Probing the Standard Model to 0.37 ppm with the muon anomalous magnetic moment

Laurent Lellouch

CNRS & Aix-Marseille U.

© Dani Zemba, Penn State Budapest-Marseille-Wuppertal collaboration [BMW] & DMZ

> $2407.10913 \rightarrow BMWc\text{-}DMZ$ '24 (or this work) Nature 593 (2021) → BMWc '20 PRL 121 (2018) 022002 (Editors' Selection) → BMWc '17 Aoyama et al., Phys. Rep. 887 (2020) 1-166 \rightarrow WP '20 Davier et al., EPJ C (2024) \rightarrow DHLMZ '23

Laurent Lellouch [CP3 Seminar @ Louvain-la-Neuve, 21 January 2025](#page-42-0)

The muon in the Standard Model

- \bullet but not to the Brout-Englert-Higgs field
- \rightarrow $m_{\mu} \simeq 207 \times m_{\text{e}} \rightarrow \tau_{\mu} \simeq 2 \times 10^{-6} \text{ sec}$

 $\ensuremath{e^{+}}$

Charged lepton magnetic moments

Muons are tiny magnets

A massive elementary particle w/ electric charge and spin behaves like a tiny magnet

(← Silver Swan)

Magnetic moment of the muon

$$
\vec{\mu}_\mu = \pm g_\mu \frac{e}{2m_\mu}\vec{S}
$$

$$
g_{\mu} = \text{Landé factor}
$$

In uniform magnetic field \vec{B} , \vec{S} precesses w/ angular frequency

$$
\omega_S = g_\mu \frac{e}{2m_\mu} |\vec{B}|
$$

 7×10^6 rotations per second for $|\vec{B}| = 1.45$ T

 \rightarrow same principle as for MRI

Crucial point:

(Silver Swan)

- *g*µ can be **measured** & **calculated** very, very . . . precisely
- \bullet measurement = SM prediction ?
	- \rightarrow Yes: another victory for the SM
	- \rightarrow No: we have uncovered new fundamental physics

Take home: muon magnetic moment 2021

New physics ?

Take home: muon magnetic moment 2025

New physics ??

Early history: the electron

0 1928 : Dirac's new theory predicts the existence of the positron and

 $g_e|_{\text{Dirac}} = 2$

"That was really an unexpected bonus for me" (P.A.M. Dirac)

- 1934 : Kinsler & Houston confirm $g_e = 2$, w/ permil precision by studying spectrum of neon atom
- 1947 : Nafe, Nelson & Rabi, then Kusch & Foley measure hyperfine structure of hydrogen and deuterium, showing that $g_e > 2$ by 0.1% \rightarrow there is a problem w/ Dirac!
- 1947 : Schwinger understands very quickly that Dirac's theory neglects **quantum fluctuations** and manages to compute them to obtain the **"anomalous"** contribution

$$
a_e = \frac{g_e - 2}{2} = \frac{\alpha}{2\pi} = 0.00116...
$$

 \rightarrow birth of QED and relativistic quantum field theory

Why are a_{ℓ} interesting?

$$
\ell_{R} \qquad \qquad \ell_{L} \qquad \longrightarrow \qquad \mathcal{L}_{\text{eff}} = -\frac{Qe}{2} \frac{a_{\ell}}{2m_{\ell}} F^{\mu\nu} [\bar{\ell}_{L}\sigma_{\mu\nu}\ell_{R}] + hc
$$

a loop-induced ⇒ possibly sensitive to particles too heavy or too weakly coupled to be produced directly

- Flavor and CP conserving, chirality flipping \Rightarrow sensitive to muon mass generation mechanism and complementary to EDMs, *s* & *b* decays, EWPO, direct LHC searches . . .
- \bullet 1956 : Berestetskii notes that sensitivity of a_{ℓ} to contributions of heavy particles *w/ M* $\gg m_\ell$ *typically goes like* $\sim (m_\ell/M)^2$
	- ⇒ *a*^µ is (*m*µ/*me*) ² ∼ 43, 000 times more sensitive to heavy particles than *a^e*
	- \Rightarrow a_{μ} is a good way to reveal possibly unknown, heavy particles
	- \rightarrow Today, we know that BSM models can give large contributions to a_{μ}
- \bullet 1960 : despite $τ_μ ∼ 2 μs$, Garwin et al manage to measure $g_μ ∼ 2$

