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Four roads to Dark Matter
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Indirect Detection of Dark Matter:
the General Framework

1) Dark Matter Annihilation Typical final states include
heavy fermions, gauge or Higgs bosons

2) Fragmentation/Decay  Annihilation products decay and/or
fragment into some combination of electrons, protons,
deuterium, neutrinos and gamma rays
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Gamma Rays



Fermi-LAT

Fermi-Large Area Telescope (LAT)
Launched in 2008, 17 yrs ago!
Energy range 30 MeV- few TeV
PSF 0.10-0.6°

Fermi Gamma-Sky, E>1 GeV




Ground based observations

Imaging Cherenkov Telescopes detect
the showers produced by the
gammas (and hadrons) interacting
in the upper atmosphere

Cherenkov

light

Particle s

Advantages:
« Large Aeff: 1045 m2 =
1045 x Fermi-LAT
« Good Angular resolution: better
than 0.1°
Air show

I(i:h;‘etrenk : — Drawbacks:
g « Hadronic Background

* Narrow field of view: ~few degs
 High energy threshold: ~100 GeV




Ground based observations

Imaging Cherenkov Telescopes detect
the showers produced by the

gammas (and hadrons) interacting | . -

in the upper atmosphere .
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Where to look
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Galactic Center

Galactic Center
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Large Uncertainties in the DM profile
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« It's compatible with a DM -::_'\,_{.-"
interpretation with masses in

the range 10-100 GeV and cross 1027

section close to thermal

Calore, Cholis, Weniger, JcAPRbTd!




Inner Galaxy Excess(?)
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Several groups find an excess compatible
with a spherical morphology.

Casandjian 2014 also finds an excess,
but not spherically symmeftric: related
to the 'tip' of the Fermi Bubbles

Spectrally the excess is also compatible
with on orgin by pulsars emission.

Overall, situation not clear yet




Galactic Center Excess
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Some tension with dwarfs limits
GCE Can be probed with a 4-5
improvement in dwarfs limits
expected in the next ~10 yrs

E.Charles at al., Phys. Rep 2016
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Galactic Center Excess

10—2ﬂ
] —— Ackermann et al. 2015
| —— Albert et al. 2016

1 —— Calore et al. 2015
/7 N

—10"%
lﬁ :
S 10-%
10— . 1.01 . . — 1(.)—) . . — ..1(.)3
mpM [GC\"Y]
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MilkyWay DM content have been
neglected!
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Galactic Center Excess

Unresolved Point Sources (MSP)
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Petrovic et al. JCAP 2014

Clustering analyses of the gamma-rays
near the GC put the balance in favor
of unresolved point sources (in
particular milli-second pulsars)

See also:

Misha-Sharma & Cranmer PRD 2021

List, Rodd & Lewis PRD 2021

Song et al, MNRAS 2024

Manconi, Calore & Donato, PRD 2024 14



Galactic Center Excess
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Leane & Slatyer PRL 2019, PRL 2020, ArXiv: 1904.08430

However, it has been shown that the
clustering analysis is very prone fto
systematic uncertainties in the diffuse
Galactic emission. Previous studies not
robust. DM back in the game!
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Clean targets: Nearby Dwarfs Galaxies
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J-factor
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J-factors (DM signal) and their
uncertainties can be calculated

from stellar kinematical data of
the dwarfs

The faintest dwarfs detected have a
mass to light ratio of more than 10*: they
are DM dominated system with very little
astrophysical sighal expected

Dwarfs probed in gamma-rays
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Novel constraints using a combined likelihood and
including J-factor uncertainties
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The method implements a
product of likelihoods from the
single dwarfs, instead of the
usual multiple source stacking.
The formalism also allows to
take into account easily the J-
factor uncertainties.
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Constraints with 14 yrs p8 data
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Excludes thermal relic WIMPs with masses smaller than ~100 GeV

Mc Daniel et al. PRD 2024, Arxiv: 2311,04982
Fermi LAT Collaboration, 2015 PRL. arXiv:1503.02641



In combination with Cherenkov telescopes
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Fermi and Magic Collaborations, JCAP 2016. arXiv: 1601.06590

Observation from Cherenkov telescopes further extends the
constraints up o 100 TeV DM mass




More dwarfs in new galaxy surveys

.............

-----------

.........

.........

More dwarfs will be likely
discovered in the next years with
larger J-factors:

* More data from DES,DESI

« Other surveys: LSST, Euclid

DES Survey Region

arXiv:1503.02632
t[— DES J0222.7-5217 — DES J2108.8-5100 /
[| — DES J0255.4-5406 —— DES J2339.9-5424 2
H— DES J0335.6-5403 —— DES J2251.2-5836
F|— DES J0344.34331 = = Combined DES Candidate dSphs ]
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The Extra-Galactic Gamma-ray Background (EGB)
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* Power Law for E < |00 GeV
= Spectral softening at high energies



IGRB Energy Sprectrum
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« The IGRB energy spectrum can be well fitted by a sum of different astro-physical
components. 24
* No obvious need of Dark Matter



E2 - d¢/dEy [MeVem™ 571 sr=1]

Constraints from the Extra-Galactic

Gamma-ray Background

x x EGRET (Sreekumar
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Potentially very constraining, but gives
very model dependent limits due to large
uncertainties in the predicted DM signal

