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● Flavor states -> superposition of mass states 
- Parametrise with PMNS matrix 
- Measured most of the free parameters at percent level
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● Measurements in tension with standard oscillation (i.e. 3 states) at >3σ 
- Gallium anomaly -> less νe than expected 
- LSND -> more ν̄e than expected 
- MiniBoone -> more νe and ν̄e than expected

Anomalies

Phys. Rev. D 64, 112007

Phys. Rev. Lett. 121, 221801

Phys. Rev. Lett. 128, 232501
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● Minimal extension -> new mass state that is blind to weak force 
- Alters standard oscillation probabilities 
- eV-scale sterile allows to explain “one by one” anomalies

3+1 model

Normal ordering
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● 3+1 does not find a consistent picture when performing global fits 
- νµ→νe appearance requires νµ→νµ disappearance

3+1 puzzle

 Mark Ross-Lonergan        July  21st 2022

The experimental landscape in 2012 2022
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C. Giunti (2209.00916) M. Ross (SnowMass 2022)
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A. Sutton (NuFact 2023)
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νe disappearance
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● More exotic scenarios might help reducing this tension 
- 3+1+decay, 3+1+Wavepacket, 3+X?

Ways to solve this puzzle
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JHEP 09 (2023) 058

3+1 (4.5σ tension) 3+1+WP(noMB) (2.1σ tension)

Wavepacket width of ~100fm 
Too low according to  

theoretical calculations
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● What about data/systematics? 
- Collect more data with other experiments

Ways to solve this puzzle
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Phys.Rev.C 105 (2022) 6
Phys. Rev. Lett. 122, (2019) 091803 

Nature 613 (2023) 7943

BEST

STEREO
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Atmospheric neutrinos

● Dominated by νµ from kaon decay 
● Up-going -> shield for atmospheric muons

Atmosphere

cosmic 
ray

Detector

atmospheric 
muon

atmospheric 
neutrino

cosmic 
neutrino Ice/Sea

Earth

Up-going
Down-going

6

FIG. 4.3. Contribution from decays of various particles to the atmospheric µ+ + µ� (top left), ⌫µ + ⌫̄µ (top right), ⌫e + ⌫̄e
(bottom left) and ⌫⌧ + ⌫̄⌧ (bottom right) flux in Sibyll-2.3c and H3a primary model at ✓ = 60�.

tween prompt fluxes of muons and neutrinos. The cross-
over between conventional and prompt flux happens at
several PeV and depends on the choice of models and
the zenith angle. Further sources of high energy muons
that are not included in our calculation are the photo-
production of muon pairs, which is suppressed by 10�4

wrt. the pair production cross section �e+e� [18], and the
nuclear interactions of muons. While the muon pair pro-
duction can significantly contribute to inclusive fluxes at
very high (PeV) energies, the nuclear interactions are
only important for the low energy tail of muon bundles
in air showers.

At E & 100 GeV the main source of muon neutrinos
(upper right panel) are semi-leptonic and 3-body decays
of charged kaons, see e.g. [19] for a more detailed discus-
sion of relevant channels. Pion and muon decays domi-
nate below this energy. Prompt neutrinos originate from
decays of charged and neutral D-mesons, where the fluxes
from D± are a factor of three higher. Since pions very
rarely decay into electron neutrinos (lower left panel),

those come mostly from decays of neutral and charged
kaons. At energies below 100 GeV and for near-horizontal
zenith angles the dominant fraction of electron neutrinos
is from muon decays, resulting in a strong association
with the muon flux. In turn, this means that the pre-
cision of the electron neutrino prediction for a few to
several tens of GeV is linked to the modeling of pion pro-
duction and muon energy loss and, to a lesser extent, to
kaon production.

Atmospheric tau neutrinos (lower right panel) are rare
[20], but we can discuss their flux for completeness. The
dominant production channel of tau neutrinos is the de-
cay of D+

s ! ⌧+ + ⌫⌧ , where the subsequent decay of
⌧ ! ⌫⌧ + X is more e�cient in producing a forward tau
neutrino, than the decay of the meson. Therefore most
of the tau neutrino flux comes from the decay of the tau
lepton itself (black and blue line in lower right panel in
Fig. 4.3).

