UCLouvain seminar (Louvain-la-neuve, Belgium)

IceCube's Latest Results in the Search for eV-scale Sterile Neutrinos

Phys. Rev. Lett. 133, 201804 (2024), 2405.08070 Phys. Rev. D 110, 092009 (2024), 2405.08077

Alfonso Garcia

Neutrino oscillations

• Flavor states -> superposition of mass states

- Parametrise with PMNS matrix
- Measured most of the free parameters at percent level

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
Atmospherics / Accelerators Reactors / accelerator Solar / reactors

Anomalies

Measurements in tension with standard oscillation (i.e. 3 states) at $>3\sigma$

- Gallium anomaly -> less v_e than expected
- LSND -> more \bar{v}_e than expected
- MiniBoone -> more v_e and \bar{v}_e than expected

Phys. Rev. Lett. 121, 221801

Data (stat err.) v, from µ*

3+1 model

- Minimal extension -> new mass state that is blind to weak force
 - Alters standard oscillation probabilities
 - eV-scale sterile allows to explain "one by one" anomalies

3+1 puzzle

3+1 does not find a consistent picture when performing global fits

Alfonso Garcia

- $v_{\mu} \rightarrow v_{e}$ appearance requires $v_{\mu} \rightarrow v_{\mu}$ disappearance

UCLouvain seminar, 04/02/2025

Ways to solve this puzzle

• More exotic scenarios might help reducing this tension

- 3+1+decay, 3+1+Wavepacket, 3+X?

3+1+WP(noMB) (2.1σ tension)

Wavepacket width of ~100fm Too low according to theoretical calculations

JHEP 09 (2023) 058

Ways to solve this puzzle

- What about data/systematics?
 - Collect more data with other experiments

Atmospheric neutrinos

Detecto

Down-going

Up-going

cosmic

neutrino

Matter enhanced oscillation

Matter enhanced oscillation

Matter enhanced oscillation – sample scenario

Matter enhanced oscillation – more complex scenarios

A. Esmaili, A. Smirnov (1307.6824) -> We show that the case with $U_{\tau 4} = \delta_{24} = 0$ leads to the weakest IceCube signal and therefore should be used to bound $U_{\mu 4}$.

Oscillations in the GeV regime

- For mass splitting >1eV², rapid oscillations -> average
- Some degeneracy with standard oscillation parameters but resolvable

Largest neutrino detector on Earth!

1km x 1km x 1km Buried >2km under the ice

	Horizontal (m)	Vertical (m)	E _{threshold} (GeV)
IceCube	125	17	~100
DeepCore	~50	7	~5

ICECUBE NEUTRINO OBSERVATORY

IFIC INSULATION OF REPORT

Low Energy Analysis

Select upgoing tracks

- 8 years of lifetime
- Good data/MC (goodness of fit ~25%)
- v_{μ} CC purity >80%

Select upgoing tracks

• Very competitive constraints in $U_{\tau 4}$!

High Energy Analysis

Select upgoing tracks

- Moving from simple cuts to BDTs
 - Reduce the contamination of muons (<2.5evt/y)
 - Higher muon neutrino efficiency (factor 1.4)

Energy estimator

• New energy reconstruction using NN

Dedicated event selection for starting events -> better proxy from neutrino energy

Systematics

• Main changes with respect to previous analysis

- Bulk ice -> moving to energy+zenith dependence
- Conventional flux -> new treatment using DAEMONFLUX (PRD107, 123037)
- Non-conventional flux -> Using broken power law

	Central	1σ Prior						
Detector Parameters	Value	Width	Conventional Flux Par	Conventional Flux Parameters				
Normalization	1.0	± 0.4	Atm. Density	0	± 1.0	_		
DOM efficiency	1.27	$\pm 10\%$	Kaon energy loss	0.0	± 1.0			
Ice Amplitude 0	0.0	± 1.0	K_{158G}^{+}	0.0	± 1.0	о <mark>Б</mark>		
Ice Amplitude 1	0.0	± 1.0	K ¹⁰⁰⁰	0.0	± 1.0	cti Di		
Ice Amplitude 2	0.0	± 1.0	π^+_{20T}	0.0	± 1.0	b p		
Ice Amplitude 3	0.0	± 1.0	π_{20T}^{-20T}	0.0	± 1.0	Lo Ha		
Ice Phase 1	0.0	± 1.0	K_{AB}^{2+1}	0.0	± 1.0	_ d		
Ice Phase 2	0.0	± 1.0	K_{aB}^{2r}	0.0	± 1.0			
Ice Phase 3	0.0	± 1.0	π^{+}_{+}	0.0	± 1.0			
Ice Phase 4	0.0	± 1.0	π_{ab}	0.0	± 1.0			
Forward Hole Ice	-1.0	± 10	P2P	0.0	± 1.0			
Cross-section Parameters			Π_{2P}	0.0	± 1.0			
ν cross section	1.0	± 0.1	GSF_1	0.0	± 1.0	<u>.0</u>		
$\bar{\nu}$ cross section	1.0	± 0.1	GSF_2	0.0	± 1.0	ay		
High-energy Flux Parameters			GSF_3	0.0	± 1.0	°° °		
Normalization	0.787	± 0.36	- GSF ₄	0.0	± 1.0			
$\Delta \gamma_1$, tilt from -2.5	0.0	± 0.36	GSF ₅	0.0	± 1.0			
$\Delta \gamma_2$, tilt from -2.5	0.0	± 0.36	GSF_6	0.0	± 1.0			
Pivot energy in log10	-	-						

Daemonflux

- New prediction of neutrino fluxes:
 - Calibrated using muon measurements at Earth surface.
 - Treatment of systematics -> cosmic ray and hadronic yields.

Data Sample

• Unblinded 10.7 years -> ~400k tracks

Results

Results

 $\begin{array}{l} \underline{\text{Best fit:}}\\ \Delta m^2_{41} = 3.5 \text{ eV}^2\\ \theta_{24} = 12^\circ \end{array}$

- Goodness-of-fit with pvalue=12%
- Compatible with previous IC analysis.
- Null rejection pvalue=3.1% (2.2σ)

Compatibility Tests

- Checks to understand result
 - Splits in different region of the reconstructed phase space

Compared with world data

• Best-fit in tension with other numu disappearance measurements

Conclusions

- Unique sterile searches
 - Different energy range (systematics) to any other experiment
 - Signal mainly driven by different oscillations regimes
- New analyses with major changes
 - Event selection
 - Energy reconstruction
 - Flux treatment
- Unblinded 10.7 and 8 years of data with IC and DeepCore
 - Consistent with previous IC analyses
 - Ongoing tests to quantify the significance of the result
- Mild tension with other experiements -> What can we do?
 - Continue improving our understanding of detector
 - Develop analysis with other neutrino telescopes
 - More complex scenario than vanilla 3+1

Fit quality

- Goodness-of-fit with p-value~10%
- Bin-wise pulls normally distributed
- Nuisance parameters within allowed ranges

Non-conventional priors

1D distributions

Best-fit vs null flux

Other new results

Physics Letters B 858 (2024) 139077

• $U_{\mu4}$ and $U_{\tau4}$ free