A brief history of a_u

 \bullet > 1960 : measurement of a_μ progressed in // with the development of the SM

2006 : BNL final report FRD 76, 2006]

 $a_\mu^{\rm exp} = 11659208.0(6.3)\times 10^{-10}$ [0.54 ppm], $\qquad a_\mu^{\rm SM} = 11659180.0(7.3)\times 10^{-10}$ [0.62 ppm] $\Delta a_\mu^{\rm exp-SM} = 26.1(9.4)\times 10^{-10}$

−→ 2.7σ discrepancy was **too small** to claim new physics, but **too large** to ignore (\sim 2× weak contribution!)

Muon: recent history and near future

To decide on possible presence of new fundamental physics:

Improve the measurement

Move BNL apparatus to Fermilab & significantly ugprade experiment

- \Rightarrow April 7, 2021: first results (run 1): 6% of planned data and 20% more precise than BNL [Abi et al, PRL 126 (2021)]
- \Rightarrow August 10, 2023: new results (runs 2/3): w/ runs 1-3, ∼ 6× BNL statistics [Aguillard et al, PRL 131 (2023)]
- \Rightarrow 2025: soon final results (runs 4/5/6): w/ runs 1-3, ∼ 22× BNL statistics

Improve the SM prediction

Important theoretical/experimental effort to improve SM prediction to comparable level of precision

- \Rightarrow White Paper from the muon $q 2$ Theory Initiative w/ reference SM prediction [Aoyama et al '20 = WP '20]
- \Rightarrow New measurements of $\sigma(e^+e^- \rightarrow$ hadrons) to improve determination of QCD contribution that limits SM prediction precision
- ⇒ Onging *ab-initio* supercomputer calculations of all highly nonlinear QCD contributions
- ⇒ New White Paper in preparation

$$
a_\mu^{\sf exp} = a_\mu^{\sf SM} ?
$$

Experimental measurement of a_μ

Measurement principle for a_u

Precession determined by

$$
\vec{\mu}_{\mu}=2(1+a_{\mu})\frac{Qe}{2m_{\mu}}\vec{S}
$$

$$
\vec{d}_\mu = \eta_\mu \frac{Qe}{2m_\mu} \vec{S}
$$

$$
\vec{\omega}_{a\eta} = \vec{\omega}_a + \vec{\omega}_{\eta} \simeq -\frac{Qe}{m_{\mu}} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right] - \eta_{\mu} \frac{Qe}{2m_{\mu}} \left[\vec{E} + \vec{\beta} \times \vec{B} \right]
$$

Experiment measures very precisely \vec{B} with $|\vec{B}| \gg |\vec{E}|$ &

$$
\Delta \omega \equiv \omega_S - \omega_C \simeq \sqrt{\omega_a^2 + \omega_\eta^2} \simeq \omega_a
$$

since $d_u = 0.1(9) \times 10^{-19} e \cdot cm$ (Benett et al '09)

Consider either magic $\gamma = 29.3$ (CERN/BNL/Fermilab) or $\vec{E} = 0$ (J-PARC) \bullet

$$
\rightarrow \Delta \omega \simeq a_\mu B \frac{e}{m_\mu}
$$

*a*µ: present experimental status

Bathroom scale sensitive to weight even smaller than that of a single eyelash !!!

Based on ∼ 25% of Fermilab data → should get δ*a*^µ ∼ 0.10 ppm in 2025

Reference standard model calculation of *a*^µ

[Aoyama et al '20 = WP '20]

At needed precision: all three interactions and all SM particles

$$
a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{EW}}
$$

= $O\left(\frac{\alpha}{2\pi}\right) + O\left(\left(\frac{\alpha}{\pi}\right)^2 \left(\frac{m_{\mu}}{M_{\rho}}\right)^2\right) + O\left(\left(\frac{\alpha}{16\pi\sin^2\theta_W}\right) \left(\frac{m_{\mu}}{M_W}\right)^2\right)$
= $O\left(10^{-3}\right) + O\left(10^{-7}\right) + O\left(10^{-9}\right)$

