

Stochastic Gravitational Wave Detection: a year after

Pierre Auclair Be.HEP meeting 2024

Cosmology, Universe and Relativity at Louvain (CURL) Institute of Mathematics and Physics Louvain University, Louvain-la-Neuve, Belgium Introduction to GW astronomy

Pulsar Timing Arrays and GWs

Hellings and Downs correlations

Results and interpretations

What's next

Conclusion

Introduction to GW astronomy

Primordial cosmology and gravitational waves

What are gravitational waves?

Gravitational waves are tensorial perturbations of the metric

$$ds^{2} = -dt^{2} + a^{2}(t) \Big[(\delta_{ij} + 2h_{ij}) dx^{i} dx^{j} \Big].$$

At linear order in vacuum, they satisfy a wave equation, i.e. they are ripples of space-time curvature propagating unimpeded at the speed of light.

Two polarizations h_+ and $h_{ imes}$

• Network of ground based detectors LIGO Hanford, LIGO Livingston and Virgo

The LIGO/Virgo interferometers. Credits: LIGO/Virgo

- Network of ground based detectors LIGO Hanford, LIGO Livingston and Virgo
- 2016: LIGO/Virgo collaboration announced the first direct detection of gravitational waves

Credits: SXS Collaboration

- Network of ground based detectors LIGO Hanford, LIGO Livingston and Virgo
- 2016: LIGO/Virgo collaboration announced the first direct detection of gravitational waves
- 2019: KAGRA joins the LVK collaboration

- Network of ground based detectors LIGO Hanford, LIGO Livingston and Virgo
- 2016: LIGO/Virgo collaboration announced the first direct detection of gravitational waves
- 2019: KAGRA joins the LVK collaboration
- 2021: Latest catalogue of gravitational-wave detections listed 90 events

- Network of ground based detectors LIGO Hanford, LIGO Livingston and Virgo
- 2016: LIGO/Virgo collaboration announced the first direct detection of gravitational waves
- 2019: KAGRA joins the LVK collaboration
- 2021: Latest catalogue of gravitational-wave detections listed 90 events
- 2023: Evidence for a Stochastic Background of GWs by Pulsar Timing Arrays

Pulsar Timing Arrays and GWs

- Neutron stars are **compact stars** with very **short rotational period** and extreme **magnetic fields**
- Magnetic axis not aligned with spin axis
 radiation is swept through space (lighthouse)
- They appear to the observer as pulses, separated by a fixed period (spin)

Pulse profiles vary across observing frequencies

- Pulse profiles tend to get sharper at higher frequencies...
- but the noise level increases due to the pulsar's steep spectrum

Most pulsar timing are carried around $1.4~\mathrm{GHz}$

Pulsars studied in Parkes Pulsar Timing Array Dai et al. 2015

Pulse profiles vary across observing frequencies

- Pulse profiles tend to get sharper at higher frequencies...
- but the noise level increases due to the pulsar's steep spectrum

Most pulsar timing are carried around $1.4~\mathrm{GHz}$

Pulse profiles also vary across pulsars!

Pulsars studied in Parkes Pulsar Timing Array Dai et al. 2015

Pulse profiles vary across observing frequencies

- Pulse profiles tend to get sharper at higher frequencies...
- but the noise level increases due to the pulsar's steep spectrum

Most pulsar timing are carried around $1.4~\mathrm{GHz}$

Pulse profiles also vary across pulsars!

Pulsars studied in Parkes Pulsar Timing Array Dai et al. 2015

How do we time a pulse?

- Time the peaks?
- Intensity-average arrival time of the pulse?

How do we time a pulse?

- Time the peaks?
- Intensity-average arrival time of the pulse?

