Quantum tops at colliders Eleni Vryonidou

MANCHESTER 1824

European Research Council Established by the European Commission

Be.HEP Solstice meeting Leuven, 21/6/24

Quantum world **Bridging different scales**

adapted from F. Maltoni

Quantum world **Bridging different scales**

Eleni Vryonidou

Leuven, 21/6/24

adapted from F. Maltoni

Quantum world Bridging different scales

Eleni Vryonidou

Leuven, 21/6/24

adapted from F. Maltoni

Introduction

Big interest in the theory community in the past 3-4 years **Measurement of entanglement in top pair production:** Next talk!!

Why is this interesting? Quantum mechanics at the TeV scale!

What can we learn in particle physics using QM/QI? New insights and information about new physics

y

in

OUANTUM | RESEARCH UPDATE

Quantum entanglement observed in top quarks 11 Oct 2023

(Courtesy: Daniel Dominguez/CERN)

Leuven, 21/6/24

Audio and video 🗸 | Latest 🗸 |

Outline

- Quantum Mechanics basics
- Top quarks and their spins
- Quantum Tops in high—energy colliders
- Entanglement measurement and threshold effects
- Quantum observables for New Physics
- Conclusions

Leuven, 21/6/24

Density matrix

Pure versus mixed states in composite systems

Any quantum state is described by a density matrix

Product pure state

$$|\psi\rangle = |a\rangle \otimes |b\rangle$$

Separable

$$\rho = \sum_{i} p_{i} \rho_{A}^{i} \otimes \rho_{B}^{i}$$

$$p_i \ge 0, \sum_i p_i = 1$$

The properties are different for pure and mixed states

Eleni Vryonidou

Generic state (entangled)

$$\begin{split} |\psi\rangle &= \sum_{ij} p_{ij} |a_i\rangle \otimes |b_j\rangle \qquad p_{ij} \in \mathbb{C} , \sum_{ij} p_{ij} p_{ij}^* = 1 \\ |a_i\rangle, |b_j\rangle \text{ orthonormal bases} \end{split}$$

Non-separable (generic)

$$\rho = \sum_{ijkl} p_{ij} p_{kl}^* |a_i\rangle \otimes |b_j\rangle \langle a_k| \otimes \langle b_l| = \sum_{ijkl} p_{ij} p_{kl}^* |a_i\rangle \langle a_k| \otimes |b_j\rangle \langle b_l|$$

$$\rho_{A} = \operatorname{Tr}_{B}\left[\rho\right] = \sum_{ijl} p_{ij} p_{kj}^{*} |a_{i}\rangle\langle a_{k}|$$
$$\rho_{B} = \operatorname{Tr}_{A}\left[\rho\right] = \sum_{iil} p_{ij} p_{il}^{*} |b_{j}\rangle\langle b_{l}|$$

Entanglement

For a bipartite system: $\mathcal{H} = \mathcal{H}_A \otimes$

 $|\Psi\rangle =$ For a state to be separable:

How do we check for entanglement: Peres-Horodecki criterion

A necessary criterion for separability of a mixed state of A and B:

$$\rho = \sum_{ijkl} p_{ij} p_{kl}^* |a_i\rangle \otimes |b_j\rangle \langle a_k| \otimes \langle b_l| \qquad \rho^{T_B} = (I \otimes T)[\rho] = \sum_{ijkl} p_{il} p_{kj}^* |a_i\rangle \langle a_k| \otimes |b_j\rangle \langle b_l|$$

The partial transpose wrt B

If ρ is separable then all the eigenvalues of ρ^{T_B} are non-negative.

$$\left| \Psi_{A} \right\rangle \left| \Psi_{B} \right\rangle \quad \rho = \sum_{n} p_{n} \rho_{n}^{A} \otimes \rho_{n}^{B}, \ \sum_{n} p_{n} = 1$$

- A non-separable state is entangled

- In other words, if ρ^{T_B} has a negative eigenvalue, ρ is guaranteed to be entangled.

Concurrence

Take an entangled pure state between the two subsystems A and B.

$$\mathcal{H} = \mathcal{H}_A$$

The concurrence C_{AlB} is defined as

$$0 \le C_{A|B}^2 = 2(1 - \text{Tr}[\rho_A^2]) = C_{B|A}^2 \le 1$$

E.g. for a two-qubit system:

$$C=\max(0,\lambda_1-\lambda_2-\lambda_3-\lambda_4)$$
 with λ_1

For mixed states, we use different entanglement witnesses and measures.

