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What we know about Dark Matter

Contributions {2; to the energy
density of the Universe today:

Atoms
Dark
4.9% Energy
Dark 68.3%
Matter
26.8%

TODAY

Qpnvh? = 0.12 4+ 0.001

* Dark
* Cold or slightly warm
* Long-lived

 Constrained self-interaction




What is the Origin!?




Many possibilities

c Y
CU:)

Focus:
Dark Matter is (and behaves like) a particle
in early universe thermal bath
(no axions, no black holes)



Particle dark matter: a thermal relic

hadron = bound quarks system (proton, neutron, etc.)

CEA/Irfu 2018

Early Universe Today



Particle dark matter: a thermal relic

Particle physics + cosmology:
— Extrapolate to early, hot
Universe
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Particle dark matter: a thermal relic

= Successful example: Big Bang Nucleosynthesis

hadron = bound quarks system (proton, neutron, etc.)
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-> Explains primordial abundances of light elements
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Particle dark matter: a thermal relic

Particle physics + cosmology:
Extrapolate to early, hot
Universe

+B 108 years B pion years
T =\5¥%

¢ = 380,000 Y=

=3 min
Y T =3000K

CEA/Irfu 2018

hadron = bound quarks system (proton, neutron, etc.)

Early Universe Today

= Solving the Boltzmann Equations for Dark Matter



Boltzmann equations for particle densities

[Zel'dovich, Okun, Pikel'ner1966; Lee,Weinberg 1977; Binetruy, Girardi, Salati 1984;
Bernstein, Brown, Feinberg 1985; Srednicki,Watkins, Olive 1988; Kolb, Turner 1990;
Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

Ex (O — HpGp) (e t) = Ol

Relativistic Liouville operator for Collision
homogeneous, isotropic Universe operator

Cosmology Particle Physics



Boltzmann equations for particle densities

[Zel'dovich, Okun, Pikel'ner1966; Lee,Weinberg 1977; Binetruy, Girardi, Salati 1984;
Bernstein, Brown, Feinberg 1985; Srednicki,Watkins, Olive 1988; Kolb, Turner 1990;
Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

DM distribution functions

/ \

S t) = Ol

Relativistic Liouville operator for Collision
homogeneous, isotropic Universe operator

Cosmology Particle Physics



Boltzmann equations for particle densities

[Zel'dovich, Okun, Pikel’'ner1966; Lee,Weinberg 1977; Binetruy, Girardi, Salati 1984;
Bernstein, Brown, Feinberg 1985; Srednicki,Watkins, Olive 1988; Kolb, Turner 1990;
Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

Assumption™ fy(p) < fem = e Ev/T
* Dark Matter in kinetic equilibrium n

and non-relativistic at relevant times




Boltzmann equations for particle densities

[Zel'dovich, Okun, Pikel’'ner1966; Lee,Weinberg 1977; Binetruy, Girardi, Salati 1984;
Bernstein, Brown, Feinberg 1985; Srednicki,Watkins, Olive 1988; Kolb, Turner 1990;
Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

Assumption™ fy(p) < fem = e Ev/T
* Dark Matter in kinetic equilibrium n

and non-relativistic at relevant times

p

Integrated equation for n, (t) = /de (D, 1):

dny 2 eq?2 e
i 3HnX:—<gv>ann (nx—nxq ) _I‘X (nx—nxq) +...
Cosmology Particle Physics



Boltzmann equations for particle densities

[Zel'dovich, Okun, Pikel’'ner1966; Lee,Weinberg 1977; Binetruy, Girardi, Salati 1984;
Bernstein, Brown, Feinberg 1985; Srednicki,Watkins, Olive 1988; Kolb, Turner 1990;
Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

Assumption™ fy(p) < fem = e Ev/T
* Dark Matter in kinetic equilibrium n

and non-relativistic at relevant times

p

Integrated equation for n, (t) = /de (D, 1):

dn,,

dt

| SH”I%X — _<Uv>ann (ni — n;qQ) — FX (nX — neq) + ...