To achieve the precision needed in PTA, the pulsar-arrival times are determined using template profiles

- standardized pulse shape, obtained after averaging over many rotations (noise-free pulse profile)
- Needs a good knowledge of the pulsar's period
- Take advantage of the frequency dependent shapes of the pulse profiles

Time of Arrivals (ToAs)

One ToA is obtained for each observation period:

• One arbitrary pulse is selected in the observation

Time of Arrivals (ToAs)

One ToA is obtained for each observation period:

- One arbitrary pulse is selected in the observation
- Folding: average pulses modulo the pulse period to obtain an average pulse

One ToA is obtained for each observation period:

- One arbitrary pulse is selected in the observation
- Folding: average pulses modulo the pulse period to obtain an average pulse
- Template matching: the pulse profile is cross-correlated with the template profile to obtain the phase of the observation

One ToA is obtained for each observation period:

- One arbitrary pulse is selected in the observation
- Folding: average pulses modulo the pulse period to obtain an average pulse
- Template matching: the pulse profile is cross-correlated with the template profile to obtain the phase of the observation

The ToA combines the observation time stamp with the phase measurement

Transferring the observed times to the Pulsar

Accounting for all known propagation and geometric delays

$$t_{\rm PSR} = t_{\rm obs} - \Delta_{\odot} - \Delta_{ISM} - \Delta_{\rm Bin}$$

Accounting for all known propagation and geometric delays

```
t_{\rm PSR} = t_{\rm obs} - \Delta_{\odot} - \Delta_{ISM} - \Delta_{\rm Bin}
```

• Δ_{\odot} transferring to the Solar System barycenter:

Earth's orbital and rotational velocity, mass distribution in the Solar System, Solar winds, parallax... Needs very precise ephemerides!

Accounting for all known propagation and geometric delays

```
t_{\rm PSR} = t_{\rm obs} - \Delta_{\odot} - \Delta_{ISM} - \Delta_{\rm Bin}
```

• Δ_{\odot} transferring to the Solar System barycenter:

Earth's orbital and rotational velocity, mass distribution in the Solar System, Solar winds, parallax... Needs very precise ephemerides!

• Δ_{ISM} accounts for Interstellar propagation delays. Linked to the Dispersion Measure (DM), or the integrated electron content along the line-of-sight

$$\mathrm{DM} = \int_0^D n_e \,\mathrm{d}\ell$$

Accounting for all known propagation and geometric delays

```
t_{\rm PSR} = t_{\rm obs} - \Delta_{\odot} - \Delta_{ISM} - \Delta_{\rm Bin}
```

• Δ_{\odot} transferring to the Solar System barycenter:

Earth's orbital and rotational velocity, mass distribution in the Solar System, Solar winds, parallax... Needs very precise ephemerides!

• Δ_{ISM} accounts for Interstellar propagation delays. Linked to the Dispersion Measure (DM), or the integrated electron content along the line-of-sight

$$\mathrm{DM} = \int_0^D n_e \,\mathrm{d}\ell$$

• $\Delta_{\rm Bin},$ for pulsars that are in binary systems

Once the time of emission is determined, it can be converted to a rotational phase

$$\phi(t_{\text{PSR}}) = \nu(t_{\text{PSR}} - t_0) + \frac{1}{2}\dot{\nu}(t_{\text{PSR}} - t_0)^2 + \dots$$

- ν is the pulsar's frequency
- $\dot{\nu}$ is the derivative of the pulsar frequency
- $\ddot{\nu}$ is usually too small in the case of MSPs

Once the time of emission is determined, it can be converted to a rotational phase

$$\phi(t_{\text{PSR}}) = \nu(t_{\text{PSR}} - t_0) + \frac{1}{2}\dot{\nu}(t_{\text{PSR}} - t_0)^2 + \dots$$

- ν is the pulsar's frequency
- $\dot{\nu}$ is the derivative of the pulsar frequency
- $\ddot{\nu}$ is usually too small in the case of MSPs

In practice, there is an interplay between the construction of the template profile, the timing model and the propagation/geometric delays.

