What ever happened to SUSY? Spelunking in the vast MSSM with FastSim by Sam Bein

Supersymmetry

inspire

literature \lor

Supersymmetry

Date of paper

Q

Supersymmetry

inspire

literature \vee

Supersymmetry

Date of paper

Thank you Moritz Wolf for this joke 3

Q

Supersymmetry can

A. account for dark matter (DM) if

- neutralino $\tilde{\chi}_1^0$ is the "LSP" SUSY particle
- R-parity is conserved
- Δ_m If enough LSPs can annihilate before freeze-out -requires small Δm or funnel mechanism
 - B. Solve the large hierarchy problem if
 - SUSY is "softly" broken
 - If little hierarchy problem doesn't arise (Large terms involving many parameters needing to cancel)

Supersymmetry can

3. Make successful predictions, like the Higgs mass

Future of supersymmetry, Stephen Martin@SUSY2023

Looking for SUSY

Step 1) Come up with some specific models

T1qqqq

Looking for SUSY

Step 1) Come up with some specific models Step 2) trigger events

Looking for SUSY

Step 1) Come up with some specific models

Step 2) trigger events

Step 3) select events and objects, analyse data, construct signal regions, estimate background yields, **simulate signal events**, compute systematic uncertainties, unblind the data, interpret with a likelihood

JHEP 10 (2019) 244

Dozens of Searches (simplified models)

No SUSY, can I go home yet?

Beyond simplified models (pMSSM-19)

<u>Supersymmetry without prejudice</u>, Berger, Gainer, Hewett, Rizzo

- phenomenological minimal supersymmetric. Standard Model (pMSSM)
 - 19-parameter sub-model of MSSM
 - captures most phenomenology
 - LHC, dark matter, naturalness insights
 - Need to exhaustively scan in 19D parameter space!

2 parameters SMS pMSSM **19 parameters** MSSM

120 parameters

Beyond simplified models (pMSSM-19)

<u>Supersymmetry without prejudice</u>, Berger, Gainer, Hewett, Rizzo

- phenomenological minimal supersymmetric. Standard Model (pMSSM)
 - 19-parameter sub-model of MSSM
 - captures most phenomenology
 - LHC, dark matter, naturalness insights
 - Need to exhaustively scan in 19D parameter space!

Scan $\sim 2^{19}$ points in th. space, need lots of simulation!

Sam Bein, UCLouvain

2 parameters SMS pMSSM **19 parameters**

MSSM **120** parameters

Prior

Flat prior in pMSSM-19

squarks up to 10 TeV

gluino up to 10 TeV

sleptons up to 4 TeV

heavy Higgs up to 4 TeV

electroweakinos up to 4 TeV

trilinear couplings up to 7 TeV

tan β from 2 to 60

Prior

Flat prior in pMSSM-19

squarks up to 10 TeV

gluino up to 10 TeV

sleptons up to 4 TeV

heavy Higgs up to 4 TeV

electroweakinos up to 4 TeV

trilinear couplings up to 7 TeV

tan β from 2 to 60

Two simulation engines

FullSim chain (1 event per minute)

- Detailed Geant4-based detector simulation customised for CMS, digitisation
- Full reconstruction as applied to data

FastSim chain (1 event per few seconds)

- Fast <u>alternative</u> to FullSim
- Fast particle propagation, analytical interaction models, tracking

Sam Bein - samuel.bein@uclouvain.be

FastSim simplified propagation

Geometry

- Infinitesimally thin layers
- Particles interact on the boundaries but not in the volume

Transport

- Particles modeled after passing beam-pipe radius
- Detailed magnetic field map

Sam Bein - <u>samuel.bein@uclouvain.be</u>

Analytical interaction models

Material interactions

- Energy loss by ionization
- Multiple coulomb scattering
- Bremsstrahlung
- e^{\pm} conversion
- Elastic, inelastic nuclear interactions

Sam Bein - samuel.bein@uclouvain.be

FastSim-CERN workshop

Calorimetry with GFLash

Particles reaching calorimeter

- Shower depositions modeled with probability distributions
- Start position as function of radiation lengths
- GFlash <u>G. Grindhammer</u>

Parameterized Simulation of Electromagnetic Showers in Homogeneous and Sampling Calorimeters

- Gamma for longitudinal shower, 2-component for radial
- Geometry-specific profiles

Sam Bein - <u>samuel.bein@uclouvain.be</u>

Fast Reconstruction

Fast tracking

- GEN-assisted hit/track association
- Iterative tracking run over hit subsets

Impact on performance

- x5 speed-up in reconstruction
- Underestimates fakerate, biases b-tagging

Sam Bein - <u>samuel.bein@uclouvain.be</u>

Events/second FastSim and FullSim

Detector step

Sam Bein - samuel.bein@uclouvain.be

Complete chain

Regression based refinement

Ansatz

- Apply ML with ample domain knowledge to yield accurate, detailed fast simulation
- Tweak the final output of the FastSim so that it better matches FullSim
 - \bullet

