as freeze-out and
decay, is typically needed to evade cosmological bounds.

If the dark sector does not have su�cient couplings
to the visible sector for it to remain in thermal equilib-
rium, the 3 ! 2 annihilations heat up the DM, signif-
icantly altering structure formation [1, 2]. In contrast,
a crucial aspect of the mechanism described here is that
the dark sector is in thermal equilibrium with the Stan-
dard Model (SM), i.e. the DM has a phase-space dis-
tribution given by the temperature of the photon bath.
Thus, the scattering with the SM bath enables the DM to
cool o↵ as heat is being pumped in from the 3 ! 2 pro-
cess. Consequently, the 3 ! 2 thermal freeze-out mech-
anism generically requires measurable couplings between
the DM and visible sectors. A schematic description of
the SIMP paradigm is presented in Fig. 1.

The phenomenological consequences of this paradigm
are two-fold. First, the significant DM self-interactions
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First, there is a self-interaction process of the 2 ! 2
scattering within the dark sector, which does not change
the number density of the DM. It does, however, ensure
that the DM all remain at one single temperature. Sec-
ond, there is the 3 ! 2 number-changing process respon-
sible for freeze-out, which sets the chemical potential of
� to zero. Assuming that the DM is strongly coupled,
these two processes are fast, meaning that the DM num-
ber density f(t, E) per phase space at a given time follows

f(E, t) / n(t)e�E/TDM(t)
, (20)

where TDM is the time-dependent temperature of the sys-
tem which may di↵er from the temperature of the SM.
The third process is the scattering of DM o↵ of the SM,
which does not change the DM number density. If this
process is active, then the SM and dark sector will have
the same temperature, TDM = TSM. This kinetic equi-
librium is crucial for ensuring that the dark sector does
not stay hot. Finally, there is the standard annihila-
tion process into SM particles, related by crossing sym-
metry to the above SM scattering process. The rate of
this process must be subdominant to the 3 ! 2 pro-
cess at freeze-out, otherwise the standard DM freeze-out
paradigm controls the relic abundance. Ensuring that
this is small enough while maintaining the kinetic equi-
librium rate large enough is a critical step in making the
3 ! 2 mechanism viable.

Combining the above, we arrive at the Boltzmann
equation for the number density n of �,

@tn + 3Hn = �
�
n

3
� n

2
neq

�
h�v

2
i3!2

�
�
n

2
� n

2
eq

�
h�viann . (21)

Using the parametrization of Eqs. (6) and (17), and nu-
merically integrating Eq. (21), results in the nearly linear
relationship between the 3-point self-coupling strength,
↵e↵ , and the mass of the DM, mDM, shown by the black
solid curve in Fig. 2. We find xF ⇠ 14 � 24 for the en-
tire mass range of interest, and the results agree very
well with the estimate of Eq. (9). We further find that
compared to standard freeze-out from a 2 ! 2 annihi-
lation process, the SIMP begins freeze-out slightly later,
but reaches the final relic abundance faster. The reason
is that the back-reaction of the 2 ! 3 process quickly
becomes negligible while the 3 ! 2 rate is proportional
to n

2, rather than to n.

The cautious reader might note the absence of ✏ in the
above results. The reason is that as long as Eqs. (15)
and (16) are satisfied, the precise value of ✏ has little
e↵ect on the solutions (↵e↵ , xF , mDM) to the Boltzmann
equation. Given particular couplings between the dark
sector and the SM, the range for ✏ can be found such that
Eqs. (15) and (16) are indeed satisfied.

A TOY MODEL

To better understand the SIMP paradigm, we now
present a weakly-coupled toy model for the dark sector
which incorporates the 3 ! 2 mechanism and leads to
stable DM. Consider a Z3-symmetric theory with a sin-
gle scalar, �, defined by

LDM = |@�|
2

� m
2
DM|�|

2
�



6
�

3
�


†

6
�
†3

�
�

4
|�|

4
. (22)

With the above couplings, tree-level 2 ! 2 self-
interactions and 3 ! 2 scattering are induced. For a
single scale model, defining g via  = g mDM and tak-
ing � ⇠ g

2, the 2 ! 2 scattering cross section scales as
g
4
/m

2
DM, and the 3 ! 2 one as g

6
/m

5
DM, motivating our

parametrization of Eq. (6). The stability of the DM is
guaranteed by the global symmetry.

Let us now introduce small interactions between the
DM and the visible sector. As an example, consider first
an interaction with SM fermions f ,

Lint =
mf

⇤2
�
†
�ff , (23)

which induces both 2 ! 2 annihilations and scatter-
ings. Identifying the ✏ defined in Eq. (17) to be of or-
der ✏ ' O(mfmDM/⇤2), the 2 ! 2 annihilation rate
is negligible while kinetic equilibrium is maintained, for
✏min . ✏ . ✏max. One may further check that annihi-
lations such as ��f ! �

†
f , which are induced by the

interactions in Eqs. (22) and (23), are also negligible de-
spite the large number density in the thermal bath. Al-
ternatively, the dark sector may couple to the visible one
through photons,

Lint =
↵EM

4⇡⇤2
�
†
�Fµ⌫F

µ⌫
, (24)

in which case, ✏ ' O(↵EMm
2
DM/4⇡⇤2).

To conclude, we find that for a low-scale (of order, say,
100 MeV) dark sector with DM described by Eq. (22), the
correct relic abundance is obtained if the sector communi-
cates with the visible one (say, through couplings to elec-
trons, muons or photons) via a new scale in the GeV to
10’s of TeV range. Such mediators are thus constrained
by LEP [18, 19] (see Fig. 3) and are expected to be within
reach of ongoing collider experiments. As we now discuss,
such a sector will not only have experimental signatures
that will allow discovery, but will also have unavoidable
self-interactions which can address long-standing puzzles
in structure formation.