$$\delta t_i = t_i^{\rm obs} - t_i^{\rm TM}$$

$$\delta t_i = t_i^{\rm obs} - t_i^{\rm TN}$$

Some errors may be found by visual inspection of timing residuals

From Verbiest, Oslowski, and Burke-Spolaor 2022

Typical PTA dataset

$$\delta t_i = t_i^{\rm obs} - t_i^{\rm TN}$$

Some errors may be found by visual inspection of timing residuals

From Verbiest, Oslowski, and Burke-Spolaor 2022

1% error on the spindown

$$\delta t_i = t_i^{\rm obs} - t_i^{\rm TN}$$

Some errors may be found by visual inspection of timing residuals

From Verbiest, Oslowski, and Burke-Spolaor 2022

Positional offset of $0.1 \ {\rm arcsec}$ in right ascension and declination

$$\delta t_i = t_i^{\rm obs} - t_i^{\rm TN}$$

Some errors may be found by visual inspection of timing residuals

From Verbiest, Oslowski, and Burke-Spolaor 2022

Proper motion is 10% incorrect

Hellings and Downs correlations Good reviews:

Jenet and Romano 2015; Romano and Allen 2023

• Time delay due to the passing of a GW

$$\Delta T(t) = \frac{1}{2c} u^i u^j \int_0^L \mathrm{d}s \, h_{ij}[\tau(s), \vec{\mathbf{x}}(s)]$$

 $\bullet\,$ Time delay due to the passing of a GW

$$\Delta T(t) = \frac{1}{2c} u^i u^j \int_0^L \mathrm{d}s \, h_{ij}[\tau(s), \vec{\mathbf{x}}(s)]$$

• Plane-wave decomposition of the GW

$$h_{ij}(t, \vec{\mathbf{x}}) = \int_{-\infty}^{+\infty} \mathrm{d}f \int \mathrm{d}\hat{\mathbf{k}} \sum_{A=+,\times} h_A(f, \hat{\mathbf{k}}) e^A_{ij}(\hat{\mathbf{k}}) \exp\left[i2\pi f(t - \hat{\mathbf{k}} \cdot \vec{\mathbf{x}}/c)\right] \overset{\text{orgential}}{\xrightarrow{}} \overset{\text{GW}}{\operatorname{Photon}}$$

 $\bullet\,$ Time delay due to the passing of a GW

$$\Delta T(t) = \frac{1}{2c} u^i u^j \int_0^L \mathrm{d}s \, h_{ij}[\tau(s), \vec{\mathbf{x}}(s)]$$

• Plane-wave decomposition of the GW

• At zeroth order, the photon propagates on a straight line

$$\vec{\mathbf{x}}(s) = \vec{\mathbf{r}}_1 + s\hat{\mathbf{u}}, \quad \tau(s) = t + (s - L)/c \quad \vec{\mathbf{r}}_2 = \vec{\mathbf{r}}_1 + L\hat{\mathbf{u}},$$

pulsar at $\mathbf{\hat{p}}=-\mathbf{\hat{u}}$

$$\Delta T(t) = \int_{-\infty}^{+\infty} \mathrm{d}f \int \mathrm{d}\hat{\mathbf{k}} \sum_{A=+,\times} h_A(f, \hat{\mathbf{k}}) R^A(f, \hat{\mathbf{k}}) \exp\left[i2\pi f(t - \hat{\mathbf{k}} \cdot \vec{\mathbf{r}}_2/c)\right]$$

Response function

$$R^{A}(f,\hat{\mathbf{k}}) \equiv \frac{1}{2}u^{i}u^{j}e^{A}_{ij}(\hat{\mathbf{k}}) \frac{1}{i2\pi f} \frac{1}{1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}}} \left[\mathbf{1} - \exp\left(-\frac{i2\pi fL}{c}(1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}})\right) \right]$$

• Earth term

$$\Delta T(t) = \int_{-\infty}^{+\infty} \mathrm{d}f \int \mathrm{d}\hat{\mathbf{k}} \sum_{A=+,\times} h_A(f, \hat{\mathbf{k}}) R^A(f, \hat{\mathbf{k}}) \exp\left[i2\pi f(t - \hat{\mathbf{k}} \cdot \vec{\mathbf{r}}_2/c)\right]$$