X ? SM T SM

...just as an example



Boltzmann equations for particle densities

[Zel'dovich, Okun, Pikel’'ner1966; Lee,Weinberg 1977; Binetruy, Girardi, Salati 1984;
Bernstein, Brown, Feinberg 1985; Srednicki,Watkins, Olive 1988; Kolb, Turner 1990;
Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

Compare rates to Hubble expansion rate H oc 77

*in radiation
dominated era

Larger than Hubble
/ expansion = efficient

T, > H



Boltzmann equations for particle densities

[Zel'dovich, Okun, Pikel’'ner1966; Lee,Weinberg 1977; Binetruy, Girardi, Salati 1984;
Bernstein, Brown, Feinberg 1985; Srednicki,Watkins, Olive 1988; Kolb, Turner 1990;
Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

Compare rates to Hubble expansion rate H oc 77

*in radiation
dominated era

T, > H

inefficient, /

just Hubble expansion



Boltzmann equations for particle densities

[Zel'dovich, Okun, Pikel’'ner1966; Lee,Weinberg 1977; Binetruy, Girardi, Salati 1984;
Bernstein, Brown, Feinberg 1985; Srednicki,Watkins, Olive 1988; Kolb, Turner 1990;
Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]

Compare rates to Hubble expansion rate H oc 77

*in radiation
dominated era

~ typically something
interesting happens

'y ~H



WIMP freeze-out

dn,,

F3Hn, = —(0v)ann (”i — nfch) (no decay!)

dt
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WIMP freeze-out

dn,,

F3Hn, = —(0v)ann (”i — nfch) (no decay!)

dt
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WIMP freeze-out

dn
X . 2 eq2
dt | SHTLX — —<0'v>a,nn (nX — nxq ) (no decay!)
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Weakly interacting massive
"WIMP miracle”
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Side-remark:What if | add decay!

SM

Annihilation: =0,

0.001 |

10-6 ° ‘ = ‘
0.001 0.100 10 1000

T =my /T

Add Decay: —QO 22

1000 t

10}

0.100 t

0.001 t

Tgec/H oc T2



T/H

/H

—~

109,

106,

1000 F

1

0.001 |

10=6

1000 t

10}

0.100 t

0.001 t

0.001 0.100 10 1000

Side-remark:VVhat

SM

Annihilation: =0,

z =my /T -—>
Add Decay: X—O<§E

I 10 100 1000 g4 g5
T =my /T

if | add decay?

Y (= com. number density)

10—5,

—_
=
\O

J—
S

—_
)

—
(98]
T

[a—
~
T

I 10 100 1000 o4 105

T =my /T






Simplifying assumptions within the VWIMP paradigm

* Radiation dominated era
* Dark sector non-relativistic

* Dark sector in kinetic eq. with SM
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Simplifying assumptions within the VWIMP paradigm

* Radiation dominated era

* Dark sector non-relativistic

* Dark sector in kinetic eq. with SM
* Vanishing initial asymmetry

* DM initially thermalized

* No long-range force in dark sector
(no bound states)
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Simplifying assumptions within the VWIMP paradigm

- Radiation dominated era v

» Dark sector non-relativistic v~

* Dark sector in kinetic eq. with SM ve

* Vanishing initial asymmetry

* DM initially thermalized v for WIMPs

* No long-range force in dark sector v
(no bound states)

* Thermal eq. among dark sector particles v
(e.g. between coannihilating partners)



Simplifying assumptions within the VWIMP paradigm

* Radiation dominated era ?
* Dark sector non-relativistic ?

* Dark sector in kinetic eq. with SM

* Vanishing initial asymmetry ? Beyond Wl MPS

* DM initially thermalized
. some do not hold!
* No long-range force in dark sector

(no bound states) !

* Thermal eq. among dark sector particles
(e.g. between coannihilating partners)



Simplifying assumptions within the VWIMP paradigm

* Radiation dominated era
* Dark sector non-relativistic

* Dark sector in kinetic eq. with SM

* Vanishing initial asymmetry Beyond Wl MPS

* DM initially thermalized
. some do not hold!
* No long-range force in dark sector

(no bound states)

* Thermal eq. among dark sector particles
(e.g. between coannihilating partners)

Let’s explore some departures from the WIMP paradigm...