SIGNATURES

The paradigm discussed in this letter not only provides
a new mechanism for producing the DM relic abundance,
but also predicts interesting and measurable signatures.

[Hochberg, Kuflik, Volansky, Wacker 2014] 
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Wess-Zumino-Witten anomaly (3 ➔ 2 annihilation):



4

of the suppressed number density of dark pions that can
participate in scattering. In the temperature range rel-
evant for freeze-out (x ⇡ 20) the contribution from the
dark pion width is therefore negligible unless m⇢D is ex-
tremely close to 2m⇡D .

It is instructive to compare our result to the conven-
tional freeze-out of SIMPs through the WZW anomaly.
The corresponding Boltzmann equation reads

ṅ⇡D + 3H n⇡D = h�v
2
i3⇡D!2⇡Dn

2
⇡D

(neq
⇡D

� n⇡D ) , (13)

where the thermally averaged cross section is given
by [53]

h�v
2
i3⇡D!2⇡D =

5
p
5N2

cD3⇡D!2⇡D⇠
10

4608⇡5m5
⇡D

x2
, (14)

with

3⇡D!2⇡D =
NfD (N

2
fD

� 4)

(N2
fD

� 1)2
=

1

NfD

+O(N�3
fD

) . (15)

The cross sections for the processes 3⇡D ! ⇡D⇢D and
3⇡D ! 2⇡D can both be written as

h�v
2
i ⌘

↵
e↵

m5
⇡D

. (16)

To understand where the 3⇡D ! ⇡D⇢D process domi-
nates over the well-known 3⇡D ! 2⇡D SIMP process, it
is useful to consider the ratio

R ⌘
h�v

2
i3⇡D!⇡D⇢D

h�v2i3⇡D!2⇡D

=
↵
e↵
3⇡D!⇡D⇢D

↵
e↵
3⇡D!2⇡D

⇡ (1800 – 8500)⇥
1

N2
cD ⇠4

x
2

p
1� y

, (17)

where the range for the numerical factor has been ob-
tained by varying y in the range 0.6 < y < 1 and NfD
between 3 and 6, noting that the process 3⇡D ! 2⇡D

does not exist for NfD = 2 [8]. We find that the ra-
tio R is much larger than unity for all values that we
consider. As expected, R grows rapidly for y ! 1 and
also grows with increasing x. This is because the process
3⇡D ! 2⇡D proceeds via d-wave, whereas the process
3⇡D ! ⇡D⇢D proceeds via s-wave. We conclude that the
latter process will completely dominate dark pion freeze-
out for m⇢D < 2m⇡D . As shown in App. C, also direct
annihilations of the dark pions into SM fermions via an
o↵-shell dark rho meson are negligible as long as the SM
coupling of the dark rho meson is su�ciently small.

Results and discussion.— It is convenient to express
the Boltzmann equation in terms of the dimensionless
quantity Y⇡D = n⇡D/s, where s = 2⇡2

/45 g?T 3 is the
total entropy density. The Boltzmann equation (7) then
takes the form

dY

dx
=

s
2

H̃x
h�v

2
i Y (Y 2

eq � Y
2) , (18)

FIG. 2. Solutions of the Boltzmann equation for the (dimen-
sionless) dark pion number density as a function of inverse
temperature. For the red lines only the process 3⇡D ! 2⇡D

is included, whereas the blue lines include 3⇡D ! ⇡DXD with
XD = ⇡D, ⇢D. The value of Y⇡D that corresponds to the ob-
served DM relic abundance is indicated by the dot-dashed
black line, while the equilibrium value of Y⇡D is represented
by the dashed grey line.

where following Ref. [54] we have introduced the modified

Hubble rate H̃ = ( 8⇡
3

90 g)1/2 T 2

MPl
[1 + 1

3
d(ln g?)
d(ln T) ]

�1, with g

(g?) denoting the energy (entropy) degrees of freedom
taken from Ref. [55]. We solve the Boltzmann equation
in log-space.
In Fig. 2 we show the solution of the Boltzmann equa-

tion for m⇡D = 150MeV, NfD = NcD = 3 and di↵erent
values ofm⇢D/m⇡D . As expected, the dimensionless dark
pion number density Y⇡D follows the equilibrium value
Y

eq
⇡D

= (N2
fD

� 1)m3
⇡D

(x/(2⇡))3/2 exp(�x) until it freezes
out at xf ⇡ 20 and becomes constant. For the chosen pa-
rameters, the observed DM relic abundance ⌦Dh

2 = 0.12
is approximately reproduced. For comparison, we also
show the evolution of Y⇡D obtained when only the pro-
cess 3⇡D ! 2⇡D is considered [56]. For the same masses,
the predicted relic abundance is too large by approxi-
mately an order of magnitude.
We can understand this result analytically, by writing

Eq. (18) as

dY

dx
=

�3!2

x5
Y (Y 2

eq � Y
2) , (19)

with

�3!2 =
2
p
5

675
⇡
5/2

g
3/2

MPl m
4
⇡D

h�v
2
i , (20)

where g = g⇤ = 10.75 in the temperature range of interest
and we can drop the derivative in the expression for H̃.
Typically, Yeq ⌧ Y during freeze-out and the corre-

sponding term in the Boltzmann equation can be ne-
glected. Treating �3!2 as a constant during freeze-out by