Response function

$$R^{A}(f,\hat{\mathbf{k}}) \equiv \frac{1}{2}u^{i}u^{j}e^{A}_{ij}(\hat{\mathbf{k}}) \ \frac{1}{i2\pi f} \ \frac{1}{1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}}} \left[1 - \exp\left(-\frac{i2\pi fL}{c}(1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}})\right) \right]$$

- Earth term
- Pulsar term

$$\Delta T(t) = \int_{-\infty}^{+\infty} \mathrm{d}f \int \mathrm{d}\hat{\mathbf{k}} \sum_{A=+,\times} h_A(f, \hat{\mathbf{k}}) R^A(f, \hat{\mathbf{k}}) \exp\left[i2\pi f(t - \hat{\mathbf{k}} \cdot \vec{\mathbf{r}}_2/c)\right]$$

Response function

$$R^{A}(f,\hat{\mathbf{k}}) \equiv \frac{1}{2}u^{i}u^{j}e^{A}_{ij}(\hat{\mathbf{k}}) \frac{1}{i2\pi f} \frac{1}{1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}}} \left[1 - \exp\left(-\frac{i2\pi fL}{c}(1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}})\right) \right]$$

- Earth term
- Pulsar term
- Breaks the $\hat{u}\to -\hat{u}$ symmetry, there is a difference if the photon is surfing the GW or fight upstream

$$\Delta T(t) = \int_{-\infty}^{+\infty} \mathrm{d}f \int \mathrm{d}\hat{\mathbf{k}} \sum_{A=+,\times} h_A(f, \hat{\mathbf{k}}) R^A(f, \hat{\mathbf{k}}) \exp\left[i2\pi f(t - \hat{\mathbf{k}} \cdot \vec{\mathbf{r}}_2/c)\right]$$

Response function

$$R^{A}(f,\hat{\mathbf{k}}) \equiv \boxed{\frac{1}{2}u^{i}u^{j}e^{A}_{ij}(\hat{\mathbf{k}})}{\frac{1}{i2\pi f}} \frac{1}{1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}}} \left[1 - \exp\left(-\frac{i2\pi fL}{c}(1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}})\right)\right]$$

- Earth term
- Pulsar term
- Breaks the $\hat{u}\to -\hat{u}$ symmetry, there is a difference if the photon is surfing the GW or fight upstream
- Interaction between the photon and the GW polarizations

• The response function reduces to

 $R^{A}(f, \mathbf{\hat{k}}) = u^{i} u^{j} e^{A}_{ij}(\mathbf{\hat{k}}) \frac{L}{2c}$

• Take a pulsar in the \hat{z} direction and $\cos(\theta) = \hat{k} \cdot \hat{u}$, then

$$\left| R^+(f, \hat{\mathbf{k}}) \right| = \frac{L}{2c} \sin^2(\theta), \quad \left| R^{\times}(f, \hat{\mathbf{k}}) \right| = 0$$

Reponse function $\left|R^{+}\right|$ for a pulsar located in the $+\hat{\mathbf{z}}$ direction.

• We neglect the oscillatory pulsar term, provided $\hat{\mathbf{k}}\cdot\hat{\mathbf{u}}\neq 1$

$$R^{A}(f, \hat{\mathbf{k}}) = \frac{1}{2}u^{i}u^{j}e^{A}_{ij}(\hat{\mathbf{k}})\frac{1}{i2\pi f}\frac{1}{1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}}}$$

• Take a pulsar in the $\hat{\mathbf{z}}$ direction and $\cos(\theta) = \hat{\mathbf{k}} \cdot \hat{\mathbf{u}}$, then

$$\left| R^+(f, \hat{\mathbf{k}}) \right| = \frac{1}{4\pi f} (1 + \cos \theta), \quad \left| R^\times(f, \hat{\mathbf{k}}) \right| = 0$$

Reponse function $\left| R^{+} \right|$ for a pulsar located in the $+ \hat{\mathbf{z}}$ direction.

