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f the SHIP Collaboration of 38 institutes from 15 countries and CERN

BDF/SHIP references to reports/publications
- 17 submitted to SPSC and ESPPSU2020
- 26 on the facility development
- 37 on the detector development
- 11 on physics studies
- 20 on theory developments dedicated to SHiP
- 20 PhD thesis, a few more in pipeline

BDF/SHiP approved by the CERN RB in March 2024

Recent documents:
v Proposal, BDF/SHiP at the ECN3 high-intensity beam facility,
CERN-SPSC-2023-033

v’ Letter of Intent, BDF/SHIiP at the ECN3 high-intensity beam facility, CERN-
SPSC-2022-032
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Brief reminder on Dark Sector

Many theoretical models (portal models) predict new massive feebly interacting particles (FIP)
which can be tested experimentally

SHiP Physics Paper — Rep.Progr.Phys.79(2016) 124201 (137pp),

SLAC Dark Sector Workshop 2016: Community Report — arXiv: 1608.08632,

Maryland Dark Sector Workshop 2017: Cosmic Visions — arXiv:1707.04591

Report by Physics Beyond Collider (PBC) study group - https://arxiv.org/abs/1901.09966v2
Most recent one is dedicated to ECN3 proposals - https://arxiv.org/abs/2310.17726

Family of Hidden Particles:
v Light Dark Matter (LDM)
v Portals (mediators) to Hidden Sector (HS):
- Heavy Neutral Leptons (spin Y, coupling coefficient U?)
- Dark photons (spin 1, coupling coefficient &)
- Dark scalars (spin 0, coupling coefficient 6?)
- Special case (non-renormalizable) Axion Like Particles (ALP) (spin 0, coupling coefficient g)



Properties of Hidden Particles

L =Lgy* L, cgiator TLHs

Mediators or portals to the HS:

. . may have rich structure
vector, scalar, axial, neutrino (may )

ﬁ Hidden Sector
Naturally accommodates Dark Matter

v' HS production and decay rates are strongly suppressed relative to SM
- Production branching ratios O(10-9)

- Long-lived objects
- Interact very weakly with matter
- May decay to various final states, e.q.

Portal models Final states

HNL I, FK, Hp-
Vector, scalar, axion portals -

HNL v

Axion portal Ty

Full reconstruction and PID are essential to minimize model dependence

Experimental challenge is background suppression
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Search for Feebly Interacting Particles (FIP)
in heavy flavour decays at BDF/SHiP @ SPS

v Unique physics potential of SPS available since CNGS (Rep. Prog. Phys. 79 (2016)124201)

v Rich and relevant physics programme with the injectors at CERN going beyond LHC, bridging gap to next
collider = SPS suitability for a beam dump facility to explore FIPs — opens new programme at CERN

E.g. Heavy Neutrml Lept@ns

1075
- : 1
Similar behavior Tg;p X >

for all types of FIPs

10—10k

05 1 ‘ 4 10 ' N5
my, [GeV]

——

=> Region that can only be explored by optimized beam-dump experiment
=>» Optimise for maximum production of charm and beauty, and electromagnetic processes
= SPS energy and intensity provide unique direct discovery potential in the world
=>» Capable of reaching “physical floor” or “technical/background floor”
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Beam dump optimization

v’ Target design for signal/background optimization:
« Very thick 2 use full beam and secondary interactions (121)
» High-A&Z - maximize production cross-sections (Mo/W)
« Short A (high density) = stop pions/kaons before decay

= BDF luminosity for a very thick target (e.g. >1m Mo/W) with

4x107° protons on target per year currently available in the SPS
=> BDF@SPS L, [year™1] =>4 x 10*> cm™ (cascade notincl.)
=> HL-LHC £L;,,¢[vear™!] = 10%2 cm™2

=» BDF/SHIP annually access to yields towards detector acceptance:

« ~2x10'” charmed hadrons (>10 times the yield at HL-LHC)
« ~2 x 102 beauty hadrons

« ~2x107° tau leptons
« O(10%9) photons above 100 MeV

« Large number of neutrinos detected with 3t-W v-target:

10°

102;

10

’ -
’ .
sl Lol T N |

10 10° 10° 10

s (GeV)