Outline

* WIMP-ish Variants

Freeze-out from annihilation, hidden sectors

* Non-thermalized dark matter
Freeze-in and superVWIMPs

* Hybrid Regime

freeze-out from conversions



WIMP-ish Variants



Resonant annihilation: Higgs portal model

GAMBIT 1.0.0

Annihilation enhanced:
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Scalar singlet
Prof. likelihood

[GAMBIT Collaboration 2017]

Yq [see also Di Mauro, Arina, Fornengo, JH, Massaro 2023]
q | q
o * No resonant enhancement
| o .
N o . * Small couplings to light quarks, T¢, ~ 2 GeV
As

[Binder, Bringmann, Gustafsson, Hryczuk 2017;

= no kinetic equilibrium! Duch, Grzdkowski 2017]



Resonant annihilation: Higgs portal model

E\(0; — HpOp) fx(pst) = Cann [ fx] + Ca [ f]
1 1

N\ SM q 1 q
Nk < Ya,
- - B
/ )\ |
S
v~ SM X----- Lo X

= Semi-analytic calculation via leading moments

[van den Aarssen, Bringmann, Goedecke 2012]

SYE TR T

= Full numerical solution of unintegrated Boltzmann Eq.

Solve on grid for N momentum modes
= N coupled ordinary differential equations



Resonant annihilation: Higgs portal model
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Secluded Dark Matter / Hidden sectors

X .
. mediator < SM
[Pospeloy, Ritz,Voloshin 2008;

Batell, Pospeloy, Ritz, Shang 2010]

AN
large coupling gp small coupling gsm

* Annihilation governed by large coupling gp
* Equilibration with SM governed by gp X gswm

Questionable:
* Kinetic equilibrium with SM
* Initial equilibration with SM



(ov) [10720 cm3 /5]

Secluded Dark Matter / Hidden sectors
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Assumptions:

* Initial thermalization with SM at large T

* Afterwards: thermal decoupling from SM
* Light mediator = dark thermal bath with:

T(T) _ [¢9(T)/g3 (Tace))
T [gPS(T) /925 (Tuee))?
Consequences:

* Changes temperature in
* I[ncreases Hubble rate

€q

“rand (0V) ann

[Bringmann, Depta, Hufnagel, Schmidt-Hoberg 2021]



Hidden sectors with strong dynamics

* Dark interaction gp subject to long-range force: bound states

* Example: Strongly interacting massive particles (SIMPs)

Wess-Zumino-Witten anomaly (3 = 2 annihilation):

TD TD
\ /
N 2 2
™ — — = &gn—l—BHn - — (723 — N neq) <O'U >3_>2
/ \
7TD/ N Tp

[Hochberg, Kuflik,Volansky, Wacker 2014]



Hidden sectors with strong dynamics

* SIMP paradigm challenged by

self-interaction constraints

Possible solution:
light dark p-meson

1074+
: My, =150 MeV, N¢, =N, =3
10-5 Mo, /My, =1.50 (§ =5.45)
§ —== Mg, /My, =175 (§ = 4.64)
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[Bernreuther, Hemme, Kahlhoefer, Kulkarni 2024]
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[see also Smirnov, Beacom 2020 for a different solution]



Non-thermalized dark matter



Non-thermalized dark matter
aka Feebly interacting massive particles (FIMPs)

So far:
* Sizeable dark matter interactions = thermalization

* Challenge: Large enough annihilation rate
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Non-thermalized dark matter
aka Feebly interacting massive particles (FIMPs)

So far:
* Sizeable dark matter interactions = thermalization

* Challenge: Large enough annihilation rate
* But what about very small couplings!?
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Non-thermalized dark matter
aka Feebly interacting massive particles (FIMPs)

So far:
* Sizeable dark matter interactions = thermalization

* Challenge: Large enough annihilation rate
* But what about very small couplings!?
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Non-thermalized dark matter
aka Feebly interacting massive particles (FIMPs)

So far:
* Sizeable dark matter interactions = thermalization

* Challenge: Large enough annihilation rate
* But what about very small couplings!?
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Non-thermalized dark matter
aka Feebly interacting massive particles (FIMPs)

So far:
* Sizeable dark matter interactions = thermalization

* Challenge: Large enough annihilation rate
* But what about very small couplings!?