QED contributions to a_o

Loops with only photons and leptons: can expand in $\alpha = e^2/(4\pi) \ll 1$

$$
a_\ell^{\textrm{QED}} = C_\ell^{(2)}\left(\frac{\alpha}{\pi}\right) + C_\ell^{(4)}\left(\frac{\alpha}{\pi}\right)^2 + C_\ell^{(6)}\left(\frac{\alpha}{\pi}\right)^3 + C_\ell^{(8)}\left(\frac{\alpha}{\pi}\right)^4 + C_\ell^{(10)}\left(\frac{\alpha}{\pi}\right)^5 + \cdots
$$

 $C_{\ell}^{(2n)} = A_1^{(2n)} + A_2^{(2n)}(m_{\ell}/m_{\ell'}) + A_3^{(2n)}(m_{\ell}/m_{\ell'}, m_{\ell}/m_{\ell''})$

 $\bm{\mathcal{A}}_1^{(2)},\, \bm{\mathcal{A}}_1^{(4)},\, \bm{\mathcal{A}}_1^{(6)},\, \bm{\mathcal{A}}_2^{(6)},\, \bm{\mathcal{A}}_3^{(6)}$ known analytically _[Schwinger '48; Sommerfield '57, '58; Petermann '57; ...]

 $O((\alpha/\pi)^3)$: 72 diagrams [Laporta et al '91, '93, '95, '96; Kinoshita '95)

 $\mathcal{O}((\alpha/\pi)^4;(\alpha/\pi)^5)$: 891;12,672 diagrams [Laporta '95; Aguilar et al '08; Aoyama et al '96-'19, Volkov '19-'24]

- Automated generation of diagrams
- Numerical evaluation of loop integrals
- Calculations cross-checked

5-loop QED diagrams

[Aoyama et al '15]

QED contribution to a_u

From Cs [Mueller et al '18] or Rb [Morel et al LKB'20] recoil measurements:

 $\alpha^{-1}[\mathsf{Cs}] = 137.035\,999\,046(27)\ [0.2\,\mathsf{ppb}] \qquad \alpha^{-1}[\mathsf{Rb}] = 137.035\,999\,206(11)\ [0.081\,\mathsf{ppb}]$

Then:

99.994% of *a*^µ are due to QED contributions!

$$
a_{\mu}^{exp} - a_{\mu}^{QED} = 734.0(2.2) \times 10^{-10}
$$

= $a_{\mu}^{EW} + a_{\mu}^{had}$

Electroweak contributions to a_u : *Z*, *W*, *H*, etc. loops

γ

(Gnendiger et al '15 and refs therein)

$$
a_{\mu}^{\text{EW}}=15.36(10)\times10^{-10}
$$

Hadronic contributions to a_u : quark and gluon loops

$$
a_{\mu}^{exp} - a_{\mu}^{QED} - a_{\mu}^{EW} = 718.6(2.2) \times 10^{-10} \stackrel{?}{=} a_{\mu}^{had}
$$

• Clearly right order of magnitude:

$$
a_{\mu}^{\text{had}} = O\left(\left(\frac{\alpha}{\pi} \right)^2 \left(\frac{m_{\mu}}{M_{\rho}} \right)^2 \right) = O\left(10^{-7} \right)
$$

(already Gourdin & de Rafael '69 found $a_{\mu}^{\text{had}} = 650(50) \times 10^{-10}$)

- However, must be determined to subpercent accuracy & involves quarks and gluons at low energies
	- \Rightarrow must be able to describe the highly nonlinear dynamics of the strong interaction in that regime
	- \Rightarrow cannot rely on the perturbative methods used for QED and weak corrections
	- \Rightarrow need methods that allow a fully nonperturbative calculation
- Decompose:

$$
a_\mu^{\text{had}} = a_\mu^{\text{LO-HVP}} + a_\mu^{\text{HO-HVP}} + a_\mu^{\text{HLbyL}} + O\left(\left(\frac{\alpha}{\pi}\right)^4\right)
$$

Hadronic contributions to a_μ : diagrams

Data-driven determination of HVP contribution

$$
\bullet \ \Pi_{\mu\nu}(q) = \text{rank}(\text{rank} \, q, \text{rank} \, q) = (q_{\mu}q_{\nu} - g_{\mu\nu}q^2) \, \Pi(q^2)
$$

