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Introduction to GW astronomy



Primordial cosmology and gravitational waves

What are gravitational waves?

Gravitational waves are tensorial perturbations of the metric

ds2 = − dt2 + a2(t)
[
(δij + 2hij) dx

i dxj
]
.

At linear order in vacuum, they satisfy a wave equation, i.e. they are ripples of space-time curvature

propagating unimpeded at the speed of light.

Two polarizations h+ and h×
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First direct detections of Gravitational Waves (GWs)

• Network of ground based detectors LIGO

Hanford, LIGO Livingston and Virgo

• 2016: LIGO/Virgo collaboration announced

the first direct detection of gravitational waves

• 2019: KAGRA joins the LVK collaboration

• 2021: Latest catalogue of gravitational-wave

detections listed 90 events

• 2023: Evidence for a Stochastic Background

of GWs by Pulsar Timing Arrays

The LIGO/Virgo interferometers. Credits: LIGO/Virgo
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Pulsar Timing Arrays and GWs



Introduction to pulsars

• Neutron stars are compact stars with very short

rotational period and extreme magnetic fields

• Magnetic axis not aligned with spin axis

=⇒ radiation is swept through space (lighthouse)

• They appear to the observer as pulses, separated

by a fixed period (spin)
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Pulse profiles

Pulse profiles vary across observing frequencies

• Pulse profiles tend to get sharper at higher

frequencies...

• but the noise level increases due to the

pulsar’s steep spectrum

Most pulsar timing are carried around 1.4 GHz

Pulse profiles also vary across pulsars!
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Pulse profiles

Pulse profiles vary across observing frequencies

• Pulse profiles tend to get sharper at higher

frequencies...

• but the noise level increases due to the

pulsar’s steep spectrum

Most pulsar timing are carried around 1.4 GHz

Pulse profiles also vary across pulsars!
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Pulse profiles

Pulse profiles vary across observing frequencies

• Pulse profiles tend to get sharper at higher

frequencies...

• but the noise level increases due to the

pulsar’s steep spectrum

Most pulsar timing are carried around 1.4 GHz

Pulse profiles also vary across pulsars!
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Template profile

How do we time a pulse?

• Time the peaks?

• Intensity-average arrival time of the pulse?

To achieve the precision needed in PTA, the pulsar-arrival times are determined using template profiles

• standardized pulse shape, obtained after averaging over many rotations (noise-free pulse profile)

• Needs a good knowledge of the pulsar’s period

• Take advantage of the frequency dependent shapes of the pulse profiles
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Time of Arrivals (ToAs)

One ToA is obtained for each observation period:

• One arbitrary pulse is selected in the observation

• Folding: average pulses modulo the pulse period to obtain an average pulse

• Template matching: the pulse profile is cross-correlated with the template profile to obtain the

phase of the observation

The ToA combines the observation time stamp with the phase measurement
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Transferring the observed times to the Pulsar

Accounting for all known propagation and geometric delays

tPSR = tobs −∆⊙ −∆ISM −∆Bin

• ∆⊙ transferring to the Solar System barycenter:

Earth’s orbital and rotational velocity, mass distribution in the Solar System, Solar winds,

parallax... Needs very precise ephemerides!

• ∆ISM accounts for Interstellar propagation delays. Linked to the Dispersion Measure (DM), or

the integrated electron content along the line-of-sight

DM =

∫ D

0

ne dℓ

• ∆Bin, for pulsars that are in binary systems
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Building the timing model

Once the time of emission is determined, it can be converted to a rotational phase

ϕ(tPSR) = ν(tPSR − t0) +
1

2
ν̇(tPSR − t0)

2 + ...

• ν is the pulsar’s frequency

• ν̇ is the derivative of the pulsar frequency

• ν̈ is usually too small in the case of MSPs

In practice, there is an interplay between the construction of the template profile, the timing model

and the propagation/geometric delays.
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Timing residuals

Difference between observed and predicted time of

arrivals of the pulsars’ radio pulses

δti = tobsi − tTM
i

Some errors may be found by visual inspection of

timing residuals

From Verbiest, Oslowski, and Burke-Spolaor 2022
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Timing residuals

Difference between observed and predicted time of

arrivals of the pulsars’ radio pulses

δti = tobsi − tTM
i

Some errors may be found by visual inspection of

timing residuals

From Verbiest, Oslowski, and Burke-Spolaor 2022

Typical PTA dataset
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Timing residuals

Difference between observed and predicted time of

arrivals of the pulsars’ radio pulses

δti = tobsi − tTM
i

Some errors may be found by visual inspection of

timing residuals

From Verbiest, Oslowski, and Burke-Spolaor 2022

1% error on the spindown
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Timing residuals