BDF @ +/s = 27 GeV

o(pp—>ssbar X)/o(pp—>X) ~ 0.15
o(pp—>ccbar X )/o(pp—>X) ~ 2x103
o(pp—~>bbbar X)/c(pp—>X) ~ 1.6 x10”’
Cascade effect, e.g. >2 for charm

3500 v; + v, per year, and 2x10°v, + v, / 7x10° v, +v, despite target design

v No technical limitations to operate beam and facility with 4x10'° protons/year for 15 years
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BDF/SHiP experimental techniques

Visible decay to SM particles Scattering off atomic electrons and
nuclei

Absorber/sweeper

Decay volume Heavy target + detectg( .o

PrW, ' '_-3. Protons 8 |
y \_%_S_l\/_, ‘ W m s na ""“:“,
v Sensitivity depends on three factors Also suitable for neutrino interaction physics with all favours
» Yields (protons on target)
» Acceptance (lifetime & angular coverage) arXiv:2304.02511, submitted to EPJC

» Background level

v’ Exhaustive search should aim at a model-independent detector setup
 Full reconstruction and identification of both fully and partially reconstructible modes
=>» Sensitivity to partially reconstructed modes also proxy for the unknown

* In case of discovery = make precise measurements to discriminate between models and test
compatibility with hypothetical signal

=> FIP decay search in background-free environment and LDM scattering
=> Rich “bread and butter” neutrino interaction physics with unique access to tau neutrino
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BDF/SHiP at ECN3

Two separate detector systems: Scattering Neutrino Detector (SND) and
Hidden Sector Decay Spectrometer (HSDS)

Ventilation wall

Access shaft (4x8m2) Physics model Final state

Hadron absorber

SUSY neutralino (Fn¥, (FKF, (FpF (Tlv
Target complex Dark photons 0+, 27, 37,47, KK, qq, DD
Dark scalars o, mr, KK, qq, DD,GG
MO/W target ALP (fermion coupling) 00 3w, g, qq
7 - HSDS ALP (gluon coupling) Ty, 3T, N, Yy
P o HNL 00w, 7l pl, 7', q'1
Axino v
ALP (photon coupling) ¥y
SUSY sgoldstino vy, 00, 2w, 2K
o o LDM electron, proton, hadronic shower
_ . P A S S e . —— | SND  v,, U, measurements T

D*, D* D°, DY, A+, K,

Neutrino-induced charm production (ve, v, vr)

Muon shield —Z T —_ ° = — [
— = ] ”i'
H - R = 'l“.
Scattering and \ T
Neutrino Detector (SND)

Decay volume

Spectrometer

Particle ID

2020-2023: Facility/experiment adaptation to the available ECN3 line at SPS
v Reduction in transversal size of detector w.r.t. the original design
v Shortening of the muon shield

=» Background suppression is combined effect of upstream shielding @ detector

=> Further improvement by use of superconducting technology for muon shield
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SHIP detector in more detail

Upstream Background Tagger
Magnetised (MRPC) Surrounding Background Tagger Timing detector
p-system (LigSci) (SciBar) PID - ECAL/HCAL
(Drift tubes/SciFi, HSDS Tracker (SciBar/p—megas)
previously RPC) Decay volume (Straw tracker)

(Steel vacuum vessel)

Target tracker
(SciFi)

Emulsion target
(W + emulsion)

-« ><€ > € _! > <€ == >
& > D SND detector Hidden Sector Decay Spectrometer
<°Q\ .3} ,{\& - o by Spectrometer magnet (SC)
& 5 H Designed for “zero background” in decay search N
& S N ] see w38 - CERN Bulletin article),
A S S » Target design
. * Muon shield
,fOQQ’” » Decay volume under low air pressure (or He)
X0
,,s?@&é » Background veto taggers (SBT & UBT)
S &5“ * Momentum and decay vertex information

» Impact parameter at target
» Time coincidence

background suppression

» Particle identification

* Invariant mass } Not currently used in
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Muon shield principle JINST 12 (2017) PO5011 [1703.03612]

Suppress muon flux by ~6 orders of magnitude by magnetic sweeper system (illustrations from
earlier studies)

6 - 50 mrad 25 mrad

p. (GeV/c)

Target 2 |

\ - b ; : —-—
#-4 ’ :@*’u ﬁgﬁ

Protons

x (cm)