 $a_\mu^{\rm LO-HVP}$ = weighted integral of $\hat{\Pi}(q^2) \equiv \Pi(q^2) - \Pi(0)$ for $q^2 = -Q^2$, $Q^2 = 0 \to \infty$

 $\hat{\Pi}(q^2)$ is real and analytic except for cut along real, positive q^2 axis

Analyticity: can get $\hat{\Pi}(q^2)$ for $q^2 \le 0$ from $\text{Im}\Pi(q^2)$ w/ $q^2 > 0$ via contour integral ([once subtracted] dispersion relation)

Unitarity [Bouchiat et al '61]: ⁺*e*[−] [→] had) *R*(*s*) σ(*e*

$$
\text{Im}\Pi(s) = -\frac{P(s)}{12\pi}, \quad R(s) \equiv \frac{P(s) - P(s)}{\sigma(e^+e^-)} = \frac{P(s) - P(s)}{\sigma(e^-)} = \frac{P(s) - P(s)}{\
$$

Reference standard model prediction and comparison to experiment

[WP'20]

Laurent Lellouch [CP3 Seminar @ Louvain-la-Neuve, 21 January 2025](#page-0-0)

Reference SM result vs experiment

Experimental

Very brief introduction to lattice QCD (+ QED)

What is lattice QCD (LQCD) + QED?

To describe low-energy, strong (& electromagnetic) interaction phenomena w/ sub-% precision \rightarrow QCD + QED requires $>$ 132 numbers at every spacetime point

- ⇒ infinitely dense number of numbers in our continuous spacetime
- \Rightarrow must temporarily "simplify" the theory to calculate (regularization)
- ⇒ Lattice gauge theory \longrightarrow mathematically sound definition of QCD (beyond PT) & QED:

 \bigcirc UV (& IR) cutoff \rightarrow well defined functional integral in Euclidean spacetime:

$$
\langle O \rangle = \int DUDAD\bar{q}Dq e^{-S_G - \int \bar{q}D[M]q} O[U, A, q, \bar{q}]
$$

$$
= \int DUDA e^{-S_G} det(D[M]) O[U, A]_{\text{Wick}}
$$

^D*U*D*A e*−*S^G* det(*D*[*M*]) [≥] ⁰ & finite # of dofs \rightarrow evaluate numerically using stochastic methods

L(QCD+QED) is really QCD+QED: must tune $m_q\to m_q^{\rm ph}$ & $\Lambda_{\rm QCD}\to \Lambda_{\rm QCD}^{\rm ph}$, $e\to e^{ph}$, $a\to 0$ (after renormalization), $L, T \rightarrow \infty$ (and stats $\rightarrow \infty$) HUGE conceptual and numerical (10¹⁰ \rightarrow 10¹¹ dofs) challenge

Our particle "accelerators"

Such computations require some of the world's most powerful supercomputers

1 year on HAWK supercomputer O(10⁵) years on laptop

In Germany, those of the Forschungszentrum Jülich, the Leibniz Supercomputing Centre (Munich), and the High Performance Computing Center (Stuttgart); in France, of the Institute for Development and Resources in Intensive Scientific Computing (IDRIS) of the CNRS, the Centre Informatique National de l'Enseignement Supérieur (CINES) and the Very Large Computing Centre (TGCC) of the CEA by way of the French Large-scale Computing Infrastructure (GENCI); in Europe, those administered by EuroHPC.

● Soon in Europe: exaflop supercomputers (\sim 10¹⁸ flop/s), i.e. \sim 40 \times faster

Lattice QCD calculation of $a_{\mu}^{\text{LO-HVP}}$ μ

$\bm{\mathit{a}}_{\mu}^{\textsf{LO-HVP}}$ $_{\mu}^{{\sf LO-HVP}}$ from LQCD: introduction

Compute on $T \times L^3$ Euclidean-time lattice w/ spacing *a* [Bernecker et al '11]

$$
C_L(t) = \frac{a^3}{3} \sum_{i=1}^3 \sum_{\vec{x}} \langle J_i(x) J_i(0) \rangle
$$

w/ $J_{\mu} = \frac{2}{3}$ *Ū*γ_μ*U* − $\frac{1}{3}$ \bar{d} γ_μ*d* − $\frac{1}{3}$ *§*γ_μ*S* + $\frac{2}{3}$ *Ĉ*γ_μ*C* + · · ·