 $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4$ eigenvalues of $\sqrt{\sqrt{\rho}} (\sigma_y \otimes \sigma_y) \rho^* (\sigma_y \otimes \sigma_y) \sqrt{\rho_1}$

Bell inequalities Clauser-Horne-Shimony-Holt (CSHS) inequality Bell locality means (classically):

Violation of Bell Inequalities means non-locality

In Quantum mechanics:

 $E(AB) + E(AB') + E(A'B) - E(A'B') = 2\sqrt{2}$

 $E(AB) + E(AB') + E(A'B) - E(A'B') \le 2$

Violating Bell locality

Different levels of correlations

Entanglement: difference between separable and non-separable states.

Quantum discord is an asymmetric measure of nonclassical correlations between two subsystems of a system, based on the difference between two different quantum definitions of mutual information.

Quantum steering differs from entanglement for mixed states and it is also asymmetric.

Bell non-locality needs a strong quantum correlation. For pure states it just amounts to entanglement again.

Top quark

Why study the top quark?

- 1. Heaviest known particle: Strong coupling to the Higgs
- 2. Portal to new physics: e.g. EWSB, composite Higgs
- 3. LHC is a top factory: precise access to top properties through a lot of production channels, see Didar's talk
- 4. Weak decays before hadronisation

5. Top spins in pair production: a 2-qubit system!

Leuven, 21/6/24

How do we measure the spins?

Noteby: $\alpha_d = 1, \alpha_u = -$

The direction of the charged lepton is 100% correlated with the top quark spin Allows to reconstruct the top spin by measuring the angular distribution of the lepton Basis of all spin correlation/entanglement measurements in tops

Spin analysing power

$$0.3, \alpha_b = -0.4, \alpha_W = 0.4$$

Leuven, 21/6/24

Spin density matrix

$$\rho = \frac{1}{4} \Big(\mathbb{1} \otimes \mathbb{1} + \sum_{i=1}^{3} B_i \sigma_i \otimes \mathbb{1} + \sum_{i=j}^{3} \bar{B}_j \mathbb{1} \otimes \sigma_j + \sum_{i=1}^{3} B_i \sigma_i \otimes \mathbb{1} \Big)$$

Quantum tomography is measurement of 15 parameters: 6 polarisations and 9 correlations

Eleni Vryonidou

Leuven, 21/6/24

Eleni Vryonidou

$${}^{[2]}(m_{t\bar{t}},\theta) = \frac{9/\alpha_a \alpha_b \int \cos\theta_{ai} \cos\theta_{bj} \left| \mathcal{M}_{i_1 \, i_2 \to t \, \bar{t} \to a \, b \, X} \right|^2}{\int |\mathcal{M}_{i_1 \, i_2 \to t \, \bar{t} \to a \, b \, X}|^2 \, d\pi }$$

Spin correlation coefficients are averages of angles

Leuven, 21/6/24

Spin correlations to entanglement

 $D_{\rm m}$

$$\hat{k} = \text{top direction}, \quad \hat{r} = \frac{\hat{p} - \hat{k} \, \cos \theta}{\sin \theta}, \quad \hat{n} = \frac{\hat{p} \times \hat{k}}{\sin \theta}$$

 $\mathcal{C}^{(\text{sing})}$

$$D^{(1)} = \frac{1}{3}(+C_{kk} + C_{rr} + C_{nn}),$$

$$D^{(k)} = \frac{1}{3}(+C_{kk} - C_{rr} - C_{nn}),$$

$$D^{(r)} = \frac{1}{3}(-C_{kk} + C_{rr} - C_{nn}),$$

$$D^{(n)} = \frac{1}{3}(-C_{kk} - C_{rr} + C_{nn}).$$

$$D_{\min} \equiv \min\{D^{(1)}, D^{(k)}, D^{(r)}, D^{(n)}\}$$
 Eleni Vryonidou

Entanglement markers, from the Peres-Horodecki criterion

$$\sin < -\frac{1}{3}$$
 for a proof see arXiv:2003.022

Necessary and sufficient condition for entanglement

$$\begin{split} C &= \frac{1}{2} \max \left(0, -1 - 3D_{\min} \right) > 0 \\ \\ {}^{\text{(let)}} &= \begin{pmatrix} -\eta & 0 & 0 \\ 0 & -\eta & 0 \\ 0 & 0 & -\eta \end{pmatrix}, \qquad \mathcal{C}^{(\text{triplet})} = \begin{pmatrix} \eta & 0 & 0 \\ 0 & \eta & 0 \\ 0 & 0 & -\eta \end{pmatrix}, \qquad 0 < \eta \leq 1 \\ \\ D^{(1)} &= -\eta \qquad \qquad D^{(i)} = -\eta \\ & \eta > \frac{1}{3} \implies \text{ entanglement,} \\ & \eta > \frac{1}{\sqrt{2}} \implies \text{ Bell inequality violation} \\ & \eta = 1 \implies \text{ pure state.} \end{split}$$

Leuven, 21/6/24

When are tops entangled?