Magnetisation of i
hadron absorber N

- - . - 0 50 100 150 200 250 300 350
0 5 10 15 20 25 30 35 40 [ 4]5 p (GeV/c) 0 2000 4000 6000 8000 10000 12000 14000
z[m

Field configuration optimised by machine learning
with the large sample of muons simulated with PYTHIA/GEANT

SHiP “bow wave”

Optimisation finds many local minima in rates

Different configurations with similar performance

« Demonstrates robustness against systematics and engineering

Muon rate at SST [kHz]

« Engineering studies will be used to further constrain optimization
and select final configuration

200 aoo0 600 800 1000 1200
Number of iterations

1400 1600
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Expected muon rates with SC/NC hybrid muon shield (baseline option)

(I

_ [ —

e | 23.00 [

0.00
+6.30
+27.20 —
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front view of section 1

Hadron absorber: Warm
Section 1: Superconducting
Section 2: Warm

400 Straw Tracker
Low rates of residual muons: 7l
~12 kHz in the Straw Tracker N 0
~1 Hz/cm? in SND = | L SE .
B g h Eg 200 1cv
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Background simulations

Optimization and background challenges studied with complete experimental setup implemented in GEANT
(FairShip)

= Simulation tuned with detector performance parameters measured in test beam on prototypes

v’ Large rejection power needed
« 0(10") muons (>1 GeV/c) per spill of 4x1073 protons
« 1.3x1079 neutrinos and 9x10'8 anti-neutrinos in acceptance in 6x102° proton on target (Eur. Phys. J. C 80 (2020) 284)
=>» Requires large sample of simulated events
= Muon spectrum validated at SPS with BDF/SHIiP prototype target - agreement within 30%
=>» Rates of neutrinos and muons efficiently suppressed by high-A&Z target and muon shield

v Most “dangerous” signal-type muons are produced in charm and beauty decays, and in QED resonance decays
(e.9. p = pp).
» Dedicated samples of charm and beauty decays with Pythia6, and resonance decays enhanced by two orders
of magnitude

v Muon and neutrino DIS processes
» Use Pythia6 to generate muon DIS events and GENIE generator for neutrino DIS events in material
» Boost statistics by forcing each muon and neutrino to interact according to the material distribution



HSDS: Background evaluation for FIP decay search

Background estimation based on full GEANT-based MC

Muon DIS
Muon combinatorial )

Neutrino DIS

/ A
wall ( 3 ) A wall

decay vessel

HS decay volume

spectrometer
vacuum

= Very simple and common selection for both fully and partially reconstructed events — model independence
=>» Possibility to measure background with data, relaxing veto and selection cuts, muon shield, decay volume

Selection >1.0Gev/c

Track pair distance of closest approach <lcm
Track pair vertex position in decay volume

Track momentum

> 5cm from inner wall
> 100 cm from entrance (partially)
Impact parameter w.r.t. target (fully reconstructed) <10cm

Impact parameter w.r.t. target (partially reconstructed) < 250 cm

<& Time coincidence <= UBT/SBT

Background source

Expected background is <1 event
for 6x102° pot (15 years of operation)

Expected events

Neutrino DIS

< 0.1 (fully)/< 0.3(partially)

Muon DIS (factorisation)* < 5 x 1072 (fully) / < 0.2(partially)

Muon combinatorial

(1.3+2.1) x 10




Backgrounds in FIP decay search

Background sufficiently low that He @ 7atm being considered in decay volume
 Significant simplification in the Main spectrometer section
* Needs further study - looks very promising

a.u.

Check of signal resolution
air vs vacuum

0.4+

0.357]

0.25/
0.2

0.15"
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fully reconstructed signal in the vacuum
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FIP decay search performance: HNLs & Dark photons

HNLs. Majorana nature, pattern ={1., 0., 0.}

Excluded

Dark photons. BC1

™

1077 — SHiP
— LHdeownstream
10_6 10—10 —_ LHCbprompt, Run6 -
N, — FASER (¢,
.1()—-13
10—9‘ E
845 -16r
_SHP — v ~O | 10 f
*—I—Hdeownstream Sf%fTsaw‘ o - ‘ ‘ ‘ — ‘ ‘ ‘ —
Rttt S ‘ w ‘ s 0.1 0.2 0.5 1 2 S
0.5 1 2 )
my [GeV]
my [GeV]

v' SHIP sensitivities to FIPs are orders of magnitude better than competing projects
v' Sensitivity is not limited by backgrounds in 6 x 10%° PoT
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FIP decay search performance: Dark scalars & ALPs
BC 4 BCS