Other sources of atmospheric leptons that are not
taken into account in our calculation are B-hadrons.
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Matter enhanced oscillation
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Matter enhanced oscillation - sample scenario
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Matter enhanced oscillation - more complex scenarios
Important if θ34!=0  

and E<500GeV

A. Esmaili, A. Smirnov (1307.6824) -> We show that the case with Uτ4 = δ24 = 0 leads to 
the weakest IceCube signal and therefore should be used to bound Uµ4.
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● For mass splitting >1eV2, rapid oscillations -> average 
● Some degeneracy with standard oscillation parameters but resolvable

Oscillations in the GeV regime
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Largest neutrino detector on Earth!

1km x 1km x 1km 
Buried >2km under the ice
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4 The IceCube Neutrino Observatory

(a) (b)

(c) (d)

Figure 4.10 — Event Signatures in the IceCube Detector. The size of the
DOMs indicate the number of recorded photoelectrons, the color marks
the photon arrival time (red early, blue late, see scale at the bottom).
(a) Throughgoing track, E ⇡ 140 TeV. (b) Starting track, E ⇡ 70 TeV.
(c) Shower, E ⇡ 1 PeV. (d) “Double bang”, E ⇡ 200 PeV. The events
in (a)–(c) are experimental data, the event in (d) was simulated.
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Low Energy Analysis
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● 8 years of lifetime 
● Good data/MC (goodness of fit ~25%) 
● νµ CC purity >80%
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Select upgoing tracks
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● Very competitive constraints in Uτ4!
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Select upgoing tracks
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High Energy Analysis
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Select upgoing tracks

● Moving from simple cuts to BDTs 
- Reduce the contamination of muons (<2.5evt/y) 
- Higher muon neutrino efficiency (factor 1.4)
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Energy estimator
● New energy reconstruction using NN 

- Dedicated event selection for starting events -> better proxy from neutrino energy

StartingThrough-going
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Systematics
● Main changes with respect to previous analysis 

- Bulk ice -> moving to energy+zenith dependence 
- Conventional flux -> new treatment using DAEMONFLUX (PRD107, 123037) 
- Non-conventional flux -> Using broken power law
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Daemonflux
● New prediction of neutrino fluxes: 

- Calibrated using muon measurements at Earth surface. 
- Treatment of systematics -> cosmic ray and hadronic yields.
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Data Sample

● Unblinded 10.7 years -> ~400k tracks
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Results

● Goodness-of-fit 
with p value=12%
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Results

● Goodness-of-fit with p-
value=12% 

● Compatible with previous 
IC analysis. 

● Null rejection p-
value=3.1% (2.2σ)

Best fit: 
Δm241 = 3.5 eV2 

θ24 = 12°

27Alfonso Garcia     |    UCLouvain seminar, 04/02/2025



Compatibility Tests
● Checks to understand result 

- Splits in different region of the reconstructed phase space
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Compared with world data

● Best-fit in tension with other numu disappearance measurements
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Conclusions
● Unique sterile searches 

- Different energy range (systematics) to any other experiment 
- Signal mainly driven by different oscillations regimes 

● New analyses with major changes 
- Event selection 
- Energy reconstruction 
- Flux treatment 

● Unblinded 10.7 and 8 years of data with IC and DeepCore 
- Consistent with previous IC analyses 
- Ongoing tests to quantify the significance of the result 

● Mild tension with other experiements -> What can we do? 
- Continue improving our understanding of detector 
- Develop analysis with other neutrino telescopes 
- More complex scenario than vanilla 3+1
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Fit quality

● Goodness-of-fit with p-value~10% 
● Bin-wise pulls normally distributed 
● Nuisance parameters within allowed ranges



Non-conventional priors



1D distributions
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Other new results

● Uµ4 and Uτ4 free
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