BDF/SHiP facility at CERN

Andrey Golutvin Imperial College London & CERN

on behalf of the SHiP Collaboration of 38 institutes from 15 countries and CERN

BDF/SHIP references to reports/publications

- 17 submitted to SPSC and ESPPSU2020
- 26 on the facility development
- 37 on the detector development
- 11 on physics studies
- 20 on theory developments dedicated to SHiP
- 20 PhD thesis, a few more in pipeline

BDF/SHiP approved by the CERN RB in March 2024

Recent documents:

- Proposal, BDF/SHiP at the ECN3 high-intensity beam facility, CERN-SPSC-2023-033
- ✓ Letter of Intent, BDF/SHiP at the ECN3 high-intensity beam facility, CERN-SPSC-2022-032

Brief reminder on Dark Sector

Many theoretical models (portal models) predict new massive feebly interacting particles (FIP) which can be tested experimentally

SHiP Physics Paper – Rep.Progr.Phys.79(2016) 124201 (137pp), SLAC Dark Sector Workshop 2016: Community Report – arXiv: 1608.08632, Maryland Dark Sector Workshop 2017: Cosmic Visions – arXiv:1707.04591 Report by Physics Beyond Collider (PBC) study group - https://arxiv.org/abs/1901.09966v2 Most recent one is dedicated to ECN3 proposals - <u>https://arxiv.org/abs/2310.17726</u>

Family of Hidden Particles:

- ✓ Light Dark Matter (LDM)
- Portals (mediators) to Hidden Sector (HS):
 - Heavy Neutral Leptons (spin ½, coupling coefficient **U**²)
 - Dark photons (spin 1, coupling coefficient ε)
 - Dark scalars (spin 0, coupling coefficient θ^2)
 - Special case (non-renormalizable) Axion Like Particles (ALP) (spin 0, coupling coefficient g)

Properties of Hidden Particles

- ✓ HS production and decay rates are strongly suppressed relative to SM
 - Production branching ratios O(10⁻¹⁰)
 - Long-lived objects
 - Interact very weakly with matter
 - May decay to various final states, e.g.

Portal models	Final states
HNL	<i>l</i> ⁺ π ⁻ , <i>l</i> ⁺ K ⁻ , <i>l</i> ⁺ ρ ⁻
Vector, scalar, axion portals	<i>l</i> + <i>l</i> -
HNL Avion northel	
Axion portai	γγ

Full reconstruction and PID are essential to minimize model dependence

Experimental challenge is background suppression

Search for Feebly Interacting Particles (FIP) in heavy flavour decays at BDF/SHiP @ SPS

- ✓ Unique physics potential of SPS available since CNGS (<u>Rep. Prog. Phys. **79** (2016)124201</u>)
- ✓ Rich and relevant physics programme with the injectors at CERN going beyond LHC, bridging gap to next collider → SPS suitability for a beam dump facility to explore FIPs opens new programme at CERN

→ Region that can only be explored by optimized beam-dump experiment

- → Optimise for maximum production of charm and beauty, and electromagnetic processes
- → SPS energy and intensity provide unique direct discovery potential in the world
- → Capable of reaching "physical floor" or "technical/background floor"

Beam dump optimization

✓ Target design for signal/background optimization:

- Very thick \rightarrow use full beam and secondary interactions (12 λ)
- High-A&Z → maximize production cross-sections (Mo/W)
- Short λ (high density) \rightarrow stop pions/kaons before decay

 \rightarrow BDF luminosity for a very thick target (e.g. >1m Mo/W) with

4x10¹⁹ protons on target per year currently available in the SPS

- → BDF@SPS $\mathcal{L}_{int}[year^{-1}] = \ge 4 \times 10^{45} \text{ cm}^{-2}$ (cascade not incl.)
- → HL-LHC $\mathcal{L}_{int}[year^{-1}]$

- = <u>10⁴² cm⁻²</u>
- → BDF/SHiP **annually** access to yields towards detector acceptance:
 - ~ 2×10^{17} charmed hadrons (>10 times the yield at HL-LHC)
 - $\sim 2 \times 10^{12}$ beauty hadrons
 - ~ 2×10^{15} tau leptons
 - O(10²⁰) photons above 100 MeV
 - Large number of neutrinos detected with 3t-W v-target: 3500 $v_{\tau} + \bar{v}_{\tau}$ per year, and 2×10⁵ $v_e + \bar{v}_e$ / 7×10⁵ $v_{\mu} + \bar{v}_{\mu}$ despite target design

ATLAS Preliminary (total unc.)