Dark scalars. BC4 Dark scalars. BC5

Excluded 1074+ Excluded

10—6, 10_6’

I -10L
107'% 0
' — SHIP

1012} — SHIP

[ — I—Hdeownstream [ LHdeownstream 1
0.1 0.2 0.5 1 2 5 0.1 0.2 0.5 1 2 5
ms [GeV] ms [GeV]
ALPs. BC9 ) ALPs coupled to fermions (BC10)
0010 " Excluded : \' Excluded
, e 0.001% : 0.001 )
v' SHIP sensitivities to FIPs are z o ) z
orders of magnitude better than T 107 _FastRe,. | = 107
o o ] AN
competing projects S 108 oSt —
v' Sensitivity is not limited by S o > J_sup T )
backgrounds in 6 x 102° PoT 107 LHCbuounstea
1077 ; " — NAB25ump
"0 nn ‘ S —— 1 10~/ : _— : : :
0.05 0.10 050 1 0.5 1 2 o
m, [GeV] m, [GeV]
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Physics sensitivities: FIPs cont'd

Experiment aimed at discovery and measurements

= Number of events (6x10?° pot)

HNL
SHIP would register 2600 HNLs in the

middle of its sensitivity range can observe l“
oscillations between Lepton Number ol O S » ' ig 001 I Aata St S

Violating and Conserving event rates
-2 Measure mass splitting AM = ~10-7eV

Dark scalar
SHiIP-ECNS3, Br(h-»SS) = 0.

0.001f | \ 7
-8
-6
b
4
2
1 -12 ) ) ) ) A
0.05 0.10 0.50 1 5 LogiolNe]
mg [GeV]
Tastet, JL., Timiryasov, I. Dirac vs. Majorana HNLs (and their oscillations) at
- 2::: ::’:2’; ::fa‘” (1) 2$ SHiP.J. High Energ. Phys. 2020, 5 (2020) https://doi.org/10.1007/JHEP04(2020)005
el 2579 events, My =1 GeV. 61 =4-10°7 eV
puwy inferred using LightGBM with accuracy 0.639
e
EEBURE| YW U R — 10.0 -
BETUEE 7.5 -
1075 {75, 5.0
2.5
N ————— - . Y 2.5
10704 e : s
20710 J e Tt ) —5.0 1
10~ L— . ; v ; : . -7.5 : ' . ; . : .
0.25 0.50 0.75 1.00 1.25 150 1.75 0 2 4 6 8 10 12 14
mN[GcV/cz] Proper time T [m]

Left: lower bound on the SHiP sensitivity to HNL lepton number violation (black dashed line).
Reconstructed oscillations between the lepton number conserving and violating event rates as a function
of the proper time for a HNL with the parameters My = 1 GeV/2, |U|;2¢ = 2 x 10~® and mass splitting
of 4 x 1077 eV.
SPSC open session, Nnovemper zuzz
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Main goals of SND

v’ Search for LDM
- Experimental signature of LDM scattering:

A shower produced by the electron scattered by LDM and “nothing else”

LDM scattering off atomic electrons (and nuclei)
my/my =1/3, ap = 0.1

109

Excluded

10-13 Expectation from relic density is within reach

10 20 50 100 _ 200
my [MeV]

v Tau neutrino physics
- Experimental signature of tau neutrino:

500

v’ Direct search through scattering, sensitivity to €* instead of
indirect searches € ( E technique)

v Background is dominated by neutrino elastic and quasi-
elastic scattering, for 6 X10%° PoT:

20 77 1/
6 x10 Ve Vo v, 1, all

Elastic scattering on e 156 81 192 126 555
Quasi - elastic scattering - 27 27
Resonant scattering : . .
Deep inelastic scattering - - .
Total 156 108 192 126 582

(i) “double-kink” topology (resulted from v_—interaction and t—decay)
(i) Missing P, carried away by 2 neutrinos from t—decay
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SND detector optimization

v/LDM target system

ECC + SciFi  Muon spectrometer

Muon Spectromete

Magnetised

HCAL/Tracker
Sy Replace emulsion films

volume with electronic detectors

18x Target Trackers U BT X Targe

. Parameters to be optimised
3.1t W / 145 m? emulsion

v LDM/neutrino W-target instrumented with layers
of emulsion films (topological analysis only) v" W/Si neutrino vertex detector (topological analysis)
v" Finely segmented HCAL/Tracker with magnetised
absorber integrated to the muon shield
(missing P, analysis)

v SND muon spectrometer measures muon charge
and momentum (10% accuracy in 1T field)
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v' Main background: muon neutrino interactions in charged currents

E mu

Vo

10?