Consider top pair production in pp collisions Which spin states can be reached?

Threshold:

- entangled singlet state
- from same helicity gluons

 $C_{\rm kk}$

 $0^{C_{nn}}$

-1

-1

Boosted:

- entangled triplet state
- for qqbar pairs and opposite helicity gluons

C. Severi, F. Maltoni, S. Tentori, EV: 2404.08049

Entanglement in the SM

Eleni Vryonidou

- Concurrence: $C = \frac{1}{2} \max \left(0, -1 3D_{\min} \right)$
- White regions: no entanglement (C<0)
- Maximal entanglement regions
- At threshold: $\beta^2 = 0, \forall \theta$
- High-Energy: $\beta^2 \to 1, \cos \theta = 0$

C. Severi, C. Boschi, F. Maltoni, M. Sioli : 2110.10112

Leuven, 21/6/24

Entanglement in top pair production Can we see this experimentally?

				$ C_{kk}+C_{rr} -C_m$	
	Region	Selection	Cross section	Reconstructed	Significa
		Weak	14 pb	1.31 ± 0.02	>
	Threshold	Intermediate	12 pb	1.34 ± 0.02	\gg
		Strong	10 pb	1.38 ± 0.02	\gg
		Weak	1.9pb	1.32 ± 0.07	4
	High-p _T	Intermediate	1.5 pb	1.36 ± 0.08	4
		Strong	1.0pb	1.42 ± 0.13	

Entanglement observable at the LHC

C. Severi, C. Boschi, F. Maltoni, M. Sioli : 2110.10112

17

Entanglement in top pair production Can we see this experimentally?

				$ C_{kk}+C_{rr} -C_m$	
	Region	Selection	Cross section	Reconstructed	Significa
		Weak	14 pb	1.31 ± 0.02	>
	Threshold	Intermediate	12 pb	1.34 ± 0.02	\gg
		Strong	10 pb	1.38 ± 0.02	\gg
		Weak	1.9pb	1.32 ± 0.07	4
	High-p _T	Intermediate	1.5 pb	1.36 ± 0.08	4
		Strong	1.0pb	1.42 ± 0.13	

Entanglement observable at the LHC

C. Severi, C. Boschi, F. Maltoni, M. Sioli : 2110.10112

Leuven, 21/6/24

Entanglement in top pair production Can we see this experimentally?

				$ C_{kk}+C_{rr} -C_m$	
	Region	Selection	Cross section	Reconstructed	Significa
		Weak	14 pb	1.31 ± 0.02	>
	Threshold	Intermediate	12 pb	1.34 ± 0.02	\gg
		Strong	10 pb	1.38 ± 0.02	\gg
		Weak	1.9pb	1.32 ± 0.07	4
	High-p _T	Intermediate	1.5 pb	1.36 ± 0.08	4
		Strong	1.0pb	1.42 ± 0.13	

Entanglement observable at the LHC

C. Severi, C. Boschi, F. Maltoni, M. Sioli : 2110.10112

Leuven, 21/6/24

How about Bell inequalities?

Much harder to see Bell inequalities violation

How about Bell inequalities?

Much harder to see Bell inequalities violation

Bell-inequalities

High- p_T Selection	Cross section	Significance for > 2 w/ $3 ab^{-1}$
Weak	0.58 pb	83% CL
Intermediate	0.31 pb	81% CL
Strong	0.17 pb	66% CL

Eleni Vryonidou

Indicator	Parton-level	Unfolded	Significance $(\mathcal{L} = 3 \text{ ab}^{-1})$
\mathcal{B}_1	0.267 ± 0.023	0.274 ± 0.057	4.8
\mathcal{B}_2	0.204 ± 0.023	0.272 ± 0.058	4.7

Better statistics, use of boosted top tagging Use of optimal hadronic direction

Z. Dong, D. Gonçalves, K. Kong, A. Navarro: 2305.07075 More challenging to observe

Leuven, 21/6/24

Quantum tops @ LHC

Many other papers on VV, $H \rightarrow VV$, $\tau^+ \tau^-$, tW,...