5

FIG. 3. Combinations of m⇡D and ⇠ = m⇡D/f⇡D (or
m⇢D/m⇡D via Eq. (6)) that yield ⌦Dh2 = 0.12 in agree-
ment with observations. For the red lines only the pro-
cess 3⇡D ! 2⇡D is included, whereas for the blue lines
3⇡D ! ⇢D⇡D is also taken into consideration. Note that
the process 3⇡D ! 2⇡D does not exist for NfD = 2. The grey
shaded region is excluded by the Bullet Cluster bound on the
DM self-interaction cross section (evaluated for NfD � 1).

setting �3!2 ⌘ �3!2(x = xf ), Eq. (19) can be approx-
imately solved analytically, which yields the asymptotic
solution

Y1 ⇡
p
2

x
2
f

p
�3!2

. (21)

Hence, the DM relic abundance scales with the DM
mass and e↵ective coupling (as defined in Eq. (16)) as

⌦Dh
2
⇠ m

3/2
⇡D /

p
↵e↵ . Therefore, when 3⇡D ! ⇡D⇢D

annihilations dominate over 3⇡D ! 2⇡D, the preferred
dark pion mass scale increases as m⇡D ⇠ R

1/3 relative
to the usual expectation for SIMPs annihilating via the
WZW term. For typical values of ⇠, m⇢D/m⇡D and NcD
this corresponds to a factor of 2–3, and even more for
m⇢D ! 2m⇡D , see Eq. (17).

We explicitly confirm this expectation in Fig. 3, where
we plot the combinations of m⇡D and ⇠ (or equivalently
m⇢D/m⇡D as related to ⇠ by Eq. (6)) that yield ⌦Dh

2 =
0.12 via a numerical solution of the Boltzmann equation
for di↵erent choices of NfD and NcD . As before, we show
for comparison the result when considering 3⇡D ! 2⇡D

only, which is robustly excluded by the Bullet Cluster
constraint on DM self-interactions, given by [33, 34]

�c

m⇡D

. 2 cm2
/g , (22)

with �c as in Eq. (12). Including the dark rho mesons in
the final state, on the other hand, increases the dark pion

mass scale su�ciently to evade these constraints. Due to
the interplay between ⇠ and m⇢D/m⇡D in Eq. 9, we find
that the preferred value of m⇡D is largely independent
of these parameters and can be approximately written as

m⇡D ⇡ 330MeV/N
2/3
fD

.

In conclusion, we have shown that for strongly inter-
acting dark sectors with m⇢D/m⇡D < 2, the dominant
process that changes the number density of dark pions in
the early universe is 3⇡D ! ⇡D⇢D. We emphasize that
this process does not depend on any non-perturbative
parameters other than m⇡D , f⇡D and m⇢D and – in con-
trast to the conventionally studied process 3⇡D ! 2⇡D –
does not rely on the WZW anomaly, i.e. it also exists for
theories with only two light flavours. In contrast to the
recently proposed Co-SIMP mechanism [57, 58], the pro-
cess that we consider requires no interactions between
the dark sector and SM particles beyond those needed
for thermalisation (which only places a very weak lower
bound on the decay width of the dark rho mesons). As
a result, we obtain a theoretically clean and robust pre-
diction for the dark pion mass that reproduces the ob-
served DM relic abundance. We have specifically con-
sidered the range 1.45  m⇢D/m⇡D < 2 corresponding
to 4 . m⇡D/f⇡D . 6, within the validity of chiral per-
turbation theory. We find typical values of m⇡D around
100MeV reproduce the measured DM relic abundance,
with only mild dependence on the other parameters. Cru-
cially, these dark pion masses satisfy the Bullet Cluster
constraint on DM self-interactions – unlike the masses
favoured by freeze-out via 3⇡D ! 2⇡D – and therefore
provide an important benchmark scenario for further ex-
ploration. We emphasize that the required mass spec-
trum implies that the dark rho mesons can only decay
into SM particles, leading to exciting signatures at labo-
ratory experiments.
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Non-thermalized dark matter 
aka Feebly interacting massive particles (FIMPs)

So far:
• Sizeable dark matter interactions ➔ thermalization
• Challenge: Large enough annihilation rate
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➔ extremely small couplings work again



▪ Only production ⇒ small initial abundance

▪ Freeze-in: occasional production from thermal bath

▪ UV-sensitive scenarios (e.g. gravitino DM)
➔ dependence on reheating temperature

▪ IR-sensitive scenarios (renormalizable operators)
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[Bolz, Buchmüller, Plümacher 1998; 
Bolz, Brandenburg, Buchmüller 2001; 

McDonald 2002; 
Covi, Roszkowski, Small 2002; 

Choi, Roszkowski 2005; 
Asaka, Ishiwata, Moroi 2006; 

Petraki, Kusenko 2008; 
Hall, Jedamzik, March-Russell, West, 2009]

�

2

II. THE MODEL

As a simple example of a Z2-odd new physics sector we
consider a top-philic, colored scalar t-channel mediator t̃

and a Majorana DM fermion � interacting with the SM
through the Lagrangian

Lint = |Dµt̃|
2 + ��t̃ t̄

1� �5

2
�+ h.c. , (1)

where Dµ is the covariant derivative, t is the top quark
Dirac field and �� is the new physics coupling. The t̃ par-
ticle is a SU(2)L singlet and has hypercharge identical to
tR, similar to a right-handed squark field in supersymme-
try. The model introduces the three parameters m�, mt̃
and ��.

In this work we focus on the regime of sufficiently small
couplings ��, such that the � particle never reaches ther-
mal equilibrium with the SM bath. This means that nei-
ther t̃ � � conversions, such as (inverse) decays t̃ $ t�,
nor annihilations, such as �� $ tt̄, occur at rates com-
parable to the Hubble expansion rate throughout cosmic
history. Details on further possible interactions and its
phenomenology in the case of thermalized DM can be
found in [12, 13].