101

10°

— discrimination in leptonic tau decays with
magnetised HCAL/Tracker

Kinematical variables used in ML-algorithm
Missing momentum wrt v_ direction-of-flight
Muon momentum

Energy of hadrons

numu/nutau fraction

..

10° 102 10° 102
E hadr/Pt miss E hadr/Pt miss

10°
E hadr/Pt miss

v v, /v, are well separated in 3D
v' ML-based analysis is being optimised
—> expect very good discrimination

10°

102

10!

10°

Counts

10°E

2 N N N Y
10

107 E

102

—Vy+V,
— Vg +V,

20

40

60

80

300

1 L
100

1 1 1 1 1
120 140
E(GeV)

—4000

T 800

T 600
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Neutrino interaction physics

Incl. reconstruction efficiencies

v Huge sample of tau neutrinos available at BDF/SHIP via D, tv, Decay channel Vr Vr
V' og4. < 1% for all neutrino flavours T— U 1 x 10° 3 x 10
v’ Accuracy determined by systematic uncertainties T—h ol :”.:

0°

~5% in all neutrino fluxes

T — 3’1’ l 1 X

T —> ¢ D

total 53 >

v" LFU in neutrino interactions
Ostat+syst ™3 /0 @ccuracy in ratios: v, /v, , v, /v, and v, /v,
v Measurement of neutrino DIS cross-sections up to 100 GeV
 E,<10 GeV as input to neutrino oscillation programme (DUNE in
particular)
* v_cross-section at higher energies input to atmospheric oscillations
and cosmic neutrino studies

* Ostat+syst <20
v' Test of F, and F; (F, = 0, F5 = F,/2x with m, — 0) structure functions

in 6y_ccpis
« Never measured, only accessible with tau neutrinos
[C.Albright and C.Jarlskog, NP B84 (1975)]



BDF/SHiP preliminary schedule

Accelerator schedule 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033
LHC Run 3
SPS (North Area)

BDF / SHiP Study 7// sign and prototyping % Production / C%cﬁon / Installaﬁon%
Milestones BDF R studies #RR g
Milestones SHIP zf TOR studies 2#RR

Approval for TDR Submission of TDRs Facility commissioning

~2.5 years for detector TDRs

Construction / installation of facility and detector is decoupled from NA operation
Availability of test beams challenging

Important to start data taking >1 year before LS4

Several upgrades/extensions of the BDF/SHIP in consideration over the operational life

2030 2031 2032 2033 2034 2035 2036 2037 2038

J[FIMAM 3] 3]AlS|OINID] 3] FIM[AM] 3] 3] AlS|o|N[D] 3] FIM[AM] 3] 3] A[S|OIN]D| 3] FIMIAIM] 3] 3] A]S[OIN[D{ 3] F]M[AIM] 3] 3] AlS|OINID| 3] FIM/AM] 3] 3 AlS|OINID] 3| FIM|AM] 3] 3 ]A]S|O[N[D] 3] FIM[AM] 3] 3] A[S|OIN]D| 3| FIM[AIM] 3] 3 A[S[ON| D!

| BDF/SHiP tign B |

. \.Run4 ‘ [SHiRigpEratian Dpportunity f rl's’4 ‘ Run 5 ‘

gomm{ssipn oLl ! “I"
nr F| tonsop u:lqtll‘cm nsion

SPS decoupled from injector role in 2042, fully dedicated to proton/ion FT physics

(=)
e
| |
-

©

=

2039 2040 2041 2042 2043 2044 2045 2046 2047
JFMAMJJASdNDJFMAMJJASO#DJFMAMJJASdNDJF pfs[FiM plJ[F plJ[F p|J[F pJi[F D
LS5 | Run 6 LSx
Qpndriiit [ TIAmERE o HE
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SHiP TDR highest priorities

All subsystems have undergone first level prototyping/beam test, and critical components have
been through large-scale prototyping