Decompose ($C_L^{l=1} = \frac{9}{10} C_L^{ud}$) $C_L(t) = C_L^{ud}(t) + C_L^s(t) + C_L^c(t) + C_L^{disc}(t)$ $= C_{L}^{I=1}(t) + C_{L}^{I=0}(t)$

Then get

$$
a_{\mu,f}^{\text{LO-HVP}} = \lim_{\substack{a \to 0 \\ L, T \to \infty}} \left(\frac{\alpha}{\pi}\right)^2 \left(\frac{a}{m_\mu^2}\right) \sum_{t=0}^{T/2} K(tm_\mu) \operatorname{Re} C'_L(t)
$$

Define "windows" **[RBC/UKQCD** '18] $K(\tau) \to W(\tau; \tau_i, \tau_f, \bar{\Delta}) K(\tau)$

- (a) Statistical uncertainties of light and disconnected contributions
- (b) Finite V (and T) corrections on $I = 1$ contribution
- (c) Continuum limits
- (e) Tuning of physical point \leftrightarrow very precise determination QCD parameters: scale and m_u , m_d , m_s , m_c masses
- (f) For subpercent accuracy, must include small effects from electromagnetism (QED) and due to fact that masses of *u* and *d* quarks are not quite equal (SIB)

Uncertainty reduction

 $2017 \rightarrow 2020 \rightarrow 2024$

- ⇒ uncertainty reduced by:
	- \bullet 2017 \rightarrow 2020: $\div 3.4$ or 19. \rightarrow 5.5
	- \bullet 2020 \rightarrow 2024: \div 1.7 or 5.5 \rightarrow 3.3

Strategy for improvement

- New simulations on finer ("Monster") lattice: $a = 0.064$ fm $[96^3 \times 144] \longrightarrow a = 0.048$ fm $[128^3 \times 192]$
	- \rightarrow 80% nearer continuum limit (in a^2)
	- \rightarrow reduces $a \rightarrow 0$ error
- Break up analysis into optimized set of windows: 0−0.4, 0.4−0.6, 0.6−1.2, 1.2−2.8 fm

Continuum extrapolate $I = 0$ instead of disconnected

- \rightarrow better control over $a \rightarrow 0$ limit
- → overall reduction of uncertainties
- Data-driven evaluation of tail: a ΩD-HVP (proposed and used w/ 1 fm $\rightarrow \infty$ [RBC/UKQCD '18])
	- → reduces FV correction $18.5(2.5) \rightarrow 9.3(9)$, i.e. cv $\div 2$ & err $\div 3$
	- \rightarrow reduces long-distance (LD) noise
	- → reduces *a* → 0 error some

[plot made w/ KNT '18 data set]

● Calculation was fully blinded

July 12, 2024: unblinding

Preprint uploaded to arXiv on July 15, 2024

Laurent Lellouch [CP3 Seminar @ Louvain-la-Neuve, 21 January 2025](#page-0-0)

1.5−1.9 fm window [Aubin et al '22]

Benchmarking of lattice calculation: windows

light = ud contribution to long-distance window (1 $\rightarrow \infty$ fm):

411.4[4.9] [RBC/UKQCD '24] ; 410.7[5.9] [Mainz '24, BMW world] 401.2[4.3] [RBC/UKQCD '24]

Laurent Lellouch [CP3 Seminar @ Louvain-la-Neuve, 21 January 2025](#page-0-0)

Tail contribution from $\sigma(\bm{e}^+\bm{e}^-\to\text{hadrons})$

- \bullet Lattice computation for $t < 2.8$ fm: $> 95\%$ of final result for $a_{\mu}^{\text{LO-HVP}}$
- Tail $a_{\mu,28-\infty}^{\text{LO-HVP}}$ computed using $e^+e^-\to$ hadrons for $t > 2.8$ fm: $\leq 5\%$ to final result for $a_{\mu}^{\text{LO-HVP}}$
- \bullet Tail dominated by cross section below ρ peak: Tall dominated by cross set
 \sim 75% for \sqrt{s} ≤ 0.63 GeV
- Partial tail $a_{\mu,28-35}^{\text{LO-HVP}}$ (2.8 fm $< t \leq 3.5$ fm) for comparison with lattice dominated by cross section below ρ peak: ∼ 70% for $\sqrt{s} \leq 0.63$ GeV
- **•** Region well controlled by theory (χ PT, analyticity, unitarity, . . .) and other experimental constraints (e.g. $\langle r_{\pi}^2 \rangle$)