• We neglect the oscillatory pulsar term, provided $\hat{\mathbf{k}}\cdot\hat{\mathbf{u}}\neq 1$

$$R^{A}(f, \hat{\mathbf{k}}) = \frac{1}{2}u^{i}u^{j}e^{A}_{ij}(\hat{\mathbf{k}})\frac{1}{i2\pi f}\frac{1}{1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}}}$$

• Take a pulsar in the $\hat{\mathbf{z}}$ direction and $\cos(\theta) = \hat{\mathbf{k}} \cdot \hat{\mathbf{u}}$, then

$$\left| R^+(f, \hat{\mathbf{k}}) \right| = \frac{1}{4\pi f} (1 + \cos \theta), \quad \left| R^\times(f, \hat{\mathbf{k}}) \right| = 0$$

$$\left\langle h_A(f,\hat{\mathbf{k}}) \right\rangle = 0, \quad \left\langle h_A(f,\hat{\mathbf{k}})h_{A'}(f',\hat{\mathbf{k}}') \right\rangle = \frac{1}{8\pi} H(f) \ \delta(f'-f) \quad \delta_{AA'} \ \delta^2(\hat{\mathbf{k}},\hat{\mathbf{k}}')$$

- Statistically isotropic and homogeneous
- Stationary
- Unpolarized

$$\left\langle h_A(f,\hat{\mathbf{k}}) \right\rangle = 0, \quad \left\langle h_A(f,\hat{\mathbf{k}})h_{A'}(f',\hat{\mathbf{k}}') \right\rangle = \frac{1}{8\pi}H(f)\delta(f'-f)\delta_{AA'}\delta^2(\hat{\mathbf{k}},\hat{\mathbf{k}}')$$

- Statistically isotropic and homogeneous
- Stationary
- Unpolarized

$$\left\langle h_A(f,\hat{\mathbf{k}}) \right\rangle = 0, \quad \left\langle h_A(f,\hat{\mathbf{k}})h_{A'}(f',\hat{\mathbf{k}}') \right\rangle = \frac{1}{8\pi}H(f) \ \delta(f'-f) \ \delta_{AA'} \ \delta^2(\hat{\mathbf{k}},\hat{\mathbf{k}}')$$

- Statistically isotropic and homogeneous
- Stationary
- Unpolarized

$$\left\langle h_A(f,\hat{\mathbf{k}}) \right\rangle = 0, \quad \left\langle h_A(f,\hat{\mathbf{k}})h_{A'}(f',\hat{\mathbf{k}}') \right\rangle = \frac{1}{8\pi}H(f) \ \delta(f'-f) \ \delta_{AA'} \ \delta^2(\hat{\mathbf{k}},\hat{\mathbf{k}}')$$

- Statistically isotropic and homogeneous
- Stationary
- Unpolarized
- Photons coming from pulsars a and b have correlated time-delays

$$\left\langle \Delta T_a(t) \Delta T_b(t') \right\rangle = \int_{-\infty}^{\infty} \mathrm{d}f \, \mathrm{e}^{i2\pi f(t-t')} \, \Gamma_{ab}(f) H(f)$$

$$\left\langle h_A(f,\hat{\mathbf{k}}) \right\rangle = 0, \quad \left\langle h_A(f,\hat{\mathbf{k}})h_{A'}(f',\hat{\mathbf{k}}') \right\rangle = \frac{1}{8\pi}H(f) \ \delta(f'-f) \ \delta_{AA'} \ \delta^2(\hat{\mathbf{k}},\hat{\mathbf{k}}')$$

- Statistically isotropic and homogeneous
- Stationary
- Unpolarized
- Photons coming from pulsars a and b have correlated time-delays

$$\left\langle \Delta T_a(t) \Delta T_b(t') \right\rangle = \int_{-\infty}^{\infty} \mathrm{d}f \, \mathrm{e}^{i2\pi f(t-t')} \, \Gamma_{ab}(f) H(f)$$