(an) 10⁴

> $\sigma(pp \rightarrow scbar X)/\sigma(pp \rightarrow X) \sim 2x10^{-3}$ $\sigma(pp \rightarrow bbbar X)/\sigma(pp \rightarrow X) \sim 1.6 x10^{-7}$ Cascade effect, e.g. >2 for charm

\checkmark No technical limitations to operate beam and facility with 4x10¹⁹ protons/year for 15 years

BDF/SHiP experimental techniques

- ✓ Sensitivity depends on three factors
 - Yields (protons on target)
 - Acceptance (lifetime & angular coverage)
 - Background level

✓ Exhaustive search should aim at a model-independent detector setup

• Full reconstruction and identification of both fully and partially reconstructible modes

→ Sensitivity to partially reconstructed modes also proxy for the unknown

- In case of discovery → make precise measurements to discriminate between models and test compatibility with hypothetical signal
- → FIP decay search in background-free environment and LDM scattering
- → Rich "bread and butter" neutrino interaction physics with unique access to tau neutrino

Also suitable for neutrino interaction physics with all favours

arXiv:2304.02511, submitted to EPJC

BDF/SHiP at ECN3

Two separate detector systems: Scattering Neutrino Detector (SND) and Hidden Sector Decay Spectrometer (HSDS)

2020-2023: Facility/experiment adaptation to the available ECN3 line at SPS

- Reduction in transversal size of detector w.r.t. the original design
- Shortening of the muon shield
 - \Rightarrow Background suppression is combined effect of upstream shielding \otimes detector
 - → Further improvement by use of superconducting technology for muon shield

SHiP detector in more detail

Muon shield principle

SHiP "bow wave"

Suppress muon flux by ~6 orders of magnitude by magnetic sweeper system (illustrations from earlier studies)

Field configuration optimised by machine learning with the large sample of muons simulated with PYTHIA/GEANT

Optimisation finds many local minima in rates

Different configurations with similar performance

- Demonstrates robustness against systematics and engineering
- Engineering studies will be used to further constrain optimization and select final configuration

Expected muon rates with SC/NC hybrid muon shield (baseline option)

10

-100 -75

-25

0

X [cm]

-50

25

50

75

100

Background simulations

Optimization and background challenges studied with complete experimental setup implemented in GEANT (FairShip)

→ Simulation tuned with detector performance parameters measured in test beam on prototypes

✓ Large rejection power needed

- $O(10^{11})$ muons (>1 GeV/c) per spill of 4x10¹³ protons
- 1.3×10¹⁹ neutrinos and 9x10¹⁸ anti-neutrinos in acceptance in 6×10²⁰ proton on target (Eur. Phys. J. C 80 (2020) 284)
- → Requires large sample of simulated events

→ Muon spectrum validated at SPS with BDF/SHiP prototype target - agreement within 30%

- → Rates of neutrinos and muons efficiently suppressed by high-A&Z target and muon shield
- ✓ Most "dangerous" signal-type muons are produced in charm and beauty decays, and in QED resonance decays (e.g. $\rho \rightarrow \mu\mu$).
 - Dedicated samples of charm and beauty decays with Pythia6, and resonance decays enhanced by two orders
 of magnitude
- ✓ Muon and neutrino DIS processes
 - Use Pythia6 to generate muon DIS events and GENIE generator for neutrino DIS events in material
 - Boost statistics by forcing each muon and neutrino to interact according to the material distribution

HSDS: Background evaluation for FIP decay search

Background estimation based on full GEANT-based MC

→ Very simple and common selection for both fully and partially reconstructed events – model independence
 → Possibility to measure background with data, relaxing veto and selection cuts, muon shield, decay volume

	Solaction							
Track momentum	Selection	> 1.0 Ge	$\overline{\mathrm{V}/c}$					
Track pair distance of closest approach		< 1	cm					
Track pair vertex position in decay volume		$>5\mathrm{cm}$ from inner	vall					
		$> 100 \mathrm{cm}$ from entrance (partia	lly)	E				
Impact parameter w.r.t. target (full	< 10	cm	Ехрестеа	background is <1 event				
Impact parameter w.r.t. target (par	ed) < 250	$for 6 \times 10^{20} \text{ pot (15 years of operation)}$						
Time coincidence			Background s	ource	Expecte	d events		
			Neutrino DIS		< 0.1 (fully) / < 0.3 (partially)			
			Muon DIS (factorisation) [*] $< 5 \times 10^{-3}$ (fully) / < 0.2 (par					
			Muon combin	atorial	$(1.3 \pm 2.1$	$) \times 10^{-4}$		