[plots made w/ KNT '18 data set]

$\sigma(\bm{e}^+\bm{e}^-\to \text{hadrons})$ for the tail

Tail *a* LO-HVP µ,28-[∞] dominated cross section below ^ρ peak: [∼] ⁷⁵% for [√] *s* ≤ 0.63 GeV

All measurements agree to within 1.4 σ for \sqrt{s} \lesssim 0.55 GeV

 \Rightarrow tensions that plague $a_{\mu}^{\sf LO-HVP}$ & $a_{\mu,\sf win}^{\sf LO-HVP}$ not present here

Data-driven partial-tail comparison with lattice

- \bullet Window from 2.8 \rightarrow 3.5 fm
- **•** All data-driven result agree very well
- \bullet Weighted average taken w/ and w/out τ : $\chi^2/\text{dof} = 1.1$ for both

• Final number: average w/ τ , PDG factor, and systematic = full difference τ /no- τ added linearly

 $a_{\mu,28\text{-}35}^\text{\rm LO-HVP}=18.12(11)(5)[16]$

Excellent agreement w/ lattice, but \bullet uncertainty reduced by factor ∼ 15

Data-driven tail

- Window from $2.8 \rightarrow \infty$ fm
- All data-driven result agree very well
- \bullet Weighted average taken w/ and w/out τ : $\chi^2/\text{dof} = 1.0$ and 0.8

Final number: average w/ τ , and \bullet systematic = full difference τ /no- τ added linearly

 $a_{\mu,28\text{-}\infty}^{\text{\rm LO-HVP}} = 27.59(17)(9)[26]$

• Only
$$
\leq 5\%
$$
 of final result for a_{μ}

Summary of contributions to $a_\mu^{\mathsf{LO-HVP}}$ $_{\mu}^{\text{\tiny{LO-HVP}}}\colon 2020$

Summary of contributions to $a_\mu^{\mathsf{LO-HVP}}$ $_{\mu}^{\text{\tiny{LU-HVP}}}\colon 2020\to 2024$

BMW-DMZ '24 vs *g* − 2 measurement

Indicates Standard Model confirmed to 0.37 ppm !

Conclusions

- New calculation of $a_{\mu}^{\text{LO-HVP}}$ to 0.46%
- **•** Fully blinded analysis
- \bullet Lattice calculation of $0 \rightarrow 2.8$ fm window $> 95\%$ of total
- \bullet Data-driven evaluation of $2.8 \rightarrow \infty$ fm window $\leq 5\%$ of total
- **C** Error reduction:
	- $\bullet \sim 37\%$ from lattice improvements
	- additional ∼ 30% from data-driven tail
- Checks on OFD and SIB corrections
- Our result indicates that SM confirmed to 0.37 ppm
- \bullet Lattice calculation agrees w/ others in windows: $0 \rightarrow 0.4$ fm, $0.4 \rightarrow 1.0$ fm & $1.5 \rightarrow 1.9$ fm
- \bullet Even newer lattice calculations [RBC/UKQCD '24, Mainz '24] are $\sim 1.5\sigma$ larger
- Lattice calculations of long-distance contribution 1 → ∞ fm of *u* and *d* quarks [RBC/UKQCD '24, Mainz '24, FHM '24] important step to further confirm agreement w/ data-driven tail

• Eagerly await

- Fermilab ∼ 0.1 ppm measurement of *a*^µ in 2025
- \bullet J-PARC entirely new method for a_{μ} measurement
- Lattice results for complete $a_{\mu}^{\sf LO-HVP}$ by FHM expected soon
- New BABAR *e* ⁺*e*[−] [→] hadrons analysis by early ²⁰²⁵
- New KLOE analysis
- New BES III, BELLE-II, CMD-3, SND-2 data and analysis
- MUonE @ CERN for spacelike HVP