See also a review: A. Barr, Fabbrichesi, Floreanini, Gabrielli, Marzola arXiv: 2402.07972

Eleni Vryonidou

Y. Afik and JRM de Nova: 2003.02280 [quant-ph]

- M. Fabbrichesi, R. Floreanini. G. Panizzo: 2102.11883 [hep-ph]
- C. Severi, C. Boschi, F.Maltoni, M. Sioli : 2110.10112 [hep-ph]
 - Y. Afik and JRM de Nova: 2203.05582 [quant-ph]
- R. Aoude, E. Madge, F.Maltoni, L. Mantani: 2203.05619 [hep-ph]
 - J.A. Aguilar-Saavedra, J.A. Casas: 2205.00542 [hep-ph]
 - Y. Afik and JRM de Nova: 2209.03969 [quant-ph]
 - C. Severi, EV: 2210.09330 [hep-ph]
- Z. Dong, D. Gonçalves, K. Kong, A. Navarro: 2305.07075 [hep-ph]
 - J.A. Aguilar-Saavedra : 2307.06991 [hep-ph]
 - T. Han, M. Low, TA Wu: 2310.17696 [hep-ph]
 - J.A. Aguilar-Saavedra, J.A. Casas: 2401.06854 [hep-ph]
 - C. Severi, F.Maltoni, S. Tentori, EV: 2401.08751[hep-ph]
 - C. Severi, F.Maltoni, S. Tentori, EV: 2404.08049[hep-ph]

Leuven, 21/6/24

Summary so far

- Principles of quantum mechanics applied to top quarks pairs: a 2-qubit system
- Different degrees of correlations from classical to Bell inequality violation Correlations depend on the production mode and hence kinematic regions Prospects for quantum measurements explored by phenomenologists

How about experimentally?

First measurements

Entanglement observation by ATLAS

Entanglement observation by CMS

First measurements

Entanglement observation by ATLAS

Entanglement observation by CMS

First measurements

Entanglement observation by ATLAS

Entanglement observation by CMS

Toponium

- Quasi-Bound State of top and antitop
- Energy states obtained by solving Schrödinger equation with QCD potential
- Described by NRQCD
- Ground state n=1 S-wave
- Spin-singlet vs spin-triplet depending on production mode
 - spin singlet for pp and spin triplet for

$$\operatorname{FOr} \, \boldsymbol{\ell} \, \boldsymbol{\ell} \, \boldsymbol{\ell} \, \left[\left(E + i\Gamma_t \right) - \left(\frac{\boldsymbol{\nabla}^2}{m_t} + V(\boldsymbol{r}) \right) \right] G(\boldsymbol{r}, E + i\Gamma_t) = V_{\text{QCD}}(r, \mu_B) = C^{[\text{col}]} \, \frac{\alpha_s(\mu_B)}{r} \left[1 + \frac{\alpha_s}{4\pi} \left(2 \, \beta_0 \log(e^\gamma \mu_B r) + \frac{31}{9} C_A - \frac{10}{9} n_f \right) \right]$$

Leuven, 21/6/24

Toponium modelling

We can approximate the impact in the Monte Carlo by introducing a toy model with a resonance

- vector resonance for lepton collisions
- psedoscalar resonance for proton collisions

$$m_{\psi} = m_{\eta} \simeq 2m_{\rm t} - 2\,{
m GeV}, \quad {
m and} \quad \Gamma_{\psi} = \Gamma_{\eta} \simeq 2\,\Gamma$$

Peak of resonance fitted to match the results obtained by the resummed computation CMS toponym simulation based on: Fuks et al. 2102.11281

Significant impact on entanglement markers, hence improvement of measurement agreement with theory Pseudoscalar resonance leads to different spin correlations compared to QCD

Toponium modelling

We can approximate the impact in the Monte Carlo by introducing a toy model with a resonance

- vector resonance for lepton collisions
- psedoscalar resonance for proton collisions

$$m_{\psi} = m_{\eta} \simeq 2m_{\rm t} - 2\,{
m GeV}, \quad {
m and} \quad \Gamma_{\psi} = \Gamma_{\eta} \simeq 2\,\Gamma$$