Difference between observed and predicted time of

arrivals of the pulsars’ radio pulses

δti = tobsi − tTM
i

Some errors may be found by visual inspection of

timing residuals

From Verbiest, Oslowski, and Burke-Spolaor 2022

Positional offset of 0.1 arcsec in right ascension and

declination
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Timing residuals

Difference between observed and predicted time of

arrivals of the pulsars’ radio pulses

δti = tobsi − tTM
i

Some errors may be found by visual inspection of

timing residuals

From Verbiest, Oslowski, and Burke-Spolaor 2022

Proper motion is 10% incorrect
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Hellings and Downs correlations
Good reviews:

Jenet and Romano 2015; Romano and Allen 2023



Time delay due to a GW (1/2)

• Time delay due to the passing of a GW

∆T (t) =
1

2c
uiuj

∫ L

0

ds hij [τ(s), x⃗(s)]

• Plane-wave decomposition of the GW

hij(t, x⃗) =

∫ +∞

−∞
df

∫
dk̂

∑
A=+,×

hA(f, k̂)e
A
ij(k̂) exp

[
i2πf(t− k̂ · x⃗/c)

]
• At zeroth order, the photon propagates on a straight line

x⃗(s) = r⃗1 + sû, τ(s) = t+ (s− L)/c r⃗2 = r⃗1 + Lû,

pulsar at p̂ = −û

Pulsar

Earth

Photon

GW

12



Time delay due to a GW (1/2)

• Time delay due to the passing of a GW

∆T (t) =
1

2c
uiuj

∫ L

0

ds hij [τ(s), x⃗(s)]

• Plane-wave decomposition of the GW

hij(t, x⃗) =

∫ +∞

−∞
df

∫
dk̂

∑
A=+,×

hA(f, k̂)e
A
ij(k̂) exp

[
i2πf(t− k̂ · x⃗/c)

]

• At zeroth order, the photon propagates on a straight line
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Pulsar

Earth

Photon

GW

12



Time delay due to a GW (1/2)

• Time delay due to the passing of a GW

∆T (t) =
1

2c
uiuj

∫ L

0

ds hij [τ(s), x⃗(s)]

• Plane-wave decomposition of the GW

hij(t, x⃗) =

∫ +∞

−∞
df

∫
dk̂

∑
A=+,×

hA(f, k̂)e
A
ij(k̂) exp

[
i2πf(t− k̂ · x⃗/c)

]
• At zeroth order, the photon propagates on a straight line
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Time delay due to a GW (2/2)

∆T (t) =

∫ +∞

−∞
df

∫
dk̂

∑
A=+,×

hA(f, k̂)R
A(f, k̂) exp

[
i2πf(t− k̂ · r⃗2/c)

]
Response function

RA(f, k̂) ≡ 1

2
uiujeAij(k̂)

1

i2πf

1

1− k̂ · û

[
1 − exp

(
− i2πfL

c
(1− k̂ · û)

) ]

• Earth term

• Pulsar term

• Breaks the û → −û symmetry, there is a difference if the photon is surfing the GW or fight

upstream

• Interaction between the photon and the GW polarizations
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• Breaks the û → −û symmetry, there is a difference if the photon is surfing the GW or fight

upstream

• Interaction between the photon and the GW polarizations

13



Time delay due to a GW (2/2)

∆T (t) =

∫ +∞

−∞
df

∫
dk̂

∑
A=+,×

hA(f, k̂)R
A(f, k̂) exp

[
i2πf(t− k̂ · r⃗2/c)

]
Response function

RA(f, k̂) ≡ 1

2
uiujeAij(k̂)

1

i2πf

1

1− k̂ · û
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Short-arm limit fL/c ≪ 1 (LVK)

• The response function reduces to

RA(f, k̂) = uiujeAij(k̂)
L

2c

• Take a pulsar in the ẑ direction and

cos(θ) = k̂ · û, then∣∣∣R+(f, k̂)
∣∣∣ = L

2c
sin2(θ),

∣∣∣R×(f, k̂)
∣∣∣ = 0

Reponse function
∣∣R+

∣∣ for a pulsar located in the +ẑ

direction.
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Long-arm limit fL/c ≫ 1 (PTA)

• We neglect the oscillatory pulsar term,

provided k̂ · û ̸= 1

RA(f, k̂) =
1

2
uiujeAij(k̂)

1

i2πf

1

1− k̂ · û

• Take a pulsar in the ẑ direction and

cos(θ) = k̂ · û, then∣∣∣R+(f, k̂)
∣∣∣ = 1

4πf
(1+cos θ),

∣∣∣R×(f, k̂)
∣∣∣ = 0

Reponse function
∣∣R+

∣∣ for a pulsar located in the +ẑ

direction.
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Hellings and Downs correlation (1/2)

Stochastic background of GW〈
hA(f, k̂)

〉
= 0,

〈
hA(f, k̂)hA′(f ′, k̂′)