The simplified model, and variants with different spin-
and gauge-quantum numbers, can be part of generic ex-
tensions of the SM of particle physics. For example, the
model possesses a natural embedding in supersymmetric
models. In this case the Z2-symmetry can be identified
with R-parity, and the mediator with the lightest super-
partner of the SM particles (being the right-handed stop
for the specific model from above). The feebly interact-
ing DM particle can be realized in the context of a hid-
den sector, that features an unbroken hidden U(1) gauge
symmetry. After supersymmetry breaking, a small ki-
netic mixing with the SM U(1)Y hypercharge leads to a
small bino-admixture of the hidden gaugino, providing a
small coupling �� of the form introduced above [14, 15].

Arguably, also supersymmetric models featuring grav-
itino DM and a long-lived next-to lightest supersymmet-
ric particle (NLSP) share similarities with the type of
models studied here if R-parity is conserved, but also
exhibit differences due to the non-renormalizeable inter-
actions [1, 2] (see [16] for a recent analysis of stop NLSP,
and references therein for other possibilities).

A variant of the model considered here, but without
Z2-symmetry, has been studied in [17, 18].

III. DARK MATTER PRODUCTION

For small enough values of the coupling �� that con-
nects DM to the SM, the DM particle � is never in equi-
librium with the SM thermal bath. In this case, any
process throughout the cosmic history leading to the pro-
duction of � particles contributes to an accumulated �

population. Immediately after the end of inflation, � par-
ticles may be produced during the reheating process. In

this work we assume that this process leads to a negli-
gible contribution to the abundance of � particles, and
adopt the common assumption that reheating produces
a thermal bath of SM particles, with maximal temper-
ature given by TR. Furthermore, we assume TR � mt̃,
such that the mediator t̃ thermalizes due to its gauge
interactions.1 In this case, within the simple model con-
sidered here, there are two distinct sources of � particle
production. First, the freeze-in mechanism that is most
efficient for T ⇠ mt̃, and second, the superWIMP mech-
anism, corresponding to the late decay of the frozen-out
population of t̃. In the following we discuss both sources
in turn.

A. Freeze-in

Freeze-in production relies on the occasional produc-
tion of � particles within a thermal bath. For the model
considered here, due to the Z2-symmetry in the dark sec-
tor, production processes have to involve t̃ in the initial
or final state. Since the abundance of t̃ becomes strongly
suppressed for T ⌧ mt̃, the relevant temperature range
for freeze-in is T >

⇠ mt̃. At these temperatures, gauge in-
teractions keep t̃ close to thermal equilibrium, i.e. we may
assume nt̃ ' n

eq
t̃

= gt̃

R d3p
(2⇡)3 ft̃ where ft̃ = (eEt̃/T �1)�1,

gt̃ = Nc and E
2
t̃
= m

2
t̃
+ p

2.
We consider both the 1 ! 2 process t̃ ! �t as well as

all allowed 2 ! 2 processes ab ! �c, including t̃t̄ ! �g,
t̃g ! �t, gt̄ ! �t̃

⇤. The Boltzmann equation for the
number density n� reads [6]

ṅ� + 3n�H = 2 (C1!2 + C2!2) . (2)

Here

C1!2 =

Z
d3pt̃
(2⇡)3

gt̃ft̃mt̃

Et̃

�t̃!�t = nt̃

⌧
mt̃

Et̃

�
�t̃!�t ,

C2!2 =
X

processes

Z
d3pa
(2⇡)3

d3pb
(2⇡)3

gafagbfb�ab!�cvab , (3)

where vab =
p
(pa · pb)2 �m2

am
2
b/(EaEb), ga are the in-

ternal degrees of freedom of species a, and we neglected
the loss term, as appropriate for freeze-in, as well as sta-
tistical factors (1 ± fi) (see below). The factor 2 in (2)
takes into account charge conjugated processes, which
contribute equally due to CP symmetry and the Majo-
rana nature of �. Since n� appears only on the left-hand

1
For TR

<⇠ mt̃ the relic density becomes dependent on TR and the

production via freeze-in may dominantly proceed via DM pair

production whose rate is suppressed by heavy mediator propa-

gators arising in the t-channel or in loops. Hence, significantly

larger couplings are expected to saturate the relic density con-

straint than found in this work.

Mother (/bath-)particle 
Z2-odd:
Z2-even:

M ! SM� , M SM ! SM� , . . .
M ! �� , M M ! �� , . . .
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
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the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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h
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1
0
0
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0
0
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decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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production rate, which in turn depends on the small DM
coupling, in our case (⌦h2)fi� / �

2
�. Since, for small

enough ��, this coupling plays no role for the media-
tor freeze-out, the superWIMP contribution is indepen-
dent of the DM coupling, i.e. (⌦h2)sW� / �

0
�. Therefore,

if we require that the total abundance matches the ob-
served value, (⌦h2)fi�(��) + (⌦h2)sW� = 0.12, solutions
can only exist for points in parameter space for which
(⌦h2)sW�  0.12. In that case, the condition above can
be used to determine the value of �� to explain the mea-
sured DM density. We therefore expect in general that
within a large portion of the parameter space freeze-in
dominates (“bulk”). The viable region in parameter space
is then bounded by a hypersurface on which the super-
WIMP mechanism saturates the DM density constraint
(“boundary”). We will see below that this expectation is
borne out in the model considered here (cf. [24]).

Provided the process that corresponds to mediator de-
cay gives a sizeable contribution to the freeze-in abun-
dance (in the model considered here this is the case for
mt̃ > mt + m�, such that two-body decay is kinemati-
cally allowed), we can estimate the freeze-in abundance
by generalizing (5) in the form

Y
1!2
� ' c gmed

�med

m
2
med

Z x0

0
dx

Y
eq
med(x)

x eH(x)gmed

K1(x)

K2(x)
, (8)

where eH = H/m
2
med, and c = 1(2) for a neutral (charged)

mediator. Within the model considered here, �med !