Peak of resonance fitted to match the results obtained by the resummed computation CMS toponym simulation based on: Fuks et al. 2102.11281

Significant impact on entanglement markers, hence improvement of measurement agreement with theory Pseudoscalar resonance leads to different spin correlations compared to QCD

Using QI for new physics

First quantum observable measurements are here **Can they tell us anything interesting/new?**

- Effective Field Theory
- Resonances

Effective Field Theory

Energy **UV physics (heavy particles)** $\mathcal{L}_{NP}(\phi, Z', X, Q, S...)$ new **t Effective Field Theory** $\mathcal{L}_{SM}(\phi) + \mathcal{L}_{dim6}(\phi) + \dots$ **Standard Model** $\mathcal{L}_{SM}(\phi)$

low energy.

Effective Field Theory reveals high energy physics through precise measurements at

EFT in top pair production SM

000000

4-fermion operators

$$\begin{split} &O^{1,8}_{Qq} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i}) & O^{1,1}_{Qq} = (\bar{Q}\gamma_{\mu}Q)(\bar{q}_{i}\gamma^{\mu}q_{i}) \\ &O^{3,8}_{Qq} = (\bar{Q}\gamma_{\mu}T^{A}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}\tau^{I}q_{i}) & O^{3,1}_{Qq} = (\bar{Q}\gamma_{\mu}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i}) \\ &O^{8}_{tu} = (\bar{t}\gamma_{\mu}T^{A}t)(\bar{u}_{i}\gamma^{\mu}T^{A}u_{i}) & O^{1}_{tu} = (\bar{t}\gamma_{\mu}t)(\bar{u}_{i}\gamma^{\mu}u_{i}) \\ &O^{8}_{td} = (\bar{t}\gamma^{\mu}T^{A}t)(\bar{d}_{i}\gamma_{\mu}T^{A}d_{i}) & O^{1}_{td} = (\bar{t}\gamma^{\mu}t)(\bar{d}_{i}\gamma_{\mu}d_{i}) ; \\ &O^{8}_{Qu} = (\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{u}_{i}\gamma_{\mu}T^{A}u_{i}) & O^{1}_{Qu} = (\bar{Q}\gamma^{\mu}Q)(\bar{u}_{i}\gamma_{\mu}u_{i}) \\ &O^{8}_{Qd} = (\bar{Q}\gamma^{\mu}T^{A}Q)(\bar{d}_{i}\gamma_{\mu}T^{A}d_{i}) & O^{1}_{Qd} = (\bar{Q}\gamma^{\mu}Q)(\bar{d}_{i}\gamma_{\mu}d_{i}) \\ &O^{8}_{tq} = (\bar{q}_{i}\gamma^{\mu}T^{A}q_{i})(\bar{t}\gamma_{\mu}T^{A}t) & O^{1}_{tq} = (\bar{q}_{i}\gamma^{\mu}q_{i})(\bar{t}\gamma_{\mu}t) ; \end{split}$$

Octets

Different chiralities and colour structures Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

$ig_{S}\left(ar{Q} au^{\mu u}\,T_{A}\,t ight) ilde{arphi}\,G^{A}_{\mu u}$ \mathcal{O}_{tG}

Chromomagnetic dipole operator

Singlets

SMEFT in top pair production

Eleni Vryonidou

 $ig_{S}\left(ar{Q} au^{\mu
u}T_{A}\,t
ight) ilde{arphi}\,G^{A}_{\mu
u}$ \mathcal{O}_{tG} Chromomagnetic dipole operator $\Delta = -C_{nn} + |C_{kk} + C_{rr}| - 1 > 0$ Δ_0 SM $\Delta_1 \equiv \Delta - \Delta_0 \quad \mathcal{O}(\Lambda^{-2})$ $\Delta_2 \equiv \Delta - \Delta_1 - \Delta_0 \quad \mathcal{O}(\Lambda^{-4})$