Better understanding of the DM
clustering at small scales can help tight
the uncertainties.
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Exploring different techniques to
search for DM in gamma rays

Fermi-LAT Gamma-ray Sky 2MASS Galaxy catalog

* Anisotropies: Fornasa, Cuoco et al. PRD 2016, Cuoco, Komatsu, Gaskins, PRD 2012,
Ando et al. PRD 2017

« Cross-correlations: Xia, Cuoco et al. ApjS 2015, Cuoco et al. APJS 2015, Regis, Xia,
Cuoco et al. PRL 2015, Ando, JCAP 2014, Ando, Benoit-Levy, Komatsu PRD 2014,
Troster et al. MNRAS 2017, Shirasaki et al. PRD 2018, Ammazzalorso et al. PRL
2020, Thakore et al. JCAP 2025

26
See also Bhashin Thakore's talk



IGRB redshift distribution
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Besides the energy spectrum, the various components differ also by
their distribution in z. In particular DM is expected to peak at low
redshift.

Need to isolate the IGRB emission coming from different redshifts!




Dark Matter Interpretation

< o0 > [em?/s]

Thermal WIMP |

annDM - bb
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annDM - W+W— |

10° o
mpu |GeV| Regis, Xia, Cuoco+ PRL 2015

e Alarge DM contribution to the 2MASS correlation cannot be excluded,
since, due to the peaking at low z, an high 2MASS correlation does not
affect the correlations at higher z.

e Arecent update, Ammazzalorso + 2018, finds that the 2MASS signal
comes more likely from MAGNSs, although a large DM component is still

.
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Dark Matter Constraints
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Limits on the DM contribution can be placed, although they depend on the
DM Halo substructure modeling.

e They are, however, competitive even in the most conservative

substructure boost scenario (i.e. no boost) ¥
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3 sigma evidence for a signal. DM or astro?

Stacking analysis of 49 clusters
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The Smoking Gun: a DM line

. | Example of simulated DM Tine

Advantages:
No astrophysical source confusion
Background determined from data.

Drawbacks:

Care required with the Instrument
response

Low branching ratios(?)
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1 0-30

Fermi-LAT: PRD2015 Arxiv:1506.00013

Limits from GC+high latitude sky
Control region along the GP

Einasto R16

—=— QObs Limit P8 (5.8 yr stat+syst)

----- Expected Limit

[ Expected 68% Containment

[ Expected 95% Containment

—— Obs Limit P7REP (3.7 yr, stat-only)
—— Obs Limit P7TREP (5.2 yr, stat+syst)
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The Smoking Gun: a DM line

DM line from e+e- annihilation in the Combined gamma-ray line from
Sun Fermi-LAT and HESS
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Indirect Detection With Synchrotron and
Inverse Compton Radiation

ICS on the Galactic ISRF Synchrotron on the GMF
Local ISRF Magnetic lines of force
R=8.5 kpc 4 O S T
:gm' < AN
Ny
g2’
B Synchroiro
'§ K:‘H‘-_._---’/ ynrcadiatiox
s P electron

eVem

hu (um

10 10°
A (um)
Wavelenath (microns)

Charged leptons and nuclei strongly interact with gas, Interstellar Radiation and
Galactic Magnetic Field.

During the process of thermalization HE e+e- release secondary low energy
radiation, in particular in the radio and X-ray/soft Gamma band.



The MeV Gap
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The MeV region is challenging for detection
techniques and not well explored.

To fill the gap several MeV missions are foreseen
in the next few years

DM emission in the MeV is expected from
ICS and Synchrotron emission or from
prompt emission from light (< 1 GeV) DM.
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DM in X-rays

Hitomi (3o)

A line in x-rays at
3.5 KeVis
observed in
various clusters
pointing at Sterile
neutrino DM
explanation of 7
KeV.
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10710
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M14 Dwarfs (90%) |

sin® 26
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Abazajian 2016
6.6 6.8

Bulbul et al. ApJ 2014
74 Boyarsky et al. PRL 2014

Abazajian Phys.Rep 2017
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CMB Constraints
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DM annihilation during the recombination (CMB See Tracy Slatyer's Talk

ormation) era (z ~1100) causes distortions in
MB power spectrum, which provide constrains
omparable to gamma-ray observations
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DM constraints from Planck Polarized
Synchrotron emission

2 Intensity (uKewel 1200 2 Polarization [uKowe) 200
Manconi, Cuoco, Lesgourgues, PRL 2022,
S0 1072 =g e e
Ar‘X|V- 2204'04232 \ H === Cirelli+16, I === This work, I
A —— Planck CMB  —— This work, P

Updated all-sky radio polarization data are
available from Planck measuremnets.
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Neutrinos
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Icecube Diffuse and DM
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An interesting possibility is that part of the PeV diffuse neutrino

emission observed by ICECube is due to PeV DM

The result is constrained by the accompanying gamma ray emission 39




Neutrinos from annihilation
in the core of the Sun

*Limits on the Spin-Dependent
Cross Section from IceCube and
Super-K are complementary to
direct detection experiments on
Earth.

*Neutrinos from the Sun might
be soon detected. In this case
be aware of Solar Corona
Neutrinos!
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