10—5 i

10_9 i ,'

Y (= com. number density)
S
L
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L
3
F (;<
Q

1
1 10 100 1000 104 105

T =m, /T

-> extremely small couplings work again



Non-thermalized dark matter — FIMPs

= Only production = small initial abundance

= Freeze-in: occasional production from thermal bath

= UV-sensitive scenarios (e.g. gravitino DM)
-> dependence on reheating temperature

» |R-sensitive scenarios (renormalizable operators)

com. number density)

Y =

f—
)

[E—
9
N

10—8 |

f—
-}

—
oD
—_

—
[\

1 10 100

1000

[Bolz, Buchmuiller, Plimacher 1998;
Bolz, Brandenburg, Buchmuller 2001;
McDonald 2002;

Covi, Roszkowski, Small 2002;

Choi, Roszkowski 2005;

Asaka, Ishiwata, Moroi 2006;

Petraki, Kusenko 2008;

Hall, Jedamzik, March-Russell, West, 2009]

’flx + SRXH = 2 (Cl—>2 + 02_>2)

Mother (/bath-)particle
Zy-odd: M — SMy, MSM — SMy, ...
Zr»even: M — xyx , MM —xx, ...



Non-thermalized dark matter — FIMPs

= Only production = small initial abundance
= Freeze-in: occasional production from thermal bath

= SuperWIMP: late decay of frozen-out particle
[Covi, Kim, Roszkowski 1999; Feng, Rajaraman, Takayama 2003]
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Non-thermalized dark matter — FIMPs

= Only production = small initial abundance
= Freeze-in: occasional production from thermal bath

= SuperWIMP: late decay of frozen-out particle
[Covi, Kim, Roszkowski 1999; Feng, Rajaraman, Takayama 2003]

p—
9
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r | />-odd mediator:

10—8 i

Generally both!

Y (= com. number density)
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1 100 164 106 [see also Arcadi, Covi 201 3]



Example: t-channel mediator model

Dark matter @ my < my @ t-channel mediator

[ = quark or lepton



Example: t-channel mediator model

Dark matter @ my < my @ t-channel mediator

[ = quark or lepton

gsm 7Y

/
Mediator same gauge quantum no. as f = (color-)charged: v/ Z, g JX
\

Y



Example: t-channel mediator model

Dark matter @ my < my Q t-channel mediator

Ax gsm
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Example: t-channel mediator model

Dark matter @ my < my Q t-channel mediator

Ax gsm
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Y (= com. number density)
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Example: t-channel mediator model

Dark matter @ my < my Q t-channel mediator

Ax

e

‘| i\

100 104 106
r = mmother/T

gsm
Y < SM
AN
X
Y - SM
Ay £
Y _____
/
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Example: t-channel mediator model
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[Decant, JH, Hooper, Lopez-Honorez 2022, see also Garny, JH, 2018]



Scrutinising further assumptions

* Freeze-in production semi-relativistic: finite-temperature effect
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Scrutinising further assumptions
* Freeze-in production semi-relativistic: finite-temperature effect

* SuperWIMP production: highly non-relativistic Y particle

| / Sommerfeld enhancement:;

Yg o\~ SM
- S AN oM

ey \ | Bound state formation:
| ' | | g

1 100 104 106 /_\
): R
): R

T = Mmother/T Y > \g/
> g N g A \< >

NS

[see e.g. K. Petraki, M. Postma, M.Wiechers 1505.00109; S. P. Liew, F Luo 1611.08133;]. Harz, K. Petraki 1805.01200; A.
Mitridate, M. Redi, J. Smirnov, A.Strumia 1702.01141;T. Binder, B. Blobel, J. Harz, and K. Mukaida 2002.07145; ...]
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Bound state formation cross section

-t B 1 8 9 [Color-electric dipol operator,
O-]%)qSF nggvrel X Ckswg ‘ <77b?[?,€] ’r‘w[pr]el> | computed in potential nonrel. QCD,
; see e.g. X.Yao, B. Muller 1811.09644 ]
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small velocities ~ relevant for small temperatures



