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SM weak scale SI interactions
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Indirect Detection: photons
~ from DM annihilations (e.g. in the GC)

Galactic Bulge Norma Arm -
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All Indirect Detection constraints
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Sub-GeV DM
& ‘MeV (scalar) DM’

In conclusion, scalar Dark Matter particles can be significantly lighter than
a few GeV’s (thus evading the generalisation of the Lee-Weinberg limit for

weakly-interacting neutral fermions) if they are coupled to a new (light) gauge
boson or to new heavy fermions F' (through non chiral couplings










Sub-GeV DM
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just thermal freeze-out
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Sub-GeV DM

& ‘SIMP miracle’:

DM
scalar DM with relic abundance set by & -> & processes 5 DM
points to Keff DM
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mom ~ et (T2, Mp1) ' ~ 100 MeV

‘naturally realized’ in a dark-QCD-like setup
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Indirect Detection: charged CRs

and from DM annihilations in halo
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Sub-GeV DM produces sub-GeV y-rays
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Sub-GeV DM produces sub-GeV y-rays
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Constraints on sub—GeV annihilating Dark Matter
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1

iverse full of Hel
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N astro je ne saws pas quot: a baryo: citne SM:

- BBN computes the abundance of He in terms
of primordial baryons:
too much baryons => Universe full of Helium

- Blaek Holes
- browwn dwarves

- CMB says baryons are 4% max

strong
lensing

A loophole: Primordial Black Holes!

- produced before BBN
- with masses too small/large to lens
- perhaps LIGO-VIRGO have seen them?
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window still open?
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Constraints on Primordial Black Holes

DM could consist of PBHSs
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Constraints on Primordial Black Holes
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A matter of perspective: plausible mass ranges
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Sterile neutrino decay

m, = (.1 KeV

T ~ 10" sec
sin® 20 ~ few 10!
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Sterile neutrino decay

m, = (.1 KeV

T ~ 10" sec
sin? 20 ~ few 10~ 1!
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A matter of perspective: plausible mass ranges
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Theoretically motivated:

one can add tothe SM & = £ — 6 85 G% G

g -

which induces d,~ 0 e m>/my ~ 107'° 9 ecm
but experimentally |d,| <3 1072° ecm
sowhyis |9] < 107! 2

Perhaps because @ is dynamical (a field)

and driven to (almost) zero by its potential
(symmetrical under U(1)pq ).

1010 GeV

In this case m, 6~ 0.6 meV

a



Searches:

Axion decay constant f, in GeV
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A matter of perspective: plausible ma.ss ranges
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90 orders of magnitude!
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The physics of Dark Matter is
in an experiment driven phase

Theory can (does) point to preferred directions,
but actually too many...
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The physics of Dark Matter is
in an experiment driven phase

Theory can (does) point to preferred directions,
but actually too many...

Thermal DM? still motivated, frontier Ls heavy DM
Sub-GeV DM ? why wot? Challenging detection
PBH DM? old toea with new vibes
KeV DM? phenomenological

Ultralight DM®? old iLdea with new vibes






Frontier




Spin—independent DM detection
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