�t̃!�t, mmed ! mt̃, gmed ! gt̃, c ! 2.
As long as the temperature of mediator freeze-out is

well above the electroweak scale the number of relativis-
tic degrees of freedom is approximately constant such
that Y

eq
med(x) and eH(x) are functions of x only, without

reference to mmed. Furthermore, the number of inter-
nal degrees of freedom of the mediator cancels out inside
the integrand in Eq. (8). Hence, the integral in Eq. (8)
is a constant. Consequently, within the “bulk” region of
parameter space (for which (⌦h2)sW�  0.12),

⌦h2

0.12
' 8.5⇥ 1024 c gmed�med

m�

m
2
med

, (9)

where we negected the 2 ! 2 contribution in order to ob-
tain the parametric estimate above (cf. [6]). For a given
decay rate �med, or equivalently mediator lifetime, this
imposes a correlation mmed / m

1/2
� between the mediator

and DM mass. We expect this finding to be applicable to
the general class of models discussed above, see e.g. [25].

In addition, within the “bulk” region of parameter
space, for which freeze-in dominates, Eq. (9) can be
used to estimate the time tdec ' ��1

med when the (sub-
dominant) population of frozen-out mediator particles
decays. In terms of temperature, and well above the
electroweak scale, Tdec ' 6 · 108 GeV ⇥ (�med/GeV)1/2

and hence xdec = mmed/Tdec is given by

xdec ' 378 (c gmed)
1/2

⇣
m�

MeV

⌘1/2
. (10)

That is, there is a relation m� / x
2
dec, which we again

expect to apply to the class of models discussed above.
This also shows that the superWIMP production via me-
diator decay is well separated in time from the freeze-in
regime x ' O(1) for m� � 0.1 keV.

Note that Eq. (9) furthermore implies a model-
independent statement about the region in the mediator-
DM mass plane that provides long-lived particles at the
LHC. For proper decay length in the range [1m ; 1mm]
we find

mmed ' [1.3; 40]TeV (c gmed)
1/2

⇣
m�

MeV

⌘1/2
, (11)

where the lower edge of the mass range corresponds to
the upper edge of the decay length and vice versa while
smaller masses provide mostly detector-stable mediators.
Note that in case of additional contributions to DM pro-
duction the lifetime becomes larger, shifting the respec-
tive mediator mass range to larger values. Within freeze-
in scenarios long-lived particle signatures at the LHC
were studied in [6, 26–30].

IV. PARAMETER SPACE AND CONSTRAINTS

A. Parameter space and DM density

Out of the three free parameters m�,mt̃,��, one may
be fixed by the condition that the sum of freeze-in and
superWIMP contributions to the � density equals the
observed DM abundance. We choose to fix �� by this
condition, and use the DM mass m� and the mass differ-
ence

�m ⌘ mt̃ �m� (12)

to describe the remaining two-dimensional parameter
space. Dark matter stability requires �m > 0.

In Fig. 1, we show the resulting coupling �� (green
lines) as function of the DM mass, for fixed �m =
2.5TeV (left) and �m = 100TeV (right). The freeze-
in contribution dominates for m� ⌧ m

crit
� ' 1.6 TeV

and 40GeV in the two cases, respectively, corresponding
to the “bulk” region discussed before. The coupling ��

required to obtain the measured relic density increases
towards lower DM masses. This can be understood in
the following way: as discussed above, for �m � m�,
the freeze-in yield is approximately independent of m�,
such that ⌦h2

' (⌦h2)fi / �
2
�m�. Requiring ⌦h2 = 0.12

thus implies �� /
p
m�.

When increasing m� for fixed �m, the superWIMP
contribution becomes larger. Since it is independent of
��, its value saturates the constraint (⌦h2)sW ! 0.12 for
some finite value of m� ! m

crit
� . At this point �� ! 0,

and no solutions providing the measured DM abundance
exist for larger values of m�. In order to quantify the
uncertainty due to the approximate treatment of 2 ! 2
contributions with threshold enhancement, we show an
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• Freeze-in production semi-relativistic: finite-temperature effect

Scrutinising further assumptions
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Figure 1a. The amplitude for the radiative capture consists of the (non-perturbative) initial and
final state wavefunctions, and the perturbative 5-point function that includes the radiative vertices.
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Figure 1b. The leading order diagrams contributing to C⌫ . The external-momentum, colour-index
and space-time-index assignments are the same in all three diagrams.

Emission from the mediator

ipC⌫
medqaii1,jj1 “

“ S1p⌘1P ` pq
”
´igspT b

1 qi1i p⌘1K ` ⌘1P ` q ` pq⇢
ı
S1p⌘1K ` qq ´i

p⌘1K ` q ´ ⌘1P ´ pq2

ˆ S2p⌘2P ´ pq
“
´igs pT c

2 qj1j p⌘2K ` ⌘2P ´ q ´ pqµ
‰
S2p⌘2K ´ qq ´i

p⌘2K ´ q ´ ⌘2P ` pq2
ˆ p´gBSF

s fabcq tg⇢µrp⌘1K ` q ´ ⌘1P ´ pq ´ p⌘2K ´ q ´ ⌘2P ` pqs⌫

`g⌫⇢r´Pg ´ p⌘1K ` q ´ ⌘1P ´ pqsµ ` gµ⌫rp⌘2K ´ q ´ ⌘2P ` pq ` Pgs⇢u , (2.21a)

Emission from X1

ipC⌫
1 qaii1,jj1 “ �j1j S2p⌘2K ´ qq ˆ S1p⌘1P ` pqS1p⌘1K ` qq

ˆ
“
´igBSF

s pT a
1 qi1i p⌘1K ` ⌘1P ` q ` pq⌫ p2⇡q4�4p⌘1K ` q ´ ⌘1P ´ p ´ Pgq

‰
,

(2.21b)

Emission from X2

ipC⌫
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ˆ
“
´igBSF
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2 qj1j p⌘2K ` ⌘2P ´ q ´ pq⌫ p2⇡q4�4p⌘2K ´ q ´ ⌘2P ` p ´ Pgq

‰
.