Sam Bein - samuel.bein@uclouvain.be

Accuracy

Speed

Fast Perfekt: regression-based refinement of FastSim - arXiv:2410.15992

Fast Perfekt

2-dimensional analytical example

- *x*: Feature to be refined
- *h*: Hidden feature to be examined
- GT: ground truth (generator truth)
 - there is GT for *x* and *h*
- Two populations: big and small
- Unique smearing and bias for "fullsim" and "fastsim" for each population

$$G_L \sim \mathcal{N}(\mu_L, \Sigma_L), \quad G_s \sim \mathcal{N}(\mu_s, \Sigma_s)$$

 $S_{\text{fast}} \sim \mathcal{N}(0, \Sigma_{\text{fast}}), S_{\text{full}} \sim \mathcal{N}(0, \Sigma_{\text{full}})$

arXiv:2410.15992

Sam Bein - <u>samuel.bein@uclouvain.be</u>

arXiv:2410.15992

0

Χ

Sam Bein - samuel.bein@uclouvain.be

arXiv:2410.15992

Mean squared error (MSE)

 Compare each fastsim data point with its fullsim

$$MSE(\theta) = \frac{1}{m} \sum_{i=1}^{m} || \hat{\mathbf{x}}_{i}(\theta) - \mathbf{x}_{i}(\theta)| = \frac{1}{m} \sum_{i=1}^{m} || \hat{\mathbf{x}}_{i}(\theta) - \mathbf{x}_{i}(\theta) - \mathbf{x}_{i}(\theta)| = \frac{1}{m} \sum_{i=1}^{m} || \hat{\mathbf{x}}_{i}(\theta) - \mathbf{x}_{i}(\theta) - \mathbf{x}_{i}(\theta)| = \frac{1}{m} \sum_{i=1}^{m} || \hat{\mathbf{x}}_{i}(\theta) - \mathbf{x}_{i}(\theta) - \mathbf{x}_{$$

 Good for bias correction, bad for tails

Maximum mean discrepancy

- Compare each fastsim data point with its fullsim
- Good for PDFs of input x
- Unconstrained

 $\text{MMD}_{b}(\theta) = \frac{1}{m^{2}} \sum_{i,i=1}^{m} k(\mathbf{a}_{i}, \mathbf{a}_{j}) + \frac{1}{m^{2}} \sum_{i,j=1}^{m} k(\hat{\mathbf{a}}_{i}(\theta), \hat{\mathbf{a}}_{j}(\theta)) - \frac{2}{m^{2}} \sum_{i,j=1}^{m} k(\mathbf{a}_{i}, \hat{\mathbf{a}}_{j}(\theta))$

arXiv:2410.15992

Modified differential method of multipliers blog - place constraints on constraints! MSE+MMD via MDMM

Fast Perfekt 2-stage training

Delphes-based model

- Generate $t\bar{t}$ inclusively
- Process with
 - Delphes 3 (FullSim) arXiv:1307.6346 \bullet
 - Modified Delphes 3 (remove Edependent jet response - flat smear)
 - Refine n-Subjettiness
 - τ_1, τ_2, τ_3 ratios

Sam Bein - samuel.bein@uclouvain.be

Refine CMS FastSim jets

Apply Fast Perfekt to CMS jets

- Refine jets with regression NN
 - Kinematics, Flavour tagging variables
 - DeepJet, ParT Jet discriminators:
 - B, CvB, CvL, QG
 - Jet triplets: FastSim, FullSim, GEN
 - Input: FastSim jet+GEN jet p_T, η
 - **Output**: refined FastSim jet
- Single-stage MMD-based training

arXiv:2410.15992

Refine CMS FastSim jets

FullSim

Sam Bein - samuel.bein@uclouvain.be

FastSim

Refined FastSim

Propagation of refinement to MET

Type-1 MET correction

• Propagate refined jet p_T to MET

refined $\vec{E}_T^{\text{miss}} = \text{Fast} \vec{E}_T^{\text{miss}} + \sum_{T_i} \vec{p}_{T_i}^{\text{Fast}}$ i∈jets i∈jets

arXiv:2410.15992

Propagation of refinement to MET

Type-1 MET correction

• Propagate refined jet p_T to MET

refined $\overrightarrow{E}_T^{\text{miss}} = \text{Fast } \overrightarrow{E}_T^{\text{miss}} +$ $\vec{p}_{Ti}^{\mathsf{Fast}}$ – i∈jets

arXiv:2410.15992

Bayesian pMSSM analysis

- CMS: <u>PAS-24-004</u> Phenomenological MSSM interpretation of CMS searches in pp collisions at 13 TeV
 - Electroweak and strong SUSY production in a single scan
 - 500k model points scanned with MCMC likelihood
 - MCMC imposes constraint from dozens of pre-CMS results
 - Generator-level filter to loosely emulate trigger
 - 10 billion MC events!
 - Run over simulation with 5 analyses