〉
=

1

8π
H(f) δ(f ′ − f) δAA′ δ2(k̂, k̂′)

• Statistically isotropic and homogeneous

• Stationary

• Unpolarized

• Photons coming from pulsars a and b have correlated time-delays〈
∆Ta(t)∆Tb(t

′)
〉
=

∫ ∞

−∞
df ei2πf(t−t′) Γab(f)H(f)

• The correlation between two pulsars in encoded in

Γab(f) ≡
1

8π

∫
dk̂

∑
A

RA
a (f, k̂)R

A
b (f, k̂) exp

[
−i2πf k̂ · (⃗ra − r⃗b)/c

]
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• The correlation between two pulsars in encoded in

Γab(f) ≡
1

8π

∫
dk̂

∑
A

RA
a (f, k̂)R
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Hellings and Downs correlation (1/2)
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Hellings and Downs correlation (2/2)

• Isolate the frequency-dependence

Γab(f) =
1

12π2f2
Γab

• In the short-arm limit

Γab =
1

2
P2(cos γab) +

δab
2

• In the long-arm limit

Γab =
1

2
+
3

2

(
1− cos γab

2

)[
ln

(
1− cos γab

2

)
− 1

6

]
+
δab
2
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Results and interpretations



Increasing evidence for GWs

• NANOGrav claims 3.5− 4σ with 67 pulsars Gabriella Agazie et al. 2023a

• EPTA claims ≥ 3σ with 25 pulsars Antoniadis et al. 2023

• PPTA claims 2σ with 30 pulsars Reardon et al. 2023

Bayes factors between models of correlated red noise in the NANOGrav 15-year data set Gabriella Agazie et al. 2023a
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Astrophysical interpretation: Supermassive Black Hole Binaries (SMBHBs)

• SMBH Binary Population Synthesis

• Galaxy masses and merger rates

• SMBH masses based on a galaxy–host relationship

• a binary evolution prescription

• Interpolation of Population Synthesis Models with

Gaussian Processes

• Fitting Simulated GWB Spectra to PTA Observations

The GWB is Consistent with Expectations from Populations

of SMBH Binaries

NANOGRAV’s pipeline Credits: Gabriella Agazie et al.

2023b
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Cosmological interpretations

Bayes factors for NANOGRAV 15 years Credits: Afzal et al. 2023
EPTA Credits: Antoniadis et al. 2024

• First-order phase transitions (PT)

• Cosmic strings (STABLE/META/SUPER)

• Domain walls (DW)

• Inspiraling supermassive black hole binaries

(SMBHBs)

• Scalar-induced GWs (SIGW)
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What’s next



International Pulsar Timing Array (nHz)

• 2015: IPTA Data Release 1

• 2019: IPTA Data Release 2

• Data Release 3 under way

Credits: NANOGRAV’s website
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• Data Release 3 under way

Credits: G. Agazie et al. 2024
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Ground based detectors (10Hz - 1000Hz)

Latest results

• Cross-correlation between detectors

• Upper-limits on ΩGW(f = 25Hz) after O3 (2021)a

• Expected sources
• compact binary coalescences

• core collapse supernovae

• rotating neutron stars

• stellar core collapses

• cosmic strings

• primordial black holes

• superradiance of axion clouds around black

holes

• phase transitions in the early universe

• GWs produced during inflation

aAbbott et al. 2021.

Uniform prior Log-uniform prior

α O3 O2 Improvement O3 O2 Improvement

0 1.7× 10−8 6.0× 10−8 3.6 5.8× 10−9 3.5× 10−8 6.0

2/3 1.2× 10−8 4.8× 10−8 4.0 3.4× 10−9 3.0× 10−8 8.8

3 1.3× 10−9 7.9× 10−9 5.9 3.9× 10−10 5.1× 10−9 13.1

Marg. 2.7× 10−8 1.1× 10−7 4.1 6.6× 10−9 3.4× 10−8 5.1 22



LISA (mHz)

• 1997: Initial design, collaboration

ESA/NASA

• 2015: LISA Pathfinder, technology

demonstrator

• 2024: LISA adoption

• 2035: Planned launch on Ariane 6

Credits: Amaro-Seoane et al. 2017
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LISA (mHz)

• 1997: Initial design, collaboration
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Conclusion



Take-home messages

• Advent of GW astronomy, new window into the darkest corners of the Universe

• Access to a new population of BH and NS binaries

• Increasing evidence for the detection of a Stochastic Background of GW

• Either of astrophysical origin

• Clues for the formation of SMBHs

• Connexion with latest JWST detections of early galaxy formation

• Either of cosmological origin

• Tracer of very HEP, currently inaccessible in colliders

• Hints of violent phase transitions in the Early Universe (GUT, EW)

• Hints of cosmic inflation

• Massive effort to narrow down the origin of the signal around the globe and at different frequencies
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Thank you
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