Inclusion of excited bound states

g g _

= E é’(% B o Y o ﬁ’(Q) &‘
_g B or or By U
Bound state Decay Reionise Bound-tf)Tbound 8
formation transitions -

-> Couple set of Boltzmann equations (one for each state)
Reformulation as effective cross section possible:

<<7XXW>eﬂf — <UXXTU> + Z <UBSF,¢U>ﬁ, 0<R; <1
i

[Binder Filimonova, Petraki, White 2112.00042; Garny, JH 2112.01499]

[cf. Ellis, Luo, Olive 1503.07142;
Mitridate, Redi, Smirnoyv, Strumia 1702.01141]



<O_U>eff [GGV_Z]

Effective annihilation cross sec

[Binder, Garny, JH, Lederer, Urban 2308.

SM QCD+QED (incl. transitions)
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Y=n/s

Effective annihilation cross section
[Binder, Garny, JH, Lederer, Urban 2308.01

r=mx/T ortime

336]

(V) X X7

freeze outif v < 1

‘eternal’ annihilation if v > 1




<O_U>eff [GGV_Z]

Effective annihilation cross sec

[Binder, Garny, JH, Lederer, Urban 2308.

SM QCD+QED (incl. transitions)
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Impact on the relic abundance

[Binder, Garny, JH, Lederer, Urban 2308.01336]

10_8 FrTT ror T o “““\;
mg =4 x 10°GeV |
3 A .~ Bound states introduce
10 ? } dependence on )\ in
2.5 x 1071 GeV superWIMP production!
: e
B G
10712 5% 109 Gev v
: B ]
Y 1 x 107" GeV _ _
10° 10 10° 10* 10° 10° 107

r=mg/T

[Result for n=1 cf. Decant, Hooper,
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Bollig,Vogl 2112.01491]



Impact on the relic abundance
[Binder, Garny, JH, Lederer, Urban 2308.01336]
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Relevant for constraints from
cosmological structure formation
(Lyman-alpha forest observations)
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Hybrid Regime

So far:
Large DM couplings «—— thermalization

Feeble DM couplings «——  no thermalization



Hybrid Regime
Possible?

Large DM couplings thermalization
Feeble DM couplings / no thermalization

= Revisit coannihilation scenario
... but drop an important assumption



Example: t-channel mediator model:

Dark matter @ my < my @ t-channel mediator

[ = quark or lepton

gsm 7Y

/
Mediator same gauge quantum no. as f = (color-)charged: v/ Z, g JX
\

Y



Revisiting the coannihilation scenario

[Griest, Seckel 1991; Edsjo, Gondolo 1997]
X SM

O g




Revisiting the coannihilation scenario

[Griest, Seckel 1991; Edsjo, Gondolo 1997]
X SM

O ou
X SM
7O g




Revisiting the coannihilation scenario
[Griest, Seckel 1991; Edsjo, Gondolo 1997]
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Revisiting the coannihilation scenario
[Griest, Seckel 1991; Edsjo, Gondolo 1997]
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X SM X Y SM
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Revisiting the coannihilation scenario
[Griest, Seckel 1991; Edsjo, Gondolo 1997]

W > @20 >
X SM X

Y Y
X>O<SM SM >O<SM Y
X SM X X SM
y>o<3|v| SM>O_ Y y>o<sw|

Two ways of dark matter depletion



Revisiting the coannihilation scenario
[Griest, Seckel 1991; Edsjo, Gondolo 1997]

@ - ™ @ Q > SM
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Revisiting the coannih

ilation scenario

[Griest, Seckel 1991; Edsjo, Gondolo 1997]
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Revisiting the coannihilation scenario
[Griest, Seckel 1991; Edsjo, Gondolo 1997]
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Revisiting the coannihilation scenario
[Griest, Seckel 1991; Edsjo, Gondolo 1997]
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Revisiting the coannihilation scenario
[Griest, Seckel 1991; Edsjo, Gondolo 1997]