Included final states

Final State Category	Experiment	Analyses / Final State	Journal Reference
0 lepton (all-hadronic)	CMS	Jets+MHT, HT, n(b-tags)	JHEP 10 (2019) 244
1 lepton	CMS	Single-lepton Δφ	JHEP 09 (2023) 149
2-lepton	CMS	Same-flavor opposite sign	JHEP 04 (2021) 123
Compressed/Soft	CMS	Soft opposite-sign leptons	JHEP 2204 (2022) 91
Disappearing track	CMS	short tracks with dE/dx	Phys. Rev. D 109 (2024) 072007

Dark matter candidate mass

Probability density

CMS-SUS-PAS-24-004

Survival probability

Relic density, naturalness Planck

>90% of relic density models survive

<50% of natural models survive

CMS impact by analysis

Soft opposite-sign lepton JHEP 2204 (2022) pp.091

- 2- or 3 soft leptons
 - OSSF pair
 - $\geq 2\ell$ with $p_T > 3 \text{ GeV}$
- ISR jet

SUS-18-004

• Binning in invariant mass M(II)

CMS-SUS-PAS-24-004

SUS-18-004+SUS-20-001+SUS-21-007

CMS impact by analysis

+SUSY disappearing track Phys. Rev. D 109 (2024) 072007

- \geq 1 disappearing tracks
- 0, 1 leptons; 0, >0 b-tags
- long/short
- dE/dx binning

SUS-18-004+SUS-20-001+SUS-21-007+SUS-21-006

CMS-SUS-PAS-24-004

CMS impact by analysis

+Zero-lepton, jets, MHT JHEP 10 (2019) 244

- Inclusive 0-lepton
 - Veto electron, muon candidates with pT>5 GeV
- >1 ak4 jets
- 0, >0 b-tagged jets
- Binning in MHT, HT, n(jets), nb

SUS-18-004+SUS-20-001+SUS-21-007+SUS-21-006+SUS-19-006

CMS-SUS-PAS-24-004

+Relic density (Planck) arXiv:1807.06209

 $\Omega_h^2 < 0.12 * 1.1$

SUS-18-004+SUS-20-001+SUS-21-007+SUS-21-006+SUS-19-006+DM constraints

<u>CMS-SUS-PAS-24-004</u>

+Relic density (Planck) arXiv:1807.06209

 $\Omega_h^2 < 0.12 * 1.1$

+Direct-detection LZ(22)

SUS-18-004+SUS-20-001+SUS-21-007+SUS-21-006+SUS-19-006+DM constraints

CMS-SUS-PAS-24-004

+Relic density (Planck) arXiv:1807.06209

 $\Omega_h^2 < 0.12 * 1.1$

+Direct-detection LZ(22)

+Fine-tuning/naturalness

 $\Delta EW = max_i$

SUS-18-004+SUS-20-001+SUS-21-007+SUS-21-006+SUS-19-006+DM constraints+ Δ_{EW} <200

CMS-SUS-PAS-24-004

+Relic density (Planck) arXiv:1807.06209

 $\Omega_h^2 < 0.12 * 1.1$

+Direct-detection LZ(22)

CMS-SUS-PAS-24-004

SUS-18-004

SUSY Summary

- CMS has evaluated viability of R-parity conserving SUSY
 - Natural SUSY under pressure, SUSY DM largely unconstrained
 - With DM and naturalness constraints, MSSM bounded from all sides
 - We've constructed a phase space map of the remaining phase space.

CMS-SUS-PAS-24-004

FastSim Summary

Fast Perfekt applied to CMS jets

- Single-stage training based on unbiased MMD
 - Refinement with realistic production conditions, e.g., pile-up,
 - Flavour tagging overvables, kinematics
 - Refinement propagated to event-level observables shows improvement
- Prototype in place for production, use with new data

<u>arXiv:2410.15992</u> <u>arxiv:2309.12919</u>

Sam Bein, UCLouvain

Backup

Prior

Flat prior in pMSSM-19

squarks up to 10 TeV

gluino up to 10 TeV

sleptons up to 4 TeV

heavy Higgs up to 4 TeV

electroweakinos up to 4 TeV

trilinear couplings up to 7 TeV

tan β from 2 to 60

sampled

pMSSM Bayes factor quantiles

5-analysis combination

• plotting upper quantiles of the Bayes Factor:

 $\mathsf{BF}(\theta) = \mathscr{L}(\theta, \mu = 1) / \mathscr{L}(\theta, \mu = 0)$

CMS-SUS-PAS-24-004