(2.21c)

We are interested only in the spatial components of C⌫ , ⌫ “ 1, 2, 3,

Ca
ii1,jj1 “ pCmedqaii1,jj1 ` pC1qaii1,jj1 ` pC2qaii1,jj1 . (2.22)
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2 qj1j p⌘2K ` ⌘2P ´ q ´ pqµ
‰
S2p⌘2K ´ qq ´i

p⌘2K ´ q ´ ⌘2P ` pq2
ˆ p´gBSF

s fabcq tg⇢µrp⌘1K ` q ´ ⌘1P ´ pq ´ p⌘2K ´ q ´ ⌘2P ` pqs⌫
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Emission from X1

ipC⌫
1 qaii1,jj1 “ �j1j S2p⌘2K ´ qq ˆ S1p⌘1P ` pqS1p⌘1K ` qq
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1 qi1i p⌘1K ` ⌘1P ` q ` pq⌫ p2⇡q4�4p⌘1K ` q ´ ⌘1P ´ p ´ Pgq

‰
,

(2.21b)
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We are interested only in the spatial components of C⌫ , ⌫ “ 1, 2, 3,

Ca
ii1,jj1 “ pCmedqaii1,jj1 ` pC1qaii1,jj1 ` pC2qaii1,jj1 . (2.22)
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Bound state formation:

[see e.g. K. Petraki, M. Postma, M. Wiechers 1505.00109; S. P. Liew, F. Luo 1611.08133; J. Harz, K. Petraki 1805.01200;  A. 
Mitridate, M. Redi, J. Smirnov,  A. Strumia 1702.01141; T. Binder, B. Blobel, J. Harz, and K. Mukaida 2002.07145; ...]
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FIG. 1: Bound-state formation cross section, eq. (49), for the strong (left) and elecromagnetic process (right). We show the
sum

P
` S

BSF
n` (⇣s, ⇣b) (solid lines) as well as the ` = 0 contribution only (dashed lines). The various colors corresponds to

the principal quantum numbers n = 1, . . . , 6, as given in the legend. For large ↵s/vrel the cross section of the strong process
is Sommerfeld suppressed due to the repulsive interaction of the q̃q̃† pair in the octet representation, while it is Sommerfeld
enhanced for the electromagnetic process, involving a scattering wave function in the color singlet configuration.

tion, and the first from `0 = ` � 1 exists only for ` > 0.
The contribution from ` = 0 orbitals therefore dominates
for ↵s/vrel ⌧ 1, as can also be seen by the convergence
of solid and dashed lines for each n � 2 in Fig. 1 in that
limit.

In the opposite limit ↵s/vrel � 1,

SBSF
n` (⇣s, ⇣b) !

2⇡⇣s
1� e�2⇡⇣s

fBSF
n`

✓
⇣s
⇣b

◆
, |⇣s,b| ! 1 ,

(55)

where

fBSF
n`

✓
⇣s
⇣b

◆
= e�

4n⇣s
⇣b

sBSF
n` |4n�2`

⇣4n�2`
b

. (56)

Here sBSF
n` |4n�2` corresponds to the polynomial obtained

when keeping only the terms with maximal combined
power in ⇣s and ⇣b in sBSF

n` (⇣s, ⇣b), being 4n�2`, such that
fBSF
n` depends only on the ratio ⇣s/⇣b = ↵eff

s /↵eff
b . Up to

the different renormalization scale at which the effective
couplings are evaluated, fBSF

n` approaches a constant for
↵s/vrel � 1.

The behavior at small relative velocities is therefore
governed dominantly by the first factor in eq. (55). It
exhibits a qualitatively different behavior depending on
the sign of ⇣s. For (q̃q̃†)[8] ! B

[1]
n` + g, the repulsive

potential relevant for the initial state implies ⇣s < 0,
leading to an exponential suppression for small relative
velocities, SBSF

n` ! 2⇡|⇣s|e�2⇡|⇣s|fBSF
n` . For the electro-

magnetic process (q̃q̃†)[1] ! B
[1]
n` +�, both the initial and

final state wavefunction are sensitive to the attractive
color singlet potential, such that in particular ⇣s > 0,
and SBSF

n` ! 2⇡⇣sfBSF
n` grows with ⇣s / ↵s/vrel.

The different shape of SBSF
n` for the two processes can

clearly be seen in Fig. 1. For the electromagnetic process,

the combined contribution from all angular momentum
states

P
` S

BSF
n` decreases with increasing values of n, for

all velocities vrel. On the other hand, for the strong pro-
cess the exponential suppression at large ⇣s leads to a
maximum of SBSF

n` . Its position shifts to higher values of
↵s/vrel for excited states with increasing n. In addition,
the value at the maximum increases with n. This indi-
cates that excited levels become more and more relevant
the smaller the relative velocity, i.e. the lower the tem-
perature that is relevant for determining the relic density.

B. Decay

The leading decay process is due to annihilation of the
constituents of the bound state into a pair of gluons,
Bn` ! gg. Here, we briefly review the derivation of the
decay rate following [23], provide an expression for gen-
eral n (for ` = 0) and discuss the role of higher-order
corrections.