• The correlation between two pulsars in encoded in

$$\Gamma_{ab}(f) \equiv \frac{1}{8\pi} \int d\mathbf{\hat{k}} \sum_{A} R_a^A(f, \mathbf{\hat{k}}) R_b^A(f, \mathbf{\hat{k}}) \exp\left[-i2\pi f \, \mathbf{\hat{k}} \cdot (\mathbf{\vec{r}}_a - \mathbf{\vec{r}}_b)/c\right]$$

$$\left\langle h_A(f,\hat{\mathbf{k}}) \right\rangle = 0, \quad \left\langle h_A(f,\hat{\mathbf{k}})h_{A'}(f',\hat{\mathbf{k}}') \right\rangle = \frac{1}{8\pi}H(f) \ \delta(f'-f) \ \delta_{AA'} \ \delta^2(\hat{\mathbf{k}},\hat{\mathbf{k}}')$$

- Statistically isotropic and homogeneous
- Stationary
- Unpolarized
- Photons coming from pulsars a and b have correlated time-delays

$$\left\langle \Delta T_a(t) \Delta T_b(t') \right\rangle = \int_{-\infty}^{\infty} \mathrm{d}f \, \mathrm{e}^{i2\pi f(t-t')} \, \Gamma_{ab}(f) H(f)$$

• The correlation between two pulsars in encoded in

$$\Gamma_{ab}(f) \equiv \frac{1}{8\pi} \int d\mathbf{\hat{k}} \sum_{A} R_a^A(f, \mathbf{\hat{k}}) R_b^A(f, \mathbf{\hat{k}}) \exp\left[-i2\pi f \,\mathbf{\hat{k}} \cdot (\mathbf{\vec{r}}_a - \mathbf{\vec{r}}_b)/c\right]$$

• Isolate the frequency-dependence

$$\Gamma_{ab}(f) = \frac{1}{12\pi^2 f^2} \Gamma_{ab}$$

• Isolate the frequency-dependence

$$\Gamma_{ab}(f) = \frac{1}{12\pi^2 f^2} \Gamma_{ab}$$

• In the short-arm limit

$$\Gamma_{ab} = \frac{1}{2} P_2(\cos \gamma_{ab}) + \frac{\delta_{ab}}{2}$$

• Isolate the frequency-dependence

$$\Gamma_{ab}(f) = \frac{1}{12\pi^2 f^2} \Gamma_{ab}$$

• In the short-arm limit

$$\Gamma_{ab} = \frac{1}{2} P_2(\cos \gamma_{ab}) + \frac{\delta_{ab}}{2}$$

• In the long-arm limit

$$\Gamma_{ab} = \frac{1}{2} + \frac{3}{2} \left(\frac{1 - \cos \gamma_{ab}}{2} \right) \left[\ln \left(\frac{1 - \cos \gamma_{ab}}{2} \right) - \frac{1}{6} \right] + \frac{\delta_{ab}}{2}$$

Results and interpretations

• NANOGrav claims $3.5-4\sigma$ with 67 pulsars Gabriella Agazie et al. 2023a

Bayes factors between models of correlated red noise in the NANOGrav 15-year data set Gabriella Agazie et al. 2023a

Increasing evidence for GWs

- NANOGrav claims $3.5-4\sigma$ with 67 pulsars Gabriella Agazie et al. 2023a
- EPTA claims $\geq 3\sigma$ with $25~{\rm pulsars}$ ${\rm Antoniadis~et~al.}~2023$

Constraints on the overlap reduction function from the optimal statistic Antoniadis et al. 2023

Increasing evidence for GWs

- NANOGrav claims $3.5-4\sigma$ with 67 pulsars Gabriella Agazie et al. 2023a
- EPTA claims $\geq 3\sigma$ with $25~{\rm pulsars}$ ${\rm Antoniadis~et~al.}~2023$
- PPTA claims 2σ with 30 pulsars Reardon et al. 2023

Measured spatial correlations as a function of the angular separation angle Reardon et al. 2023

Astrophysical interpretation: Supermassive Black Hole Binaries (SMBHBs)

- SMBH Binary Population Synthesis
 - Galaxy masses and merger rates
 - SMBH masses based on a galaxy-host relationship
 - a binary evolution prescription
- Interpolation of Population Synthesis Models with Gaussian Processes
- Fitting Simulated GWB Spectra to PTA Observations