SMEFT impact on entanglement markers

Quantum entanglement markers modified by SMEFT operators

SMEFT in lepton colliders

$$\begin{aligned} \mathcal{O}_{Q\ell}^{(1)} &= (\overline{Q}_L \gamma^{\mu} Q_L) (\overline{\ell}_L \gamma_{\mu} \ell_L), \\ \mathcal{O}_{Q\ell}^{(3)} &= (\overline{Q}_L \gamma^{\mu} \sigma_I Q_L) (\overline{\ell}_L \gamma_{\mu} \sigma^I \ell_L), \\ \mathcal{O}_{Qe} &= (\overline{Q}_L \gamma^{\mu} Q_L) (\overline{\ell}_R \gamma_{\mu} \ell_R), \\ \mathcal{O}_{t\ell} &= (\overline{t}_R \gamma^{\mu} t_R) (\overline{\ell}_L \gamma_{\mu} \ell_L), \\ \mathcal{O}_{te} &= (\overline{t}_R \gamma^{\mu} t_R) (\overline{\ell}_R \gamma_{\mu} \ell_R). \end{aligned}$$

4-fermion operators

$$\mathcal{O}_{\phi Q}^{(1)} = i(\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi)(\overline{Q}_{L}\gamma^{\mu}Q_{L}),$$

$$\mathcal{O}_{\phi Q}^{(3)} = i(\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi)(\overline{Q}_{L}\gamma^{\mu}\sigma^{I}Q_{L}),$$

$$\mathcal{O}_{\phi t} = i(\phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \phi)(\overline{t}_{R}\gamma^{\mu}t_{R}),$$

$$\ell^{-}$$

$$\mathcal{O}_{tW} = (\overline{Q}_{L}\gamma^{\mu\nu}\sigma_{I}t_{R}) \stackrel{\leftrightarrow}{\phi} W_{\mu\nu}^{I},$$

$$\mathcal{O}_{tB} = (\overline{Q}_{L}\gamma^{\mu\nu}t_{R}) \stackrel{\leftrightarrow}{\phi} B_{\mu\nu}.$$

$$Current operators of the term of the term of the term of term of$$

Degrees of freedom

$$\begin{split} c_{Q\ell}^{(3)} + c_{Q\ell}^{(1)}, \\ c_{VV} &= \frac{1}{4} \big(c_{Q\ell}^{(1)} - c_{Q\ell}^{(3)} + c_{te} + c_{t\ell} + c_{Qe} \big), \\ c_{AV} &= \frac{1}{4} \big(- c_{Q\ell}^{(1)} + c_{Q\ell}^{(3)} + c_{te} + c_{t\ell} - c_{Qe} \big), \\ c_{VA} &= \frac{1}{4} \big(- c_{Q\ell}^{(1)} + c_{Q\ell}^{(3)} + c_{te} - c_{t\ell} + c_{Qe} \big), \\ c_{AA} &= \frac{1}{4} \big(c_{Q\ell}^{(1)} - c_{Q\ell}^{(3)} + c_{te} - c_{t\ell} - c_{Qe} \big). \end{split}$$

$$\begin{aligned} c_{\phi Q}^{(3)} + c_{\phi Q}^{(1)}, \\ c_{\phi V} &= \frac{1}{2} \left(c_{\phi t} + c_{\phi Q}^{(1)} - c_{\phi Q}^{(3)} \right), \\ c_{\phi A} &= \frac{1}{2} \left(c_{\phi t} - c_{\phi Q}^{(1)} + c_{\phi Q}^{(3)} \right). \end{aligned}$$

$$c_{\mathrm{t}Z} = c_{\mathrm{W}} c_{tW} - s_{\mathrm{W}} c_{tB},$$

 $c_{\mathrm{t}\gamma} = s_{\mathrm{W}} c_{tW} + c_{\mathrm{W}} c_{tB},$

Breaking degeneracies with Quantum Obs

Spin correlation observables probe different linear combinations of Wilson coefficients

Eleni Vryonidou

Breaking degeneracies Leuven, 21/6/24

New particle searches **Example: Scalar resonances**

$$\mathcal{C}^{[gg,\phi]}\big|_{\alpha=0} = \begin{pmatrix} -1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \end{pmatrix}, \qquad \mathcal{C}^{[gg,\phi]}\big|_{\alpha=\pi/2} = \begin{pmatrix} -1 \ 0 \ 0 \\ 0 \ -1 \ 0 \\ 0 \ 0 \ -1 \end{pmatrix}$$

Scalar: Pure triplet

Pseudoscalar: Pure singlet

Also true for the interference with the SM (pure state projector)

More constraining than rate information

Conclusions

- A new era of quantum observables at colliders is here
- Ideas and methods of QM adjusted to high energy physics
- First measurements, and lots of studies already here
- Top pairs an ideal testing ground, different degrees of correlations can be observed
- Quantum observables are not only fun but can also help to probe new physics

Thank you for your attention

Eleni Vryonidou