Backgrounds in FIP decay search

Background sufficiently low that He @ 1atm being considered in decay volume

- Significant simplification in the Main spectrometer section
- Needs further study → looks very promising

FIP decay search performance: HNLs & Dark photons

FIP decay search performance: Dark scalars & ALPs

Physics sensitivities: FIPs cont'd

Left: lower bound on the SHIP sensitivity to HNL lepton number violation (black dashed line). Reconstructed oscillations between the lepton number conserving and violating event rates as a function of the proper time for a HNL with the parameters $M_N = 1 \text{ GeV}/c^2$, $|U|^2_{\mu} = 2 \times 10^{-8}$ and mass splitting of 4×10^{-7} eV.

SPSC open session, november 2022

Main goals of SND

✓ Search for LDM

- Experimental signature of LDM scattering:

A shower produced by the electron scattered by LDM and "nothing else"

✓ Direct search through scattering, sensitivity to ϵ^4 instead of indirect searches ϵ^2 (E technique)

 ✓ Background is dominated by neutrino elastic and quasielastic scattering, for 6 ×10²⁰ PoT:

6 ×10 ²⁰	$ u_e $	$\bar{\nu}_e$	$ u_{\mu}$	$ar{ u}_{\mu}$	all
Elastic scattering on e^-	156	81	192	126	555
Quasi - elastic scattering	-	27			27
Resonant scattering	-	-			-
Deep inelastic scattering	-	-			-
Total	156	108	192	126	582

✓ Tau neutrino physics

- Experimental signature of tau neutrino:
 - (i) "double-kink" topology (resulted from v_{τ} -interaction and τ -decay)
 - (ii) **Missing P**_t carried away by 2 neutrinos from τ -decay

SND detector optimization

- LDM/neutrino W-target instrumented with layers of emulsion films (topological analysis only)
- SND muon spectrometer measures muon charge and momentum (10% accuracy in 1T field)

- ✓ W/Si neutrino vertex detector (topological analysis)
- ✓ Finely segmented HCAL/Tracker with magnetised absorber integrated to the muon shield (missing P_t analysis)

Magnetised HCAL/Tracker

ν_{τ} – discrimination in leptonic tau decays with magnetised HCAL/Tracker

✓ Main background: muon neutrino interactions in charged currents

- ✓ Kinematical variables used in ML-algorithm
- Missing momentum wrt v_{τ} direction-of-flight
- Muon momentum
- Energy of hadrons

✓ ν_τ / ν_μ are well separated in 3D
 ✓ ML-based analysis is being optimised
 → expect very good discrimination

Neutrino interaction physics

Incl. reconstruction efficiencies

✓ Huge sample of tau neutrinos available at BDF/SHIP via $D_s \rightarrow \tau v_\tau$

- ✓ σ_{stat} < 1% for all neutrino flavours
- ✓ Accuracy determined by systematic uncertainties
 - ~5% in all neutrino fluxes

Decay channel	ν_{τ} $\overline{\nu}_{\tau}$
$\tau \rightarrow \mu$	4×10^3 3×10^3
$\tau \rightarrow h$	27×10^3
$\tau \rightarrow 3h$	11×10^3
$\tau \rightarrow e$	8×10^3
total	53×10^3

✓ LFU in neutrino interactions

• $\sigma_{stat+syst}$ ~3% accuracy in ratios: v_e / v_μ , v_e / v_τ and v_μ / v_τ

✓ Measurement of neutrino DIS cross-sections up to 100 GeV

- E_{ν} < 10 GeV as input to neutrino oscillation programme (DUNE in particular)
- ν_τ cross-section at higher energies input to atmospheric oscillations and cosmic neutrino studies
- $\sigma_{\text{stat+syst}} < 5\%$
- ✓ Test of F_4 and F_5 ($F_4 \approx 0$, $F_5 = F_2/2x$ with $m_q \rightarrow 0$) structure functions in $\sigma_{\nu-CC\,DIS}$
 - Never measured, only accessible with tau neutrinos [C.Albright and C.Jarlskog, NP B84 (1975)]

