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Collider experiments transform an initial state,
e.g. pp, into a final state.

(Almost) all we know is based on the different 
production rates of different states.

Fine for theories with a mass gap and 
suppressed multiparticle production.

Introduction
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tim
e

Collider experiments transform an initial state,
e.g. pp, into a final state.

(Almost) all we know is based on the different 
production rates of different states.

Fine for theories with a mass gap and 
suppressed multiparticle production.

Not the case of real world at high energy!

Need to “coarse grain” your Hilbert space
into jets… matching, merging…

Worse at high energies: 
what does “diboson” means at s=10TeV?√

Introduction



Basham, Brown, Ellis, Love ‘78
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A different set of observables: correlators
Overview on Correlators
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The spectacular discovery of the gluon
shifted the attention towards jets

Overview on Correlators



Sveshnikov, Tkachov ‘95Energy weights have an operatorial definition
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These act as “detectors” or “calorimeters”: Extract the energy of particles along detector’s direction.

In particular, it implies that one can write these phase space reweightings as correlators:

In hindsight, this was a breakthrough. As long as the operator is well defined, as is the case of the energy operator,
this gives a perfectly robust definition of observables in a gauge theory,
avoiding the theoretical nuance of defining an S-matrix for a gauge theory.

Overview on Correlators



Hoffman, Maldacena ‘08Energy weights have an OPE
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“Measures” the energy squared

Komiske, Moult, Thaler, X. Zhu ‘22

The scaling was measured using CMS open data:

Fixed by transf. under boosts
                             & dilatations

Overview on Correlators



Strong coupling measurement inside jets
Chen, Gao, Li, Xu, Zhang, X. Zhu ‘23

CMS-PAS-SMP-22-015 ‘23
      CERN-EP-2024-010 ‘24
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Best determination of ɑS using jet substructure

Overview on Correlators



Handle on nonperturbative corrections: Chen, Monni, Xu, X. Zhu ‘24
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OPE structure predicts scaling of 
nonperturbative corrections,
which can be matched across different scales

Overview on Correlators
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In the rest of the talk I tell you what are we seeing here:

MR, M. Son ‘24
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For a global charge with an associated conserved current        ,

is a detector that measures the asymptotic flux of charge in the direction     ,

Acting on physical multiparticle states as

In the presence of an operator exciting the QCD vacuum, the one point correlator is 
given by

Correlators of conserved charges
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That        is conserved has two important consequences:

 i) IR finiteness against soft and collinear radiation.

Since the conserved charge is preserved under collinear radiation, the detector acts
homogeneously on the set of collinear particles, measuring the total charge.

It is fully inclusive on the rest of the event, ensuring the cancellation of collinear IR divs.

Correlators of conserved charges



13

That        is conserved has two important consequences:

 i) IR finiteness against soft and collinear radiation.

Soft radiation is instead annihilated by detectors of conserved charges. 
Using universality of soft interactions, a soft photon/gluon contributes as

which vanishes due to opposite fermion anti-fermion charges

Correlators of conserved charges
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That        is conserved has two important consequences:

 ii) Vanishing of anomalous dimension

In general, operators get anomalous dimensions. Non-conserved quantities at
hadron level are mapped to unknown operators at quark level.

Symmetry allows to map between scales.

What you measure What you compute

Correlators of conserved charges
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Beyond one point:

As long as detectors measure conserved charges,

is collinear safe for sufficiently separated directions.

IR-safety under soft emissions puts restrictions on the operators, as they are forced
to annihilate the soft sector.

This happens if one of the detectors measures the energy, or 
a quark flavour highly suppressed during parton shower, like b or c.

Correlators of conserved charges
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We will look at the one point correlator when the QCD vacuum is excited by a chiral 
current

as it happens in the decay of an electroweak gauge boson. It leads to the density matrix

It represents the average charge measured at a given direction, in the presence of a 
vector decay with momentum         and helicity

Correlators of conserved charges
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The three point JDJ correlator

can be decomposed as

Correlators of conserved charges
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The three point JDJ correlator

can be decomposed as

Total charge,
fixed by symm.

Parity-even,
theory dependent

Parity-odd,
theory dependent

Correlators of conserved charges

rest frame



19

Tree level:

Values fixed by angular momentum, as only two-quark states contribute

Correlators of conserved charges

energy

electric charge

isospin

baryon number
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One loop:

Cancellation of soft and collinear divergences

energy

electric charge

isospin

baryon number

Correlators of conserved charges
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Correlators of conserved charges
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Parity even part of the charge correlators
in perfect agreement with the NLO calculation

Correlators of conserved charges
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Correlators of conserved charges

Parity-odd term for the isospin is generated nonperturbatively.
Kaons are predominantly charged in the up-quark direction, and neutral in the down-quark direction. 

K0-K0 oscillation and decay violates isospin, charged kaon preserves it.

This also generates a net isospin production,
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Large non-perturbative correction to baryon number density.

Perturbatively, baryon number carried by quarks is ~1/3, which would suggest a baryon number 1/3.

However, string formation spoils factorization, and asymptotic baryon number strongly depends
on the details of how QCD string breaks.

Modelled by Lund string model,

StringFlav:probQQtoQ = 0.081

Correlators of conserved charges
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With only pions, electric charge = isospin, so difference due to baryons.

The large corrections are the same as for the baryons.

Correlators of conserved charges
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Strangeness density is generated nonperturbatively. 
Mechanism is the one described by isospin, as production of kaons is responsible for both effects.
The strangeness generated is indeed equal to the generated isospin.

Correlators of conserved charges
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The constriants due to unitarity can be seen from evaluating the spatial components of 
the correlator at the center of mass, 

Unitarity constraints
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The constriants due to unitarity can be seen from evaluating the spatial components of 
the correlator at the center of mass,

which implies that

 

z z
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0
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Unitarity constraints
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             The bound is saturated by two-particle states

 

free fermions, min. coupling

scalar+vector

free scalars

free fermions, non-min. coupling

Unitarity constraints

(
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High energyLow energy

!

free fermions, min. coupling

scalar+vector

free scalars

free fermions, non-min. coupling

Unitarity constraints

(             The bound is saturated by two-particle states
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QCD flows from one boundary to the other!

 
WIP w/ M. Son

Unitarity constraints

)
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All applies to operators other than energy, as long as they are positive.

 

At high k, radiation is highly suppressed
 and only two particle states contribute

At low k, radiative corrections become more important

At k=0, the observable is the particle number density

Unitarity constraints
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Densities at different k constrained with each other.

The scalar functions can be schematically written as

So the derivatives in k obey

i.e. it is a completely monotonic function in k.

It can be shown that evaluating the function at k, k+a, k+2a,...leads to the H(k)’s to obey 
the Hausdorff moment problem.

                                                                         with

 

Unitarity constraints
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Densities at different k constrained with each other.

Higher k densities are very efficiently constrained from lower k ones.

Lower k densities have however one sided bounds. Data is close to the kink.

 

Unitarity constraints
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Correlator-based observables offer a different perspective on collider data,

with strong theoretical roots that constrain and simplify them.

One point (and some higher point) correlators of conserved charges

are perturbatively IR safe.

Thank you!
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