For a generic 1 ! N decay process Bn` !

X1X2 . . . XN the matrix element Mn` can be related
to the usual Feynman matrix element for the process
q̃(k1, i)+q̃†(k2, j) ! X1(p1)+· · ·+XN (pN ), with color in-
dices in the initial state contracted with P s

ij = �ij/
p
Nc,

that we denote by M
s(k1, k2, {pj}), via

Mn`m =

Z
d3q

(2⇡)3
 n`m(q)p

2Nq
M

s(K/2 + q,K/2� q, {pj}) ,

(57)
with Nq ! µ in the nonrelativistic limit, and bound state
wave function  n`m ⌘  [1]

n`m in momentum space, nor-
malized such that

R
d3x| n`m(x)|2 = 1 in position space.

Here K is the four-momentum of the bound state. The

�q̃q̃
†!Bg

BSF,n` vrel / ↵s!
3
��h [1]

n` |r| 
[8]
preli

��2

[Garny, JH 2112.01499]

small velocities ~ relevant for small temperatures

[Color-electric dipol operator,
computed in potential nonrel. QCD, 

see e.g. X. Yao, B. Müller 1811.09644 ]
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been recently raised for monopole transitions in Ref. [16]
where partial-wave unitarity can be violated already for
capture into the ground state level n = 1.

For non-numerical evidence of unitarity violation in
non-Abelian gauge theories, a simple analytic expression
would be warranted. We managed to get an approximate
analytic result by taking two limits in Eq. (6): (i) ↵eff

s !

0 and subsequently (ii) ⇣̃b ! 1 where ⇣̃b = ↵
eff
b /(nv).

Taking these limits, we obtain the result for the s-wave
case in SU(Nc)

(�v)`
0=0
n,`=1 '

CF

N2
c

4↵

3

32⇡↵eff
b

µ2
n(n2

� 1), for (i) and (ii).

(9)

The two limits are justified for relative velocities which
fulfill the condition2

2⇡|↵eff
s | ⌧ v ⌧

↵
eff
b

2n2
. (10)

In this velocity regime, we compared our direct numerical
evaluation of Eq. (6) to the analytical result in Eq. (9)
for a variety of Nc and n values and find very good agree-
ment. The fact that the s-wave BSF cross section reaches
a constant value for the above velocity regime is another
non-trivial check of our numerical implementation also
for very large n.

However, the velocity regime may be too restricted to
analytically proof unitarity violation for contributions of
a single n. Namely, while for SU(Nc) the s-wave BSF
cross section approaches the unitarity limit for increasing
n, the velocity regime where the analytic expression is
valid becomes smaller and eventually – (very) close to
the unitarity bound – the condition in Eq. (10) cannot be
met. Nevertheless, if there exists a theory with ↵

eff
s = 0,

then there is no lower bound on v and violation of s-
wave unitarity can be shown with the above formula.
Notice that ↵

eff
s = 0 corresponds to the large Nc limit of

SU(Nc), which is, however, not justified for all velocities
for a finite Nc.

In the following, we explore phenomenological conse-
quences focusing on the regime compatible with pertur-
bativity and partial wave unitarity bounds.

III. SUPER CRITICAL BEHAVIOR

The impact of a set of bound states on the freeze-out
dynamics of some particle species, j, can under very gen-
eral conditions be described by the Boltzmann equation

ṅj + 3Hnj = �h�vieff[n
2
j � (neq

j )2] , (11)

2 For adjoint-to-singlet BSF in SU(Nc) ↵eff
s = �↵/(2Nc) and

↵eff
b = CF↵, where CF = (N2

c � 1)/(2Nc).

where nj is the number density and H the Hubble ex-
pansion rate. The effective cross section, h�vieff, includes
all the effects of pair annihilation as well as scattering-
bound [4] and bound-bound transitions [1, 14, 36]. Here,
we investigate whether the inclusion of an increasing
number of excited states can lead to an effective cross
section that grows sufficiently fast to maintain efficient
depletion of the (comoving) particle number density and,
hence, prevent the particle species (e.g. dark matter)
from freezing out. We call this condition a super crit-
ical behavior.

To obtain the threshold for such a super critical be-
havior, let us consider a typical scenario where a particle
species with mass m is initially in thermal equilibrium
with a heat bath with temperature T and entropy den-
sity s. We assume s / T

3, H / T
2, i.e. no (significant)

change in the relativistic degrees of freedom of the bath.
Introducing the yield as Yj ⌘ nj/s and parametrizing
time by x ⌘ m/T in Eq. (11), one can estimate the yield
evolution as a function of x as follows. For times where
the yield Yj(x) starts to deviate significantly from its
equilibrium value, Yj(x) � Y

eq
j (x), also known as the

time of chemical decoupling, xcd, one can neglect the im-
pact of Y eq

j (x) in the Boltzmann equation. This allows
for an analytic solution for the yield evolution after chem-
ical decoupling (see e.g. Ref. [57]), which up to constants,
can be estimated to scale as

Yj(x0) /
1R x0

xcd
dxx�2 h�vieff(x)

. (12)

The integral converges for x0 ! 1 only if h�vieff(x)
grows slower than x while for h�vieff / x

� with � � 1
the integral diverges. Accordingly, the particle species
only freezes out for � < 1 (typical WIMP) while the par-
ticle continues to deplete for � � 1. The critical value
� = 1 leads to logarithmic depletion and sets the thresh-
old for what we define a super critical behavior. Above
this threshold, the evolution of the yield approaches the
scaling Yj / x

1�� for x � xcd. In this case, the effective
annihilation rate �eff ⌘ njh�vieff is dynamically driven
to be proportional to the Hubble rate �eff / H.