The GWB is Consistent with Expectations from Populations of SMBH Binaries

NANOGRAV's pipeline Credits: Gabriella Agazie et al. 2023b

Bayes factors for NANOGRAV 15 years Credits: Afzal et al. 2023

- First-order phase transitions (PT)
- Cosmic strings (STABLE/META/SUPER)
- Domain walls (DW)

- Inspiraling supermassive black hole binaries (SMBHBs)
- Scalar-induced GWs (SIGW)

What's next

Credits: NANOGRAV's website

- 2015: IPTA Data Release 1
- 2019: IPTA Data Release 2

- 2015: IPTA Data Release 1
- 2019: IPTA Data Release 2
- Data Release 3 under way

Credits: G. Agazie et al. 2024

Ground based detectors (10Hz - 1000Hz)

Latest results

- Cross-correlation between detectors
- Upper-limits on $\Omega_{\rm GW}(f=25{\rm Hz})$ after O3 (2021)^a
- Expected sources
 - compact binary coalescences
 - core collapse supernovae
 - rotating neutron stars
 - stellar core collapses
 - cosmic strings

^aAbbott et al. 2021.

- primordial black holes
- superradiance of axion clouds around black holes
- phase transitions in the early universe
- GWs produced during inflation

	Uniform prior			Log-uniform prior		
α	O3	O2	Improvement	O3	O2	Improvement
0	1.7×10^{-8}	6.0×10^{-8}	3.6	5.8×10^{-9}	3.5×10^{-8}	6.0
2/3	1.2×10^{-8}	4.8×10^{-8}	4.0	3.4×10^{-9}	3.0×10^{-8}	8.8
3	1.3×10^{-9}	7.9×10^{-9}	5.9	3.9×10^{-10}	5.1×10^{-9}	13.1
Marg.	2.7×10^{-8}	1.1×10^{-7}	4.1	6.6×10^{-9}	3.4×10^{-8}	5.1

- 1997: Initial design, collaboration ESA/NASA
- 2015: LISA Pathfinder, technology demonstrator
- 2024: LISA adoption
- 2035: Planned launch on Ariane 6

Credits: Amaro-Seoane et al. 2017

- 1997: Initial design, collaboration ESA/NASA
- 2015: LISA Pathfinder, technology demonstrator
- 2024: LISA adoption
- 2035: Planned launch on Ariane 6

Auclair et al. 2023

Conclusion

- Advent of GW astronomy, new window into the darkest corners of the Universe
- Access to a new population of BH and NS binaries
- Increasing evidence for the detection of a Stochastic Background of GW

- Advent of GW astronomy, new window into the darkest corners of the Universe
- Access to a new population of BH and NS binaries
- Increasing evidence for the detection of a Stochastic Background of GW
- Either of astrophysical origin
 - Clues for the formation of SMBHs
 - Connexion with latest JWST detections of early galaxy formation

- Advent of GW astronomy, new window into the darkest corners of the Universe
- Access to a new population of BH and NS binaries
- Increasing evidence for the detection of a Stochastic Background of GW
- Either of astrophysical origin
 - Clues for the formation of SMBHs
 - Connexion with latest JWST detections of early galaxy formation
- Either of cosmological origin
 - Tracer of very HEP, currently inaccessible in colliders
 - Hints of violent phase transitions in the Early Universe (GUT, EW)
 - Hints of cosmic inflation

- Advent of GW astronomy, new window into the darkest corners of the Universe
- Access to a new population of BH and NS binaries
- Increasing evidence for the detection of a Stochastic Background of GW
- Either of astrophysical origin
 - Clues for the formation of SMBHs
 - Connexion with latest JWST detections of early galaxy formation
- Either of cosmological origin
 - Tracer of very HEP, currently inaccessible in colliders
 - Hints of violent phase transitions in the Early Universe (GUT, EW)
 - Hints of cosmic inflation
- Massive effort to narrow down the origin of the signal around the globe and at different frequencies

Thank you