BDF/SHiP preliminary schedule

Accelerator schedule	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
LHC	Run 3					LS3				Run 4		LS4
SPS (North Area)												
BDF / SHiP	Study		esign and p	prototyping		Produ	uction / Co	struction / Ir	nstallation 💹	C	peration	
Milestones BDF			DR studies			PRR				8		
Milestones SHiP			TDR stu	dies	1	PRR				B		
		Ť .				Ţ						
		Арр	roval for	TDR	Subr	nission of	TDRs		Facility (commissi	oning	

- ~2.5 years for detector TDRs
- Construction / installation of facility and detector is decoupled from NA operation
- Availability of test beams challenging
- Important to start data taking >1 year before LS4
- Several upgrades/extensions of the BDF/SHiP in consideration over the operational life

SHiP TDR highest priorities

All subsystems have undergone first level prototyping/beam test, and critical components have been through large-scale prototyping

Main priorities in the early part of the TDR phase

- ✓ Muon shield SC technology
 - Development of NC magnets will continue in parallel
- ✓ Decay volume under 1atm helium + SBT
 - Removal of vacuum brings significant simplification of spectrometer section and decay volume itself
- ✓ SC option for spectrometer magnet
 - Promising progress recently with design/operational parameters of spectrometer magnet, cooling scheme and mechanics needed (CERN <u>Bulletin article</u>)
- ✓ Development of the electronic SND detector

Summary

- ✓ New programme at "Coupling frontier" at CERN with synergy between accelerator-based searches and searches in astrophysics/cosmology
 - First hints might come with breadth of modern earth/space-based telescopes
- ✓ BDF/SHiP capable of covering the heavy flavour region of parameter space, out of reach for collider experiments
 - Capability not only to establish existence but to measure properties such as precise mass, branching ratios, spin, etc
 - Complementary to FIP searches at HL-LHC and future e+e⁻ collider, where FIPs can be searched in boson decays

See-saw limit is almost in reach below charm mass

✓ Rich "biscuit'n'rhum" neutrino physics programme, including fundamental tests of SM in tau neutrino interactions.

SPARE SLIDES

Overview of BDF extensions

Preliminary studies of opportunities to extend BDF's physics programme synergetically with SHiP:

- ✓ Irradiation stations (nuclear astrophysics and accelerator / material science applications)
- ✓ LArTPC to extend search for FIPs using different technology
- ✓ TauFV to search for lepton flavour violation and rare decays of tau leptons and D-mesons

Extensions: Irradiation stations

✓ Can be exploited synergetically with SHiP as complementary radiation facility

- Similar profile of radiation as at spallation neutron sources
- A flux of ~10¹³ 10¹⁴ neutrons/cm²/pulse in the proximity of the BDF target ranging from thermal neutrons up to 100 MeV
- Unparalleled mixed field radiation near target ~400 MGy and 10¹⁸ 1MeV neq/cm² per year

Two zones:

- Internal: 100-400 MGy / year adapted for irradiation of small volumes
- External: Larger zone of O(m²) with lower radiation level

- Cross-sections important for nuclear astrophysics
- ✓ Radiation tolerance test of materials and electronic components at extreme conditions expected at FCC

Extensions: FIP searches with LAr TPC detector

LArTPC technology is currently used in neutrino and cosmic Dark Matter search experiments

- Large experience at CERN with building 700 t detectors for DUNE
- Space available behind SHiP allows installation of LArTPC with an active volume ~3×3×10 m³ (~130 t) and associated infrastructure

→ Extends SHiP's physics reach using different technology

Extensions: Tau flavour violation experiment

Intercepting 1-2% of protons in BDF line with wire target and mini-LHCb-like detector

- n_{τ} [year⁻¹] ~ $O(10^{13})$: $\tau \rightarrow 3 \mu, \tau \rightarrow \mu \gamma, \tau \rightarrow ee\mu, \tau \rightarrow e\mu\mu, ...$
- $n_{D \text{ mesons}}$ [year⁻¹] ~ $O(10^{15})$: Also opportunity for $D \to \mu\mu,...$ LFV charm decays, e.g. $D \to (h)\mu^+e^\pm$
- $n_{\text{K mesons}}$ [year⁻¹] ~ O(10¹⁸) : $K_L^0, K^+ \rightarrow \pi \mu^{\mp} e^{\pm}$ probed far below the current limits of ~ 10⁻¹⁰