In the presence of bound states, the effective cross sec-
tion introduced above can be written as [14, 36]

⌦
�v

↵
eff =

⌦
�v

↵
ann +

X

n,`

⌦
�v

↵
n`
Rn` , (13)

where the first term is the usual pair annihilation cross
section, thermally averaged. In all cases considered in
this work, it includes the Sommerfeld effect [58, 59].
The second term contains the thermal average of the
BSF cross sections, denoted as

⌦
�v

↵
n`

. The summation
over all bound-state quantum numbers contains a dimen-
sionless, temperature dependent quantity, which obeys
0  Rn`  1.3 Thus, the presence of bound states al-

3 Within the electric dipole approximation, bound states with dif-
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we investigate whether the inclusion of an increasing
number of excited states can lead to an effective cross
section that grows sufficiently fast to maintain efficient
depletion of the (comoving) particle number density and,
hence, prevent the particle species (e.g. dark matter)
from freezing out. We call this condition a super crit-
ical behavior.

To obtain the threshold for such a super critical be-
havior, let us consider a typical scenario where a particle
species with mass m is initially in thermal equilibrium
with a heat bath with temperature T and entropy den-
sity s. We assume s / T

3, H / T
2, i.e. no (significant)

change in the relativistic degrees of freedom of the bath.
Introducing the yield as Yj ⌘ nj/s and parametrizing
time by x ⌘ m/T in Eq. (11), one can estimate the yield
evolution as a function of x as follows. For times where
the yield Yj(x) starts to deviate significantly from its
equilibrium value, Yj(x) � Y

eq
j (x), also known as the

time of chemical decoupling, xcd, one can neglect the im-
pact of Y eq

j (x) in the Boltzmann equation. This allows
for an analytic solution for the yield evolution after chem-
ical decoupling (see e.g. Ref. [57]), which up to constants,
can be estimated to scale as

Yj(x0) /
1R x0

xcd
dxx�2 h�vieff(x)

. (12)

The integral converges for x0 ! 1 only if h�vieff(x)
grows slower than x while for h�vieff / x

� with � � 1
the integral diverges. Accordingly, the particle species
only freezes out for � < 1 (typical WIMP) while the par-
ticle continues to deplete for � � 1. The critical value
� = 1 leads to logarithmic depletion and sets the thresh-
old for what we define a super critical behavior. Above
this threshold, the evolution of the yield approaches the
scaling Yj / x

1�� for x � xcd. In this case, the effective
annihilation rate �eff ⌘ njh�vieff is dynamically driven
to be proportional to the Hubble rate �eff / H.

In the presence of bound states, the effective cross sec-
tion introduced above can be written as [14, 36]

⌦
�v

↵
eff =

⌦
�v

↵
ann +

X

n,`

⌦
�v

↵
n`
Rn` , (13)

where the first term is the usual pair annihilation cross
section, thermally averaged. In all cases considered in
this work, it includes the Sommerfeld effect [58, 59].
The second term contains the thermal average of the
BSF cross sections, denoted as

⌦
�v

↵
n`

. The summation
over all bound-state quantum numbers contains a dimen-
sionless, temperature dependent quantity, which obeys
0  Rn`  1.3 Thus, the presence of bound states al-

3 Within the electric dipole approximation, bound states with dif-
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

[Result for n=1 cf. Decant, Hooper, 
Lopez-Honorez, JH 2111.09321,

Bollig, Vogl 2112.01491]
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

Relevant for constraints from 
cosmological structure formation
(Lyman-alpha forest observations)

Impact on the relic abundance
[Binder, Garny, JH, Lederer, Urban 2308.01336]
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

X
SMX

X SM



➔ SM

Revisiting the coannihilation scenario
[Griest, Seckel 1991; Edsjo, Gondolo 1997]

4

re
la

ti
ve

ra
te

�
/H

mX1/T

X2X2 ⇥ SM

X2 ⇥ X1 SM

ab
un

da
nc

e

mX1/T

X1X2

neq

FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
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are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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result that would be obtained when assuming CE. The red
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are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
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are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point

⇥
h
2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
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are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
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is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
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is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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is the only e�cient annihilation channel. Hence the min-
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provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.
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by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
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that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
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ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
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m�). These values lie far beyond the sensitivity of direct
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• Typical couplings of the order 10-6 
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• Washes out initial conditions
• Converges directly to early out-of-equilibrium abundance
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▪ Neutdriver (1995) [Jungman et al.]

▪ micrOMEGAs (2001–) [Bélanger et al.] 

▪ IsaRed / IsaRes (2004) [Baer et al.]

▪ DarkSUSY / DRAKE (2004 –) [Bringmann et al.]

▪ SuperISORelic (2009, succeeded by DarkPack) [Arbey, Mahmoudi]

▪ MadDM (2013 –) [Arina et al.]

• DarkPack / MARTY (2022 –) [Palmiotto et al]

• RelExt (2025 –) [Capucha et al.]

• …

Numerical Tools
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• WIMP: Not just theoretically appealing but also technically 
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• Beyond the WIMP: Requires rethinking assumptions 
  → often leads to qualitatively new effects
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Conclusion

• WIMP: Not just theoretically appealing but also technically 
  → allows for many simplifying assumptions
• Beyond the WIMP: Requires rethinking assumptions 
  → often leads to qualitatively new effects

• WIMP-ish Scenarios: Resonances, Secluded Dark Matter

• Phenomenology is shaped by the mechanism
→ experimental signals often track the broken assumption

Takeaway: The relic density is a target, not a recipe
→ many mechanisms can achieve it – explore broadly