Main priorities in the early part of the TDR phase
v" Muon shield SC technology

« Development of NC magnets will continue in parallel
v' Decay volume under 1atm helium + SBT

« Removal of vacuum brings significant simplification of spectrometer section and decay volume itself
v' SC option for spectrometer magnet

* Promising progress recently with design/operational parameters of spectrometer magnet, cooling
scheme and mechanics needed (CERN Bulletin article)

v Development of the electronic SND detector

LDM/neutrlno target and muon system (SND) Spectrometer magnet Timing detector

Surrounding Background Tagger (SBT)

Main focus on engineering design in 2024 IIIIIN& |
- Need for design and magnetic engineers

Decay volume volum IDs stems
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Summary

v' New programme at “Coupling frontier” at CERN with synergy between accelerator-based searches and searches in
astrophysics/cosmology

 First hints might come with breadth of modern earth/space-based telescopes
v' BDF/SHIP capable of covering the heavy flavour region of parameter space, out of reach for collider experiments

« Capability not only to establish existence but to measure properties such as precise mass, branching ratios,
spin, etc

 Complementary to FIP searches at HL-LHC and future e+e- - collider, where FIPs can be searched in boson
decays

See-saw limit is almost

- in reach below charm mass
| N
- S
1012 G.X.lp.zopo.tw
05 1 5 10

my [GeV]

v Rich “biscuit'’n’rhum” neutrino physics programme, including fundamental tests of SM in tau neutrino interactions.

24/24



SPARE SLIDES



Overview of BDF extensions

Preliminary studies of opportunities to extend BDF’s physics programme synergetically with SHiP:
v’ Irradiation stations (nuclear astrophysics and accelerator / material science applications)

v LArTPC to extend search for FIPs using different technology

v’ TauFV to search for lepton flavour violation and rare decays of tau leptons and D-mesons




Extensions: Irradiation stations

v Can be exploited synergetically with SHiP as complementary radiation facility

« Similar profile of radiation as at spallation neutron sources

« Aflux of ~1073 - 10"# neutrons/cm?/pulse in the proximity of the BDF target
ranging from thermal neutrons up to 100 MeV

« Unparalleled mixed field radiation near target ~400 MGy and 1078 1MeV neq/cm?

per year
==
]
| | Internal irradiation station
&

External irradiation station

v Cross-sections important for nuclear astrophysics

Energy distribution at the side of the target, 1=4.101%
1x10%9

1x1018f

[
x
-
o
-
~
e |

70 cm target side

1x1016 "

h ——

—

p
n at Al position

dn/dInE [1/cm3]

1x1015

1x1014} 3.4 m target side .

1X1013 1 ' L 1

1012 101 108 10¢ 104 102 10°
E [GeV]

Two zones:

- Internal: 100-400 MGy / year
adapted for irradiation of
small volumes

- External: Larger zone of O(m?)
with lower radiation level

v Radiation tolerance test of materials and electronic components at extreme conditions expected at FCC



Extensions: FIP searches with LAr TPC detector

LArTPC technology is currently used in neutrino and cosmic Dark
Matter search experiments

» Large experience at CERN with building 700 t detectors for
DUNE

« Space available behind SHIP allows installation of LArTPC with

an active volume ~3x3x10 m3 (~130 t) and associated
infrastructure

= Extends SHIP’s physics reach using different technology

0.010¢

0.001+

0_100;_ Excluded

10_45‘

— Milli-charged

particles

— — — —
-
— —

—— LAr@SHIPE, - somev ]
- - - LAI@SHiPg, - 10mev |
— - LAr@SHiPg, -1mev |
— MiI‘IiQaln, Ruln ‘3‘ N :

750 100 5001000 5000 10*

m, [MeV]




Extensions: Tau flavour violation experiment

Intercepting 1-2% of protons in BDF line with wire target and mini-LHCb-like detector
« n [year'1~0O(10"%):1 >3, 12> uy, 1> eew, 1> ey, ..

*  Np mesons [Y€ar'~ 0O(107%) : Also opportunity for D — up,... LFV charm decays, e.g. D - (h)ute®
Nk mesons [y€ar'1~0(10"8) : K2, K+ - mute probed far below the current limits of ~ 10710

m.

~5 x (0.4mm x 2mmNyngsten ss tunnel

wires (actually “blades”
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