@ 5 S @ > @ > SM

~ M B
<

A~ g = I'conv => 'ann

[

F(zomv > H Fzmn ~ H



Revisiting the coannihilation scenario
[Griest, Seckel 1991; Edsjo, Gondolo 1997]

Efficient conversions
establish chemical equilibrium:

aly)

eq
Yy

YY

| —

A~ g = I'conv => 'ann

/

L'conv > H

\
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> 4
Y SM
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What if | make A smaller?

aly)

Yy Y
Chemical equilibrium maintained? Yy = Y;q
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What if | make A smaller?

aly)

Chemical equilibrium maintained
Only mediator drives dilution

Yx Y
Yy YO

A

~ e msm/T 1

—25



What if | make A smaller?

aly)

: S o Y- Yy
Chemical equilibrium maintained X 1X
Only mediator drives dilution Yy Y




What if | make A very small?

aly)

At some point:

FConV ~ H

Yx

Yy

eq
Yy

eq
Yy

B ——

A

~Y e_mSM/T ~Y 1

—25



What if | make A very small?

Conversion rate sets relic density!
-> Conversion-driven freeze-out
aka coscattering

[Garny, JH, Lulf, Vogl 1705.09292, PRD;
D'Agnolo, Pappadopulo, Ruderman 1705.08450, PRL]
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Evolution of abundances
[Garny, |H, Lulf, Vogl 1705.09292]

= Very small coupling A, ~ 2.6 x 10~ ":

m, = 500GeV , mz = 510 GeV
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Evolution of abundances
[Garny, |H, Lulf, Vogl 1705.09292]

= Very small coupling A, ~ 2.6 x 10~ ":

m, = 500GeV , mz = 510 GeV
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relative rate I'/ H
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Evolution of abundances

[Garny, JH, Lulf, Vogl 1705.09292]

= Very small coupling A, ~ 2.6 x 10~ ":

m, = 500GeV , mz = 510 GeV
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Prolonged freeze-out process
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relative rate I'/ H
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* Typical couplings of the order [0-¢

Evolution of abundances
[Garny, |H, Lulf, Vogl 1705.09292]

= Very small coupling A, ~ 2.6 x 10~ ":
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Evolution of abundances
[Garny, |H, Lulf, Vogl 1705.09292]

* Washes out initial conditions
* Converges directly to early out-of-equilibrium abundance
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Evolution of abundances
[Garny, |H, Lulf, Vogl 1705.09292]

* Washes out initial conditions
* Converges directly to early out-of-equilibrium abundance

Yy (1) =100 Yy 9 (1) 9 Enables
simultaneous baryogenesis
from same processes [JH 2024]
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Kinetic eq.
Thermalization
Non-relativistic
No Bound states

Eq. in dark sector

SN

Overview
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Kinetic eq.
Thermalization
Non-relativistic
No Bound states

Eq. in dark sector

SN

Overview
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Kinetic eq.
Thermalization
Non-relativistic
No Bound states

Eq. in dark sector

SN

Overview



Numerical Tools

= Neutdriver (1995) [Jungman et al ]

= micrOMEGAs (2001-) [Bélanger et al.]

= |[saRed / IsaRes (2004) [Baer et al.]

= DarkSUSY / DRAKE (2004 —) [Bringmann et al.]

= SuperlSORelic (2009, succeeded by DarkPack) [Arbey, Mahmoudi]
= MadDM (2013 —) [Arina et al.]

* DarkPack / MARTY (2022 —) [Palmiotto et al]

* RelExt (2025 —) [Capucha et al ]
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* Beyond the WIMP: Requires rethinking assumptions
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Conclusion

* WIMP: Not just theoretically appealing but also technically
— allows for many simplifying assumptions

* Beyond the WIMP: Requires rethinking assumptions
— often leads to qualitatively new effects

* WIMP-ish Scenarios: Resonances, Secluded Dark Matter
* Stronger departure: Non-Thermal Dark Matter,
Conversion-driven freeze-out

* Phenomenology is shaped by the mechanism
— experimental signals often track the broken assumption

Takeaway: The relic density is a target, not a recipe
— many mechanisms can achieve it — explore broadly



